Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физически нелинейные линеаризованные задачи

Физически нелинейные линеаризованные задачи 219  [c.287]

Приведенные выше соотношения явились основой вычислительных программ численного решения задач о напряженных, деформированных и предельных состояниях оболочечных конструкций, подверженных длительным статическим и малоцикловым воздействиям в условиях повышенных температур [8, 3, 15]. Разработанная в [15] программа исследования прочности сильфонов основана на линеаризованных уравнениях теории оболочек и уравнениях состояния (8.17). Для учета физической нелинейности материала оболочки используется метод переменных параметров упругости [10].  [c.160]


Применение уточненных уравнений дает возможность также решать задачи об устойчивости толстостенных оболочек в геометрически нелинейной постановке. Под критическими состояниями оболочки понимают точки вырождения линеаризованного оператора на траектории нагружения, которую строят методом продолжения решения по параметру. Регуляризацию некорректной задачи в окрестности особых точек обеспечивают Сменой ведущего параметра. При нагружении оболочки внутренним давлением характер трансформирования ее полей перемещений и напряжений определяется в большей мере физической нелинейностью. Применение к описанию деформации метода Лагранжа и учет изменения метрики в процессе трансформирования поверхности оболочки позволили описать ее большие формоизменения. Исследовано влияние формы срединной поверхности и изменения толщины оболочек на величину критического давления и характер деформирования их за пределами упругости.  [c.6]

Общая постановка плоских контактных задач для полупространства и слоя, подверженных одновременному воздействию сил тяжести и однородных, ориентированных вдоль границы, начальных напряжений дана в работе В. М. Александрова и Н. X. Арутюняна [1]. Предполагалось, что материал среды является несжимаемым и описывается либо уравнениями физически нелинейной (геометрически линейной) теории установившейся ползучести, либо уравнениями геометрически нелинейной (физически линейной) теории упругости. В предположении, что силы трения в области контакта отсутствуют, изучена проблема эллиптичности линеаризованных уравнений (внутренней устойчивости среды), исследованы явления поверхностной неустойчивости среды. В качестве иллюстрации проведен анализ влияния механических свойств и начального напряженного состояния среды на контактную жесткость. Для потенциала Муни обнаружены значения начальных напряжений, при которых упругий континуум начинает работать как основание Винклера.  [c.236]

Плоские и осесимметричные контактные задачи для физически нелинейного (линейного геометрически) и геометрически нелинейного (гармонического типа) материала исследовались И. В. Воротынцевой [13] совместно с В. М. Александровым [3] и с Е. В. Коваленко [14]. С помощью соответствующих интегральных преобразований задачи сведены к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадает со структурой соответствующих уравнений классической теории упругости, а свойства символов их ядер позволяют использовать для решения асимптотические методы больших и малых Л , развитые в работах В. М. Александрова. Влияние нелинейных свойств среды и начальных напряжений на контактную жесткость, функцию распределения контактных напряжений и величину вдавливающей силы в плоском случае исследовано в [13], в осесимметричном случае — в [3,14]. В работах установлено, что начальные напряжения не влияют на порядок особенности на краях штампа, но влияют на проникающую составляющую решения как в области контакта, так и вне ее. Исследованы условия потери внутренней устойчивости среды в зависимости от начальных напряжений. Для ряда конкретных нелинейно-упругих сред построены области эллиптичности линеаризованных уравнений, при переходе через границу которых происходит либо потеря поверхностной устойчивости, либо потеря поверхностной деформируемости, связанные с потерей эллиптичности. В работе установлено, что при стыковке решений, полученных методами больших и малых Л , значение относительной толщины Л, на которой стыкуются эти методы, существенно зависит от параметров начального напряженного состояния среды.  [c.237]


Для решения с помощью МКЭ физически и геометрически нелинейных задач статики можно воспользоваться линеаризованной формулировкой задачи (3.90) и получить систему уравнений относительно приращений обобщенных узловых перемещений на /п-й итерации  [c.112]

Для резиновых упругих элементов муфт характерны большие перемещения и большие деформации, что требует при их расчете использования довольно сложного математического аппарата нелинейной теории упругости либо шаговой процедуры решения задачи, позволяющей использовать линеаризованные физические соотношения в пределах каждого шага.  [c.9]

Линеаризованные физически нелинейные задачи для гладких и ребристых оболочек. Учет приобретенной анизотропии на примере линеарнзапни физически нелинейных задач теории малых упруго-пластических деформаций при использовании метода переменных параметров упругости рассмотрен в [П. 3]. В этом случае связь между компонентами усилий и деформаций для гладких и ребристых оболочек можно представить в форме (I 20) гл. 4 Д.ЧЯ неоднородных анизотропных оболочек. В этих уравнениях коэффициенты упругости являются функциями напряженно-деформированного состояния. Прн решении данной нелинейной задачи методом переменных параметров упругости физические соотношения на каждом шаге линеаризации сохраняют форму (1.20) с постоянными коэффициентами упругости. Часть коэффициентов в эти.х соотношениях обращается в нуль, а вид других зависит от интегральных физических характеристик сечения (например, [П. 6]). Уравнения равновесия и геометрические завнснмостн, естественно, остаются одинаковыми для теории малых упруго-пластических деформаций н линейной теории неоднородных анизотропных оболочек.  [c.219]

Таким образом, задачи расчета однородных и неоднородных оболочек с учетом физической нелинейности приводятся к последовательности линеаризованных задач для неоднородных анизотропных рболоче1(.  [c.219]

Для расчета оболочек вращения, а также оболочек с прямоугольным параметрическим планом широко используется аппроксимация системы дифференциальных уравнений в частных производных системой в обыкновенных производных и метод Ньютона. Линеаризованная краевая задача решается сведением ее к ряду задач Коши с дискретной ортогонализа-цней по Годунову [90, 91, 134, 186, 187]. Такой подход позволяет построить эффективные алгоритмы числеииого изучения прочности, устойчивости, собственных и вынужденных колебаний оболочек с учетом геометрической и физической нелинейностей задачи. Развитая в последующих главах методика  [c.24]

Нетрудно подметить недостатки полученного здесь решения линеаризованной задачи по сравнению с решением нелинейной задачи предыдущего параграфа. Так, согласно (16.31) оно не дает никакой информации относительно амплитуды синусоиды, являющейся собственной формой выпучивания стержня. Далее, полученное решение дает физически неправдоподобную картину искривленная форма равновесия возможна лишь при Р Рп при Рп < Р < Рп+1 стержень должен возвращаться к прямолинейной форме равновесия. Из текста предыдущего параграфа более или менее ясно, в чем тут дело. После прохождения критического значения сжимающей силы амплитуда выпучивания быстро возрастает и линеаризованные зависимости (полученные в предположении малости углов поворота) уже не описывают прогрессирующего выпучивания стержня — так называемой его закри-тической деформации.  [c.258]

Существование и единственность решения задачи для нелинейных уравнений осесимметричного движения газа в турбомашине в общем виде не доказаны. Однако можно высказать некоторые соображения в пользу положительного решения этого вопроса. Прежде всего существование решения очевидно из физических соображений даже для самой обшей (трехмерной) постановки. Единственность решения линеаризованных (в отношении производных) уравнений очевидна, так как они сводятся к квазилинейному эллиптическому уравнению типа уравнения Пуассона. Нелинейность уравнений существенно связана с множителем р в уравнении неразрывности, а также с производными от р (т. е. с и 7 ) в уравнении вихрей. Для частного случая линейных уравнений с р = onst up — onst, который отвечает течению несжимаемой жидкости только через неподвижные решетки (ш = 0), существование и единственность решения следуют из тех же свойств, доказанных для более общей задачи трехмерного движения. Нелинейность, зависящая от производных от р, вообше очень слабая. Она связана со смещением линий тока (вдоль которых р постоянно или является известной функцией). В предположении непрерывной зависимости формы линий тока от значений р у задаваемых в виде гладкой функции поперек входного сечения, а также от величины угловой скорости ш (такая зависимость, безусловно, должна быть непрерывной в силу эллиптичности уравнений с гладкими коэффициентами) можно определенно утверждать единственность решения нелинейных уравнений, по крайней мере, для достаточно малых областей А или для достаточно малых  [c.303]


Тензор Пги называется тензором деформации. Очевидно, тензор й симметричен, т. е. Нгй=Ий(- Обратим внимание на то, что нелинейно зависит от производных вектора смещения. Поскольку такого рода нелинейность не связана с физическими свойствами тела, ее принято называть геометрической нелинейностью. В большинстве случаев деформации г/гй малы по сравнению с единицей, поэтому нелинейная добавка в выражении (1.1) представляет собой величину второго порядка малости. В линейных задачах этой добавкой пренебрегают и оперируют с линеаризованным тензором деформации иц1 = /2 ди1/дх дик/дх1). В таком приближении из (1.1) следует, что диагональные компоненты тензора — величины ц, 22. Нзз — представляют собой относительные удлинения (йх —йх1)/с1х1 вдоль соответствующих осей, а недиагональные компоненты (при 1фк) — половины углов сдвига выделенного элемента объема тела в плоскостях х х.,, х,Хз и Х1Х3. След тензора — сумма диагональных компонент иц — представляет собой относительное изменение объема тела иц=(с1У —йУ) йУ. В соответствии со сказанным величины й при =к называют деформациями растяжения (сжатия), а при 1= к — деформациями сдвига.  [c.189]

Многие из пионерских работ в области вычислительной гидродинамики были выполнены в Лос-Аламосской лаборатории. Именно в Лос-Аламосе во время второй мировой войны фон Нейман разработал свой критерий устойчивости параболических конечно-разностных уравнений и дал метод исследования линеаризованной системы. Краткий отчет о его работах появился в открытой литературе лишь в 1950 г. (Чарни с соавторами [1950] )). В этой важной статье были впервые приведены расчеты метеорологических задач большого масштаба, в которых рассматривались нелинейные уравнения для вихря. Авторы выяснили, что в смысле устойчивости уравнения для вихря имеют преимущество над традиционными уравнениями для простейших физических переменных (скорость и давление), и привели эвристические обоснования своей трактовки нестационарной задачи как задачи с математически неполными условиями на входной и выходной границах.  [c.20]


Смотреть страницы где упоминается термин Физически нелинейные линеаризованные задачи : [c.238]    [c.332]   
Вариационные принципы теории упругости и теории оболочек (1978) -- [ c.219 ]



ПОИСК



Нелинейность физическая

Нелинейные задачи



© 2025 Mash-xxl.info Реклама на сайте