Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Учет влияния элементов конструкций

Учет влияния элементов конструкций  [c.37]

Существенно сложнее обстоит дело, когда надо рассчитать стержень при случайных нагрузках. Случайные силы (статические или динамические), так же как и детерминистские, нагружают стержень, что приводит к случайному напряженно-деформированному состоянию, когда однозначно определить, например, напряжения нельзя. Однако ясно, что случайные напряжения, так же как и детерминистские, влияют на работоспособность стержневых элементов конструкций и это влияние необходимо уметь оценивать. В ряде случаев работоспособность конструкции может очень сильно зависеть от случайного напряженно-деформированного состояния. Например, неоднородность грунта при подъеме его со дна водоема (см. рис. 6.4) всегда будет вызывать случайные колебания трубопровода. Динамические напряжения, возникающие в трубопроводе, будут случайными (при отсутствии волнения поверхности водоема), что требует оценки долговечности трубопровода с учетом случайной составляющей напряжений.  [c.149]


Во всех случаях логика учета того или иного фактора состоит в получении некоторой безразмерной поправки по отношению к принятым базовым условиям эксперимента. Для лабораторного опыта целесообразно использовать наиболее удобные условия нагружения, по отношению к которым и проводить оценку влияния того или иного фактора воздействия на кинетический процесс роста усталостных трещин. Под тестовыми условиями опыта предложено [129] понимать пульсирующий цикл одноосного растяжения при уровне напряжения 0,3 < [Оо/(сто,2)]о - 0,4, частоте нагружения 10-20 Гц, температуре 293-298 К, влажности воздуха от 70 до 75 % и давлении 760 мм рт. ст. Именно к этим условиям и могут быть сведены все вариации условий внешнего воздействия на элемент конструкции и проведена количественная оценка их роли в кинетическом процессе по величине безразмерной поправки. При этом условием эквивалентности получаемых кинетических кривых является эквидистантный характер их смещения относительно друг друга при изменении величины изучаемого параметра воздействия на кинетику усталостных трещин. Если же это не происходит, то либо экспериментально не удается сохранить условия подобия при изучении параметра воздействия, либо его влияние на кинетический процесс изменяется в направлении роста трещины, что должно быть рассмотрено путем введения дополнительной поправки как функции, например, которая учитывает изменение КИН в зависимости от длины усталостной трещины.  [c.254]

Характерной особенностью задач, которые при этом решались, является учет влияния на напряженное состояние и предельную несущую способность элементов конструкций таких факторов, сопутствующих реальным условиям эксплуатации, как высокие или низкие  [c.13]

Учет влияния факторов производственного характера на значения характеристик ремонтопригодности машин и их элементов в значительной мере осуш,ествляется при изготовлении опытных образцов, установочной серии и испытаниях. По результатам этой стадии создания машины вносятся необходимые изменения в ее конструкцию и отрабатываются вопросы технологичности в изготовлении, техническом обслуживании и ремонте.  [c.128]

При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.  [c.83]


В этих Нормах анализ с учетом влияния ползучести осуществляется методом конечных элементов. Соотношения между изменением прочностных свойств материалов, которые вводятся в расчет, и изменением параметров деформации конструкции, получаемых в результате расчета, недостаточно определенны, поэтому надежность расчетов вызывает некоторые проблемы.  [c.40]

Расчет живучести на стадии проектирования сложных металлоконструкций типа статически неопределимых рам транспортных машин и другой подобной техники носит ориентировочный приближенный характер. Это связано с тем, что расчетным путем затруднительно выявить момент перехода материала конструкции из стадии накопления собственно усталостных повреждений в стадию роста усталостных трещин, тогда как каждая из этих стадий разрушения хорошо прогнозируется. Кроме того, расчетным путем трудно выявить отдельный элемент сложной металлоконструкции, в котором зарождается первая усталостная трещина, а также спрогнозировать порядок появления трещин в других элементах этой конструкции с- учетом влияния вновь появившихся трещин на кинетику трещин, возникших ранее.  [c.224]

Выше рассмотрены контактные задачи в случае взаимодействия оболочечной конструкции (в месте расположения подкрепляющего кольца-шпангоута) и кругового ложемента. В данном случае оболочки являются для шпангоута некоторым упругим основанием, учет влияния которого может быть в конечном итоге проведен введением некоторых эквивалентных жесткостей. При дискретном подкреплении кольца требуется учет локальности включения подкрепляющих элементов, что значительно усложняет задачу. Рассмотрим круговое кольцо, шарнирно скрепленное в нескольких точках с плоской упругой системой (рамой или фермой), опертое на круговое опорное основание (ложемент) (рис. 2.18).  [c.64]

Методика расчетов элементов конструкций на усталость получила развитие в связи с теоретическими и экспериментальными исследованиями вероятностных условий циклического разрушения с учетом влияния конструктивных факторов и режима нагружения. Для стационарного и нестационарного переменного нагружения предложена в работе [41] статистическая трактовка запасов прочности от изменчивости несуш,ей способности и условий нагру-женности элементов конструкций. При этом используются нормальные логарифмические кривые распределения для характеристик усталости, в том числе для накопленного повреждения. В работах [42, 43] для таких же условий нагруженности осуществлен вероятностный расчет на прочность на основе закономерностей подобия и линейного суммирования повреждения с поправ-  [c.256]

Добавим к этому следующее. При изучении напряженно-деформированного состояния тонкостенных элементов конструкций наибольший интерес представляют именно такие ситуации, когда различие между характеристиками напряженного состояния, вычисленными с учетом и без учета поперечных сдвигов, существенно, поскольку именно здесь скрывается опасность неверной оценки прочности конструкции и, как следствие, ее разрушения или неправильной работы. И так как учет влияния поперечных сдвиговых деформаций приводит к повышению расчетных значений нормальных напряжений в слоях тонкостенных конструкций (см. табл. 4.2.1, 4.2.4, 4.4.3, 4.4.4, 5.2.1, 6.2.2, 6.2.4, 6.2.6, 6.2.8, 6.2.10, 6.2.12), а это повышение оказывается близким к максимальному именно при параболическом законе (4.1.4), то использо-Таблица 6.3.6 ванием последнего обеспечивается запас в оценке прочности слоистой оболочки.  [c.182]

Обстоятельства, определяющие форму какого-нибудь элемента конструкции или машины, обычно очень сложны и не всегда поддаются учету. Проектировщику приходится обращать должное внимание на различные факторы, чтобы добиться таких результатов, которые удовлетворяли бы всем могущим возникнуть случайностям, поскольку их можно предвидеть, хотя они иногда бывают и очень неопределенны. При проектировании машин трудно заранее учесть влияние сил инерции в быстро движущихся частях, трение и случайные нагрузки. В инженерных конструкциях, например мостах, задача определения напряжений тоже оказывается несколько неопределенной, благодаря динамическому действию неуравновешенных сил инерции локомотивов, торможению, давлению ветра и возможным комбинациям тех и других воздействий. Во всяком случае, каковы бы ни были затруднения, инженер обязан проектировать и конструировать машины и постройки с расчетом на безопасность и экономичность при всевозможных колебаниях нагрузок помочь ему могут в этом отношении только научные исследования.  [c.560]


В монографии изложены результаты исследования напряженного и деформированного состояния контактирующих элементов конструкций методами конечных элементов и граничных интегральных уравнений. В рамках плоских, осесимметричных и пространственных задач теории упругости, пластичности и ползучести изучено влияние различных условий контактного взаимодействия на характер работы соединений. Приведены результаты расчетов напряженно-деформированного состояния деталей технологической оснастки, фланцевых соединений и замковых соединений лопаток турбомашин. Рассмотрена ползучесть составного ротора и других объектов с учетом изменения зоны контакта во времени.  [c.2]

Долгое время считалось, что для статических нагрузок и многих других случаев нагружения справедлив закон подобия. Однако, в особенности для усталостного и хрупкого разрушения, влияние абсолютных размеров тела на его поведение под нагрузкой (понижение долговечности и прочности) стало обнаруживаться настолько часто и сильно, что привело к необходимости учета масштабного фактора (или эффекта) при проектировании, расчетах и механических испытаниях образцов и элементов конструкций.  [c.312]

Цля выявления влияния элементов конструкции и условий эксплуатации из работы преобразователя ведут в такой последовательности работа про-иего активного элемента в воздухе, т. е. только электромеханическое пре-зование работа этого же элемента в воде с учетом и механоакустического бразования учет влияния элементов конструкций на работу преобразова-  [c.27]

Для учета влияния на критические напряжения в хрупком состоянии размеров трещины по отношению к размерам элементов конструкций используют поправочные функцйи из табл. 2.1. При определении по уравнению (4.1) запасов прочности в хрупком состоянии следует иметь в виду возможность сильной температурной зависимости Ki или бк (см., например, рис. 4.1) для мягкой углеродистой стали. При столь резком падении Ki со снижением температуры следует основываться на минимальных значениях коэффициентов интенсивности напряжений K i , соответствующих закритической области (см. рис. 3.4).  [c.64]

Для учета влияния состояния поверхности (введением величины р) следует значение номинального иапряже-ния умножить на коэффициент 1/р. Этот коэффициент используется для согласования уровня максимального напряжения, определяющего разрушение в зоне концентрации напряжений, с пределом выносливости (T i по данным испытаний лабораторных образцов с тщательно обработанной поверхностью (полированной), обычно приводимым в справочниках. Тогда условие достижения максимальными напряжениями в элементе конструкции указанного предела выносливости можно записать в виде  [c.159]

Вводные замечания. В настоящей главе рассматриваются приближенные модели растяжения и сжатия стержней. В инягенерпой практике широко применяются приближенные модели надежности, когда оценки прочности проводятся по сродним напряжепиям в сечении стержня без учета концентрации напряжений, влияния условий иакренлення концов стержня и других факторов. Приближенные модели часто используются для пачальпого этапа проектирования при предварительном выборе размеров. Они позволяют оценить силовые потоки в элементах конструкций, взаимодействие элементов между собой и опорными узлами, выбрать оптимальные конструктивные схемы.  [c.141]

Так как сечение тонкостенных пространственных конструкций имеет небольшое армирование, то для ориентировочных расчетов в первом приближении можно принять х—0,55 ho. Полное исчерпание несущей способности внецентренно сжатых (растянутых) элементов может иметь место только в том случае, если они взаимодействуют с более прочными окаймляющими их конструкциями. Например, несущая способность полки оболочки может быть исчерпана только в том случае, если она опирается на достаточно прочный контур, который при воздействии на него предельных для сечений полки нормальных сил распора N p и изгибающих моментов Л1пр не разрушится. Если контур не обладает такой прочностью, то возникновению в плите сил iVnp и моментов УИпр будет предшествовать его разрушение. По-видимому, если отвлечься от несовпадения несущих способностей одной и той же конструкции при различных схемах излома, то в оптимально запроектированной с точки зрения прочности конструкции разрушение различных элементов должно наступать при одной и той же нагрузке, т. е. элементы должны быть равнопрочными. В соответствии со сказанным выше, если прочность криволинейного бруса ниже прочности балок, на которые он опирается, то при возникновении в брусе предельных нормальных сил Л/ р и моментов УИпр балки не разрушатся (рис. 3.2). Наоборот, если балки в рассматриваемом примере не обладают достаточной прочностью, то при возникновении в них предельных моментов и их разрушении несущая способность бруса не будет исчерпана и действующие в нем усилия будут меньше предельных. При равнопрочности элементов момент разрушения балок должен совпадать с моментом исчерпания несущей способности бруса. Оценка несущей способности конструкций с учетом взаимного влияния прочности отдельных элементов является, несомненно, приближенной. Более точных результатов можно ожидать при учете не только взаимного влияния прочностей отдельных элементов, но и при учете влияния их деформативности. Если балку подкреплять подвесками с одним и тем же сечением (одной и той же прочностью), но с разной длиной, то очевидно, что несущая способность конструкции при увеличении длины подвески до некоторой оптимальной величины может увеличиваться (рис. 3.2, д). Таким образом, при оценке несущей способности конструкции  [c.176]


Исследования показали, что в случае, если в месте возможного зарождения усталостной трещины имеются остаточные растягивающие напряжения, то предварительное растяжение (статическая перегрузка) в зависимости от его величины может существенно увеличивать усталостную прочность элемента из сплава АМг61 благодаря тому, что при этом происходит уменьшение остаточных (растягивающих) напряжений. Для определения расчетных значений пределов выносливости о чк с учетом влияния статической перегрузки напряжением Оист может быть использована методика, разработанная для стальных конструкций [4].  [c.142]

В третьей главе книги рассмотрены особенности конструирования и расчета на прочность и жесткость пластмассовых деталей из гомогенных и гетерогенных полимеров с учетом реономности их свойств, т. е. зависимости от времени, а также влияния температуры. Предложены методы инженерных расчетов на прочность пластмассовых стержней, балок, пластин и других элементов конструкций. Приведены практические примеры расчетов.  [c.8]

Для определения напряженно-деформированного состояния многослойной стенки сварного сосуда, вызванного как внутренним давлением, так и воздействием сосредоточенных, импульсных, ветровых, сейсмических, кратковременных большой интенсивности и динамических сил работающих машин, необходимо учитывать влияние контактного давления между слоями на контактную податливость и из-гибную жесткость. Определению зависимости давление — контактная податливость, а также напряжений в многослойном цилиндре с учетом особенности контакта слоев посвяш,ено множество исследований. Работы по определению зависимости контактное давление — изгибная жесткость нам не известны, В тех случаях, когда элементы конструкции направлены не только на растяжение — сжатие, но и на изгиб, необходим пространственный расчет и соответственно установление зависимости контактное давление — изгибная жесткость. Примером таких конструкций могут служить сосуды высокого давления для химического и нефтехимического производств, 2 многослойном исполнении  [c.360]

В плотно скомпонованном устройстве влияние одних конструктивных элементов на другие носит самый разнообразный характер. Почти каждый конструктивный элемент налагает пространственные ограничения на соседние элементы, и сам, в свою очередь, выполнен с учетом наложенных ограничительных условий. Каждая линия, прочерчиваемая в границах располагаемого пространства, либо непосредственно изображает какой-нибудь элемент конструкции, либо имеет к нему близкое отно-  [c.87]

Значительный интерес представляют методы расчета и оценки ресурса конструкций из композитов с учетом тепловых эффектов при вибрационном нагружении (рис. 4) краевых эффектов в разноориентированных композитах и системах металл—композит, а также способы определения концентрации напряжений, в том числе при низких температурах. Разработанные методы расчета конструкций из композитных материалов позволяют определять собственные частоты, перемещения и напряжения в элементах конструкций при случайном динамическом нагружении и, кроме того, оценивать их ресурс с учетом влияния повреждений на декремент колебаний.  [c.17]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]

Ввиду этого основны.м при испытании на надежность и срок службы является исследование рел<имов нагрузки агрегатов и оценка характеристик их выносливости. На работу гидравлической системы и ее агрегатов влияет большое число различных факторов. Влияние одних факторов легко учитывается при оценке действующих на агрегат или его узлы нагрузок (например, рабочее давление, температура) влияние других не может быть строго учтено из-за их стохастической природы (воздушные нагрузки, колебание скорости, влажность и т. д.). Все это создает неопределенность в учете внешних воздействий и придает задаче статистический характер. Напряжения, возникающие при этом в элементах конструкции агрегатов, будут являться случайной величиной.  [c.147]

Среди внешних воздействий, оказывающих влияние на механическое состояние различных технических устройств, особая роль принадлежит тепловому воздействию. Практически везде оно сопутствует силовому воздействию, причем его первопричины весьма разнообразны. Так, в строительных конструкциях к этому чаще всего ве ]ут факторы климатического характера, в энергомашиностроительных и транспортных системах оно в первую очередь обусловлено эксплуатационными режимами, а в элементах электронной техники оно проявляется как на технологических стадиях при их изготовлении, так и в процессе эксплуатации. Во всех случаях оценка наводимого термонапряженного состояния связана с предварительным, а в особо сложных случаях и с одновременным определением температуры в объеме исследуемого элемента конструкции как функции соответствующих координат. Это достигается решением задачи теплопроводности с учетом конкретных факторов теплоприхода и теплоотвода.  [c.441]

К середине 60-х годов в области расчета железобетонных конструкций сложилась ситуация, когда усилия в элементах конструкции определялись в линейно-упругой стадии, а прочность отдельных элементов проверялась из условия нелинейной работы железобетона. Для устранения нелогичности такой ситуации вводились различные поправки. Например, учет иерераспределе-ния напряжения проводился за счет некоторого понижения экстермальных усилий или для некоторого класса задач методами предельного равновесия находилась разрушающая нагрузка, а допустимая эксплуатационная нагрузка определялась введением общего понижающего коэффициента. Такие приемы позволяли весьма приближенно учитывать действительную работу железобетона. Причем наиболее важная стадия работы железобетона— эксплуатационная (когда до предельного состояния еще далеко, а нелинейные деформации уже начали развиваться) выпадала из поля зрения. К сожалению, такая ситуация во многом продолжает сохраняться в настоящее время, хотя работы отечественных ученых в последнее десятилетие позволяют надеяться на ее изменение в лучшую сторону. Характерная особенность этих работ—стремление проследить поведение железобетонной конструкции на всем протяжении нагружения, начиная от небольших нагрузок, когда работа системы может считаться еще линейной, включая эксплуатационную стадию, когда влияние нелинейных деформаций уже существенно, и заканчивая стадией,, предшествующей разрушению.  [c.88]


Для элементов сравнительно простой конфигурации в большинстве важных для инженерной практики случаев искомые параметры напряженно-деформированного состояния удается непосредственно связать с температурным состоянием конструкции, действующими на нее нагрузками и условиями ее закрегшения. Примером подобных элементов конструкций являются стержневые элементы, под которыми будем понимать достаточно протяженные в одном направлении элементы конструкций. Для оцентси работоспособности таюгх алементов допустимо учитывать влияние лишь однородного нормального напряжения в их поперечном сечении, т.е. считать, что их материал находится в одноосном напряженном состоянии. К такой расчетной схеме с учетом тех или иных допущений удается свести довольно большую группу реальных теплонапряженных конструктивных элементов.  [c.211]

Для оценки несущей способности термо-нагруженных элементов конструкций во многих случаях является принципиальньпи учет совместности термического и механического воздействия. Для решения таких задач стенды оборудуют системами и установками для статического и циклического нагружения образцов, моделей и натурных деталей [63, 77]. Это рычажные, гидравлические и электродинамические испытательные машины и вибростенды. Требования к ним и условия испытаний практически не отличаются от рассмотренных. Определенная специфика должна учитываться при разработке и эксплуатации узлов сопряжения элементов газового тракта и крепления образца (детали) на машине, в частности, обеспечение надлежащей герметизации камер и исключение влияния на состояние образца тепловых перемещений всех узлов стенда.  [c.333]

Исследования структуры и свойств мартенситно-стареющих сталей (гл. 6) проводили с целью разработки оптимальных режимов термообработки композитных конструкций, обеспечивающих повышение прочности изделий. Это имеет важное практическое значение при создании конструкций, работающих в агрессивных средах, при высоких давлениях и теплообмене. Исследования характеристик трещино-стойкости волокнистого бороалюминиевого композита (гл. 8) были предопределены необходимостью оценки несущей способности элементов ферменных конструкций космических аппаратов с учетом влияния технологических и эксплуатационных дефектов. Интенсивное развитие нанотехнологий, использующих новый класс материалов — ультрадисперсные порошки химических соединений, привело к резкому увеличению числа работ по их практическому применению для повышения качества металлоизделий. Результаты 20-летних исследований в этом направлении представлены в гл. 9. Широкие перспективы использования керамических материалов, в частности конструкционной керамики на основе оксида алюминия, а также проведенные исследования обозначили ряд проблем при изготовлении изделий — недостаточная эксплуатационная надежность, хрупкость, сложность формирования бездефектной структуры. Отсюда возникли задачи исследования трещиностойкости керамики в связи с влиянием структуры, свойств и технологии ее получения (гл. 10).  [c.9]

Закономерности, описывающие деформирование и разрушение конструкционного материала, в сочетании с информацией о температурном состоянии элементов конструкции позволяют подойти к решению важного для инженерной практики вопроса об оценке их работоспособности при заданных условиях теплового и механического воздействий. В общем случае решение этого вопроса связано с предварительным определением параметров напряженно-деформированного состояния рассматриваемого элемента конструкции при упругом или неупругом поведении его материала. Это обычно приводит к необходимости формулировать и решать соответствующую задачу термоупругости, термопластичности или термоползучести. Пути решения таких задач рассмотрены в последующих главах. Здесь ограничимся анализом работоспособности таких элементов конструкций, для которых параметры напряженно-деформированного состояния определяются достаточно просто и непосредственно связаны с действующими на конструкцию нагрузками и условиями ее закрепления. Примером подобных элементов конструкций являются стержневые элементы, под которыми будем понимать достаточно протяженные в одном направлении элементы конструкций. Для оценки работоспособности таких элементов допустимо учитывать влияние лишь однородного нормального напряжения в их поперечном сечении, т. е. считать, что их материал находится в одноосном напряженном состоянии. К такой расчетной схеме с учетом тех или иных допущений удается свести довольно большую группу реальных теплонапряженных конструктивных элементов.  [c.191]

Следует отметить, что приближенное моделирование динамической устойчивости элементов конструкций о учетом начальных несовершенств в детерминированной постановке ( 7.5) может быть реально осуществлено лишь в исключительных случаях. При этом необходим специальный отбор модельных образцов, имитирующих заданные начальные отклонения натурной конструкции. В общем случае исследование влияния начальных несовершенств путем мбханического моделирования должно производиться с учетом случайного характера динамической потери устойчивости ( 7.5).  [c.191]

Одним нз основных элементов конструкции термоэлектронной лампы является катодный узел. От особенностей конструктивного исполнения и теплового режима катодного узла в значительной мере зависят надежность и долговечность работы всего прибора. Температура катода, как правило, превышает температуру остальных электродов, поэтому в первом прнблимсении тепловой расчет катода выполняют без учета влияния теплового излучения и экранирования сетками и анодом.  [c.51]


Смотреть страницы где упоминается термин Учет влияния элементов конструкций : [c.63]    [c.4]    [c.9]    [c.10]    [c.151]    [c.114]    [c.105]    [c.179]    [c.248]    [c.199]    [c.146]    [c.85]    [c.151]    [c.72]    [c.61]   
Смотреть главы в:

Подводные электроакустические преобразователи  -> Учет влияния элементов конструкций



ПОИСК



Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте