Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние числа набегающего потока

ВЛИЯНИЕ ЧИСЛА НАБЕГАЮЩЕГО ПОТОКА  [c.158]

В диапазоне дозвуковых и небольших сверхзвуковых скоростей < 1,25) влияние числа набегающего потока в соответствии с рис. 3.84 может быть учтено с помощью аппроксимационной зависимости  [c.159]

Как отмечается в [2.46], экспериментальные данные по коэффициенту сопротивления сферических частиц в турбулентных потоках колеблются от значений, превышающих втрое значения, определяемые стандартной кривой, до значений, меньших в 100 раз. Физические причины влияния степени турбулентности на сопротивление частиц обусловлены изменением характера их обтекания. При большой степени турбулентности верхнее критическое число Re, которое соответствует резкому снижению сопротивления и переходу от ламинарного режима течения в пограничном слое к турбулентному (Re 10 —10 ), может уменьшаться, при этом коэффициент сопротивления становится меньше. При низкой степени турбулентности коэффициент сопротивления может оказаться несколько выше значений, определяемых по стандартной кривой, вследствие диссипации энергии в области следа. При уменьшении чисел Re влияние турбулентности набегающего потока становится меньше.  [c.50]


Коэффициент лобового сопротивления системы тел (стержней) в виде фермы или другого подобного устройства зависит от формы поперечного сечения стержней, способа связи стержней в узлах, направления набегающего потока, а также от числа Рейнольдса, Влияние направления набегающего потока для такой системы получается сложнее, чем для одиночного тела, так как при этом меняется ориентировка задних элементов системы относительно аэродинамической тени , расположенных впереди элементов системы (рис. 10-8).  [c.476]

На рис. 11-19 показано влияние числа Рейнольдса Rei на фактор аналогии Рейнольдса для воздуха, движущегося с небольшой скоростью при Рг, = 0,86 и Рг = 0,71. Для сравнения на графике нанесено значение s = Pr2/ . Влияние скорости набегающего потока на вели-  [c.399]

Определим прежде всего число М перед скачком уплотнения Mi = V /ai == = 8100/310 = 26,13. При таком большом числе М набегающего потока воздух за скачком диссоциирован и задачу о скачке необходимо решать с учетом влияния диссоциации. Воспользуемся для этого методом последовательных приближений. Задаваясь в первом приближении значением А1/ = 1, соответствующим предположению о полном торможении потока за ударной волной (V = 0), находим в первом приближении давление за ним рз = Pi (1 + М ДU) = 9,384-10 Па.  [c.126]

Были выполнены экспериментальные исследования в сверхзвуковой аэродинамической трубе, позволившие дать количественную оценку влияния отсоса на отрыв турбулентного пограничного слоя при обтекании вогнутого угла. Номинальное число Маха набегающего потока М было равно 2,01. Отсос с поверхности модели (рис. 6.6.4) осуществлялся через зазор 2  [c.420]

Результаты расчетов по формулам (6.7.10) и (6.7.11) иллюстрируются графиками на рис. 6.7.9 и 6.7.10, причем значения коэффициента найдены для отношения /г/L = 0,1. Из анализа этих графиков можно сделать вывод, что наличие обратного уступа уменьшает как осевую, так и нормальную силы (АСж и ДСу < 0). Массообмен с газом в застойной зоне существенно влияет на величины коэффициентов Дс и ДСу. Абсолютное значение АСх при вдуве газа в застойную зону уменьшается, а при отсосе — увеличивается, причем во всем исследуемом диапазоне значений параметра К с ростом скорости набегающего потока (М1) эти изменения заметно меньше. Иная картина наблюдается для коэффициента ДСу. При вдуве его абсолютное значение возрастает, а влияние числа М1 на зависимость ДСу(А ) при отсосе и вдуве качественно различно (рис. 6.7.10).  [c.438]


На интенсивность теплоотдачи кроме критериев Яе и Рг существенное влияние оказывает начальная турбулентность набегающего потока. Так, повышение среднего квадратичного значения осред-ненных во времени пульсационных составляющих скорости при турбулентном течении на 2,5 % приводит к увеличению числа Ми на 80%. Количественные данные об этом влиянии получены экспериментальным путем.  [c.107]

Следует отметить, что возможность обобщения опытных данных по теплоотдаче к пучкам труб, омываемых жидким металлом, в поперечном направлении на основе введения в критерий Ре скорости набегающего потока (вместо скорости в наиболее узком зазоре пучка) может быть обоснована особенностями процесса теплообмена при малых числах Прандтля. Действительно, именно вследствие того, что при поперечном обтекании труб жидкими металлами влияние характера гидродинамики на теплообмен мало, теоретическое рассмотрение задачи о теплоотдаче в этом случае производится с позиции потенциального обтекания, что было более подробно рассмотрено выще. Поэтому обобщение опытных данных по теплоотдаче к жидким металлам при поперечном обтекании пучков труб по скорости набегающего потока не противоречит физической сущности процесса, а по мотивам удобства расчета это имеет некоторые преимущества по сравнению с обработкой по скорости в узком сечении.  [c.193]

Величина поправки зависит от числа Маха и температуры набегающего потока непосредственное влияние начальной степени сухости практически rie ощущается. Значение V определяется из выражения  [c.246]

Для оценки влияния пульсации скорости набегающего потока ка теплоотдачу используем метод интегральных соотношений. Поскольку рассматривается обтекание сферы воздухом, в весьма большом интервале изменений температуры число Рг сохраняет значение, равное 0,722. Поэтому определение коэффициента теплоотдачи можно свести к решению только тепловой задачи, т. е. принять толщину гидродинамического слоя Si равной толщине теплового пограничного слоя Кроме того, учитывая, что у мало по сравнению с 6, решение задачи сведется к интегральному соотношению  [c.254]

В условиях эксплуатации воздухозаборники работают в широком диапазоне нерасчетных режимов. Изменяются число М полета, высота полета, режим работы двигателя, а также направление набегающего потока (при изменении углов атаки и скольжения самолета). В зависимости от этих факторов изменяется газодинамическая картина течения, что оказывает влияние на параметры, характеризующие эффективность работы воздухозаборника, и его запас устойчивости.  [c.278]

Здесь Re = wD/2v — число Рейнольдса, определяемое по скорости набегающего потока w и наружному диаметру трубки D р и v — плотность и кинематическая вязкость жидкости. Выражение (6.4) получено для d D = 0,6 в диапазоне 7 < Re < 33 d—внутренний диаметр трубки). Влияние сил вязкости на показания эллиптических трубок Пито заметно ниже, чем предсказывает расчет по (6.4).  [c.383]

Существует общее мнение, что при достаточно малых числах Рейнольдса величина силы, действующей на твердую частицу произвольной формы при обтекании ее потоком вязкой жидкости, прямо пропорциональна как вязкости жидкости, так и величине скорости свободного потока. Этот результат следует из элементарного анализа размерностей уравнений движения и граничных условий. Но рассмотрение, основанное на анализе размерности, не дает информации о связи между направлениями вектора скорости набегающего потока U и вектора гидродинамической силы F. Эти векторы в общем случае не параллельны, так как тело испытывает не только действие силы сопротивления, параллельной скорости набегающего потока, но и поперечных (подъемных) сил перпендикулярных набегающему потоку. Для частицы, падающей в гравитационном поле, влияние этих сил может вызвать дрейф частицы в боковом направлении.  [c.184]


Влияние сжимаемости при дозвуковом обтекании профилей проявляется в возрастании разрежений на верхней поверхности профиля — факт, который уже был отмечен при изложении теории малых возмущений Прандтля — Глауэрта. На рис. 115 показаны полученные экспериментально распределения давления по верхней поверхности некоторого крылового профиля при различных числах м оо набегающего потока. Можно заметить, что с возрастанием числа Моо от значения 0,4 до 0,68 пик разрежения возрос почти вдвое.  [c.258]

Как следует из сравнения результата расчетов с опытными материалами, принятое приближение достаточно хорошо передает влияние числа Маха набегающего потока и температурного фактора на такую характеристику пограничного слоя, как отношение коэффициента поверхностного трения в газовом потоке больших скоростей к соответствующему значению этого коэффициента при отсутствии влияния сжимаемости (Мю = 0). Подчеркнем, что в этом отношении ошибки, возникающие при отдельном определении числителя и знаменателя, могут, в известной степени, скрадываться, чем, по-видимому, и объясняется хорошее совпадение результатов расчета с экспериментальными данными, показанное на рис. 281 и 282.  [c.725]

Следовательно, если нет влияния сжимаемости и вязкости (при малых числах Ш и вне пограничного слоя), коэффициент давления в любой точке зависит только от отношения местной скорости к скорости набегающего потока.  [c.42]

Пропорциональность между ризб и скоростным напором, т. е. постоянства коэффициентов давления, с изменением скорости нарушается при таких числах М, когда становится заметным влияние сжимаемости воздуха. Например, перед лобовой частью крыла, где поток подторможен, избыточное давление положительно и плотность воздуха за счет сжимаемости повышается, а уплотнение воздуха усиливает его напор на поверхность крыла. И наоборот, в тех точках, где местная скорость выше скорости набегающего потока, уменьшение плотности заставляет воздух двигаться быстрее,  [c.43]

Рассмотрим в первом приближении влияние столкновений молекул на число частиц, импульс и энергию, приносимые молекулами на пластинку. В 6.5 показано, что при расчете столкновений в первом приближении можно не учитывать затухания набегающего потока на отраженных молекулах. Столкновения отраженных молекул с отраженными существенны лишь внутри сферы радиуса R L< X. Но на расстояниях, много меньших Я,, затуханием можно пренебречь. Таким образом, существенно лишь затухание потока отраженных молекул па набегающих молекулах. Благодаря этому поле набегающих  [c.409]

На рис. 171 и 172 приводим графики влияния числа М о на профили скоростей и температур при п = 1, а = 0,7 и =1,4 для пластинки, температура которой путем охлаждения поддерживается равной температуре набегающего потока. На обеих кривых обращает на себя внимание факт возрастания с числом Мсо толщины пограничного слоя  [c.572]

Интенсивность турбулентности в этих испытаниях была самой низкой и, как ожидалось [8], число Нуссельта пропорционально числу Рейнольдса в степени /з (фиг. И). Однако для результатов, полученных различными исследователями, величины постоянных множителей совершенно различны и не соответствуют идеальным значениям вследствие влияния стенок, сжимаемости, турбулентности набегающего потока, переменной температуры поверхности и т. д.  [c.100]

Судовые гребные винты в основном относятся к весьма низконапорным насосам с высоким коэффициентом быстроходности. Анализ кавитационных условий работы насосов такого рода упрощается из-за отсутствия корпуса, что, однако, не исключает некоторых специфических особенностей. Первая особенность связана с тем, что плоскость винта почти вертикальна и погружена на глубину порядка величины его диаметра. Поскольку на больших судах диаметр винта велик, он в значительной степени определяет числитель числа кавитации К, вследствие чего Kf сильно изменяется от верхней до нижней части диска винта. Поэтому на каждой лопасти винта может развиваться кавитация только в течение части каждого оборота. Такой циклический характер кавитации подобен описанному выше для лопастей рабочего колеса турбины, хотя причины кавитации в обоих случаях различны. На кавитацию в рабочих колесах турбины колебания давления обычно оказывают слабое влияние, а основной причиной пульсирующей кавитации является изменение угла атаки вследствие изменения скорости набегающего потока. Другими словами, для турбины причиной пульсирующей кавитации является скорее изменение параметра /Сг, чем /С/.  [c.616]

Как указывалось при рассмотрении аэродинамических характеристик плоских компрессорных решеток угол отклонения потока с увеличением числа М1 изменяется незначительно, а при оптимальном угле атаки влияние числа М1 на Да сказывается лишь при приближении к критическому числу М. Поэтому в качестве характерного оптимального угла отклонения потока принята величина Да при малых величинах скорости. Таким образом, обобщение значений оптимального угла отклонения потока проводится вначале для малых величин скорости набегающего потока. В дальнейшем вводится поправка на влияние числа Мь При таком подходе появляется возможность использовать для обобщения величин Дао результаты многочисленных испытаний плоских компрессорных решеток при малой скорости.  [c.37]

Влияние теплообмена на входной поверхности отчетливо проявляются при сравнении результатов для длинных вставок без учета (см. рис. 5.4) и с учетом (рис. 5.11) теплообмена на входе. Увеличение передачи теплоты в набегающий поток по мере уменьшения параметра Ре (данные на рис. 3.7) приводит к снижению интенсивности теплоотдачи на начальном участке тепловой стабилизации. При высоких значениях Ре (Ре > 100), когда осевым переносом теплоты теплопроводностью вдоль матрицы (в том числе и через ее входную поверхность) можно пренебречь, вид граничных условий на входной поверхности не оказьшает существенного влияния.  [c.114]


При малых значениях числа Маха (М1 < 0,3) величина скорости набегающего потока газа не оказывает заметного влияния на характер распределения давления по профилю. Коэффициенты давления р на профиле остаются практически такими же, как в несжимаемой жидкости. Увеличение скорости приводит к уменьшению минимального давления и соответственно к росту максимального числа Маха на профиле. Хотя при больших значениях М1 (М1 > 0,3) эпюра коэффициентов давления и величина ртш изменяются, но по-прежнему увеличение скорости набегающего потока приводит к росту максимального числа Маха. В результате при некотором критическом значении числа Маха набегающего потока (М1 = М1 р) максимальная скорость на профиле становится равной местной скорости звука, т. е. Мпих = 1,0. При этом минимальное давление достигает своего критического значения  [c.30]

Приведенные ранее данные об устойчивости ламинарного пограничного слоя и его переходе в турбулентное состояние относились к газовым течениям с малой скоростью, когда влияние сжимаемости пренебрежимо мало. При больших скоростях это влияние оказывается существенным и должно приниматься во внимание при расчетах пограничного слоя. Такое влияние определяется в основном числом Маха набегающего потока Моз= VJao, (или местным числом Маха Vдля рассматриваемого сечения пограничного слоя). Другим параметром, играющим важную роль при исследовании сжимаемого пограничного слоя, является теплопередача между отбекаемой стенкой и средой. Характер и интенсивность теплопередачи зависят от разности температур восстановления стенки Гст- При этом в случае, если ло переходит а при Гг—Г  [c.91]

На рис. 6.2.2 представлены экспериментальные данные о давлении на сферической поверхности, полученные в результате исследования влияния струйного вдува воздуха из сферической модели в аэродинамической трубе при числе Mod = 2,5. Эти данные показывают, что воздействие струи проявляется в значительном снижении давления на обтекаемой поверхности. При этом чем больше отношение давлений торможения в струе Ро/ и в набегающем потоке рооо, тем значительнее снижение давления. Замечено так-  [c.395]

Рис. 4.8.5. Влияние числа Маха набегающего потока М на распределение приведенной плотности частиц, скоростей фаз и давления газа вдоль плоскости у = О при тех же условиях и обозначениях, что и па рис. 4.8.3, но только для газовзвесп с размером частиц а = 30 мкм = 4,1). Цифровые указатели на кривых соответствуют значеииям М Рис. 4.8.5. Влияние <a href="/info/2679">числа Маха</a> набегающего потока М на распределение приведенной плотности частиц, скоростей фаз и <a href="/info/190167">давления газа</a> вдоль плоскости у = О при тех же условиях и обозначениях, что и па рис. 4.8.3, но только для газовзвесп с <a href="/info/5782">размером частиц</a> а = 30 мкм = 4,1). Цифровые указатели на кривых соответствуют значеииям М
Ламинарный пограничный слой на поверхности обтекаемого тела образуется и в том случае, если набегающий поток — турбулентный. Степень турбулентности е внешнего потока (относительная величина пульсаций скорости) влияет на число Рсцр характер этого влияния  [c.357]

Значительную неопределенность в расчет тепловой защиты сегментального аппарата вносит неточность определения теплового эффекта радиационного вдува, а также энтальпии разрушения /н, а в расчет защиты конического аппарата — положение точки перехода от ламинарного режима течения в пограничном слое к турбулентному. Последнее также связано с оценкой эффекта вдува, поскольку в турбулентном пограничном слое коэффициент вдува ут почти втрое меньше, чем в ламинарном 7л, а соотношение тепловых потоков к непроницаемой поверхности обратное от втрое выше од. В результате тепловой поток, подведенный к разрушающейся поверхности, оказывается в 7 раз выше при турбулентном режиме. При расчетах в работе [Л. 10-6] предполагалось, что критическое число Рейнольдса, рассчитанное по локальным параметрам набегающего потока, составляет Некр= 2,5-10 , однако за счет влияния различных факторов оно может снизиться до 0,1-10 . Первому из этих значений в период максимального нагрева соответствовал ламинарный режим течения на большей части конического аппарата, тогда как второму — турбулентный почти на всей поверхности, за исключением носового затупления.  [c.307]

Выше были рассмотрены характеристики дозвуковых компрессорных решеток, полученные при малых скоростях потока. Как показывают многочисленные экспериментальные исследования, при небольших дозвуковых скоростях потока сжимаемость газа не оказывает существенного влияния на характер обтекания решетки. С увеличением числа М потока (до М < 0,6. .. 0,7) потери в решетке растут незначительно, а угол отставания потока 6 практически остается постоянным (рис. 3.1). При дальнейшем увеличении числа М потока на входе в решетку местные скорости в отдельных зонах поверхности профиля достигают скорости звука. Образуются зоны сверхзвуковых скоростей с замыкаю-П1,ими их скачками уплотнения, которые приводят к появлению волновых потерь. При некотором значении числа М набегающего потока у основания скачков уплотнения возникают местные отрывы пограничного слоя от поверхности профиля (рис. 3.2), что вызывает резкое возрастание коэффициента потерь и увели-чепир уг.иа отставания потока в решетке б (см. рис. 3.1).  [c.66]

Как известно из аэродинамики, коэффициенты подъемной силы и сопротивления изолированного профиля заданной формы зависят не только от угла атаки, но также от чисел М и Re, характеризующих степень влияния сжимаемости и вязкости воздушнаго потока. Точно так же характеристики решетки профилей зависят не только от ее геометрических параметров, но и от числа М набегающего потока и от числа Re  [c.80]

На критическое число Рейнольдса, при котором имеет место переход в пограничном слое от ламинарного течения к турбулентному, сильное влияние оказывают два фактора уровень турбулентности в набегающем потоке и шероховатость цилиндра. Увеличение шероховатости или турбулентности свободного потока приводит к уменьшению критического числа Рейнольдса, Рисунок 15-9 [Л. 9] иллюстри-  [c.405]

Предположим, например, что рассматриваются два подобных стационарных обтекания вязким газом тела или системы тел, причем влиянием объемных сил можно пренебречь. Границы обтекаемых тел в обоих движениях будут геометрически подобны и подобно расположены по отношению к набегающим потокам, что входит в определение геометрического подобия, представляющего часть условий общего подобия явлений. При наличии геометрического подобия безразмерные (Т. е. отнесенные к масштабам длин в сравниваемых явлениях) 00рдинаты в сходственных точках будут выражаться одинаковыми Отвлеченными числами. Безразмерные граничные условия будут также  [c.485]

Фиг. 60. Влияние числа Маха набегающего потока па число Рейнольдса перехода в следе за конусом 196]. О в = 8° Д 0 = 8,3 <0 в = 10 06 = 12,5° светлые точки — Xi , за ерненные точки — Фиг. 60. Влияние <a href="/info/2679">числа Маха</a> набегающего потока па <a href="/info/689">число Рейнольдса</a> перехода в следе за конусом 196]. О в = 8° Д 0 = 8,3 <0 в = 10 06 = 12,5° светлые точки — Xi , за ерненные точки —

Определим условия течения, при которых на двумерном гидрокрыле зарождается кавитация. Для этого можно воспользоваться числом кавитации, если задан угол атаки гидрокрыла относительно набегающего потока. Для гидрокрыла, как и для направляющих поверхностей практически всех других форм, значение К, соответствующее возникновению кавитации, изменяется в зависимости от угла атаки. Величина /Сг для гидрокрыла изменяется в широких пределах при изменении угла атаки от нуля до значения, при котором происходит отрыв пограничного слоя. В случае более сложного течения в гидравлических машинах угол атаки движущихся элементов зависит от скорости вращения. Поэтому для центробежных насосов не существует единственного значения /Сг. Величина Кг принимает различные значения для каждой комбинации параметров гидромашины Яо = ///Л 2 )2 Qo = Q/Л i)Зl Если влияние числа  [c.67]

Уравнения (8-68) и (8-69) позволяют определить распределение массового расхода охладителя по длине обтекаемой поверхности, обеспечивающее поддержание требуемой постоянной температуры стенки при заданном распределении скорости виешнего потока и числа М набегающего потока. Влияние числа на функции /(i) и п( ) учитывается через величину TifTao (при заданном отношении TyjjToo величина h уменьшается с ростом числа Мсо).  [c.286]

Рассмотрим теперь крыло, имеющее в плане форму равнобедренного треугольника с основанием, обращенным к набегающему потоку. Если скачок присоединен к нереднай кромке, то до тех пор, пока все крыло находится в области влияния передней кромки, поток на его поверхности будет ностунательным. Если увеличивать угол атаки (или уменьшать число М набегающего потока, или удлинять крыло, уменьшая угол, противоположный передней кромке), то между областью влияния передней кромки крыла и боковыми кромками образуются области течения с неременными параметрами (рис. 2). Для возможности использовать линейную теорию примем, что уравнение одной из кромок имеет вид у = х tg(/i — е), где tg /х = /3, а - малая величина. На этой кромке должно быть выполнено условие Уп = а, которое в линейном приблиижении приводится к виду  [c.334]

Условие Лд = О выполняется, однако, лигаь в особых случаях -для совергаенного газа при фиксированном набегающем потоке не более чем для четырех удлинений головной части. При других удлинениях оптимальные образующие не только не прямолинейны, но, как было выяснено позднее, имеют бесконечное число изломов. Из всех изломов наибольгаее влияние на величину волнового сопротивления  [c.361]


Смотреть страницы где упоминается термин Влияние числа набегающего потока : [c.158]    [c.34]    [c.326]    [c.49]    [c.235]    [c.161]    [c.534]    [c.520]    [c.23]    [c.596]   
Смотреть главы в:

Аэрогазодинамика реактивных сопел  -> Влияние числа набегающего потока



ПОИСК



330, 331 — Влияние на число



© 2025 Mash-xxl.info Реклама на сайте