Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концентрация напряжений 403 — Определение экспериментальное

Это явление значительного повышения напряжений в местах резкого изменения геометрической формы стержня называется концентрацией напряжений. Определение напряжений в местах концентрации производится экспериментально или методами теории упругости.  [c.78]

Как, однако, говорилось в начале главы, особенности и условия нагружения во многих случаях таковы, что концентрация напряжений не поддается математическому исследованию. В подобных случаях для определения коэффициентов концентрации напряжений используются экспериментальные методы и расчеты по методу конечных элементов. Ранее уже упоминалось, что метод конечных элементов является самым распространенным методом вычисления коэффициентов концентрации напряжений. Среди других иногда используемых методов можно назвать применение механических, оптических или электрических экстензометров с малой базой, метод хрупких лаковых покрытий, метод дифракции рентгеновских лучей и метод фотоупругости.  [c.410]


Учет концентрации напряжений, определение напряжений вблизи трещин, расчет за пределами упругости, в особенности при неоднородных механических свойствах и сложной геометрической форме тел, привели к развитию многих эффективных методов расчетного и экспериментального определения напряженно-деформированного состояния, без которых невозможно использование современных методов расчета на прочность. Этому посвящена гл. 5.  [c.32]

В тех случаях, когда экспериментальные данные по определению эффективного коэффициента концентрации напряжений отсутствуют, а известны значения теоретического коэффициента концентрации напряжений, можно использовать для определения Ка следующую эмпирическую формулу Ка= - -д (а — 1), где д — так называемый коэффициент чувствительности материала к концентрации напряжений легированных сталей значение д близко к 1. Для конструкционных сталей в среднем серого чугуна значение д близко к нулю. Иначе говоря, серый чугун нечувствителен к концентрации напряжений. Более подробнее данные относительно д для сталей приведены на рис. VII. 12, Влияние абсолютных размеров поперечного сечения детали. Опыты показывают, что  [c.316]

Наиболее достоверные числовые значения эффективного коэффициента концентрации, естественно, получаются на основе усталостного испытания образцов. В настоящее время в этом направлении накоплен достаточно большой экспериментальный материал. Для типовых и наиболее часто встречающихся видов концентрации напряжений и основных конструкционных материалов созданы таблицы и графики, которые приводятся в справочной литературе. На рис. 12.19 показаны в качестве примера типичные графики для определения эффективного коэффициента концентрации.  [c.488]

Для проверки уравнения (7.20) и определения значений были использованы экспериментальные данные, полученные на материале одной марки и плавки. По этим данным находились пределы выносливости элементов различных размеров и уровней концентрации напряжений при различных видах нагружения и строились зависимости lg( —1) от g L/G). Для трех сталей и двух легких сплавов экспериментальные и расчетные результаты приведены на рис. 7.13.  [c.145]


При экспериментальном определении эффективного коэффициента концентрации напряжений проводят испытания двух партий образцов одинакового диаметра с1 с концентратором напряжений (в виде выточки, отверстия) и без него и определяют соответствующие пределы выносливости (ст 11) и Тогда  [c.254]

Рис. 3.16. Сравнение теоретических коэффициентов концентрации напряжений с эффективными коэффициентами концентрации и экспериментальными (К()эксп, определенными как отношение напряжений у концентратора к средним напряжениям. Форма символов соответствует форме концентратора напряжений, причем светлые символы относятся к эффективному коэффициенту концентрации, а темные — к экспериментальному. Рис. 3.16. Сравнение <a href="/info/25612">теоретических коэффициентов концентрации напряжений</a> с <a href="/info/76147">эффективными коэффициентами концентрации</a> и экспериментальными (К()эксп, определенными как отношение напряжений у концентратора к <a href="/info/7313">средним напряжениям</a>. Форма символов соответствует форме <a href="/info/34403">концентратора напряжений</a>, причем светлые символы относятся к <a href="/info/76147">эффективному коэффициенту концентрации</a>, а темные — к экспериментальному.
В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

Контактные напряжения 418 Концентрация напряжений 403 — Определение экспериментальное 490  [c.545]

Если полученные при натурных тензометрических исследованиях корпусов ЦВД напряжения являются номинальными, то для определения местных напряжений следует учесть эффекты концентрации. При этом необходимо иметь в виду, что величина коэффициента концентрации существенно зависит от формы кривой распределения напряжений по толщине стенки. Для режимов нагружения турбины типа останова с принудительным расхолаживанием или естественным остыванием характерно плавное распределение напряжений по толщине стенки. Для этого случая по экспериментальным данным [4] теоретический коэффициент концентрации о в галтели расточки на внутренней поверхности корпуса ЦВД оценивается величиной 1,8—2,0. На режимах, сопровождающихся резким изменением температуры тонкого слоя металла внутренней поверхности (тепловой удар), концентрация напряжений практически отсутствует. К таким режимам следует отнести толчок роторов и резкий сброс нагрузки. В меньшей степени градиент напряжений в стенке ЦВД выражен при отключении турбогенератора от сети в этом случае величина схц (учитывая действительное распределение температур по толщине стенки) составляет 1,2—1,3. Указанные величины коэффициентов концентрации были определены поляризационно-оптическим методом.  [c.60]

Приведенные на рис. 7.13 кривые описывают кинетику изменения коэффициентов концентрации и Ка в процессе увеличения уровня номинальных напряжений в сечении испытанных сосудов и плоских образцов. Кривые 1 ж 2 построены с использованием формулы (7.2) при п = О, а кривые 1 и 2 — при п = 0,5. На этом же рисунке точками показаны экспериментальные значения Ке, полученные при испытании указанных конструктивных элементов. Коэффициенты концентрации напряжений с увеличением нагрузки снижаются до уровня, близкого к единице (кривые 3, 4). В целом приведенные выше данные позволяют сделать вывод, что определение коэффициентов концентрации напряжений и деформаций при однократном нагружении в упругопластической стадии деформирования может быть выполнено по формулам (7.2) и (7.3).  [c.146]


Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

Для более сложных нестационарных режимов механического и теплового нагружения в неупругой области, характерных для большого числа рассмотренных выше конструкций, имеющих различные зоны концентрации напряжений, проведение уточненных расчетов с полным отражением кинетики напряженно-деформированных состояний и критериальных характеристик по рис. 12.2 остается пока трудноразрешимой задачей даже при использовании ЭВМ современных параметров. В связи с этим определение малоцикловой прочности и ресурса рассмотренных в гл. 2—10 элементов конструкций должно осуществляться на основе комплексных расчетно-экспериментальных методов, указанных в гл. 1 и в 1 гл. 12. В инженерных расчетах на стадии проектирования обоснование прочности и ресурса можно осуществлять с применением методик, изложенных в гл. 11.  [c.269]

Вследствие относительно очень малых запасов прочности, принимаемых в настоящее время, существенно необходима уверенность в правильном расчетном или экспериментальном определении напряжений, величина которых не должна отличаться от истинных более чем на 10 /о, так как иначе применяемые коэффициенты запаса прочности могут фактически быть ниже допустимой величины. Однако очень часто сложная конфигурация деталей не позволяет определить напряжения и деформации с большим приближением, чем 20—25%. Особые затруднения вызывает определение степени концентрации напряжений в местах малых радиусов закруглений и переходов. В этих случаях необходимо экспериментальное определение напряжений.  [c.30]

Разработанные методы расчета по характеристикам трещино-стойкости, при экспериментальном определении которых выполняются условия (1.7) и (1.8), позволяют давать корректную оценку остаточной прочности при наличии трещин вне зон концентрации напряжений и при сопоставимости их размеров с размерами рассчитываемых элементов конструкций. Однако требование выполнения условий (1.7) и (1.8) ограничивает возможности применения указанных характеристик трещиностойкости, что приводит в ряде случаев к противоречивым ситуациям  [c.21]

И Наличие мелких зон местной концентрации напряжений, которые не могут быть при исследовании отделены от большой сравнительно с этими зонами области общего напряженного состояния, требует при экспериментальном определении напряжений применения моделей, выполненных в крупном масштабе. Наиболее приемлемы прозрачные модели, в которых измерения проводятся путем просвечивания поляризованным светом. Измерения на таких объемных моделях с нагрузкой при комнатной температуре без замораживания , проводимого с нагревом модели, могут быть выполнены на моделях из  [c.138]

Для сталей, подвергнутых действию нагрузки типа растяжение— сжатие, усталостный предел прочности при отсутствии концентрации напряжений оказывается близким к половине предела прочности при растяжении, т. е. 0а=сТй/2. Это показано на рис. 2.4. В настоящем разделе это соотношение будет считаться справедливым при определении величины коэффициента ослабления концентрации напряжений без учета предела выносливости для материала без концентратора, полученного экспериментально.  [c.132]

На рис. 6.3, б коэффициент ослабления концентрации напряжений приведен в зависимости от предела выносливости при отсутствии концентрации напряжений на основании экспериментальных результатов для цилиндрических образцов с поперечным отверстием, приведенных в табл. 6.1 и 6.2. Сравнение кривых для коэффициента ослабления концентрации напряжений на рис. 6.3, а и б, построенных с помощью предела прочности при растяжении и предела выносливости при отсутствии концентрации напрял<ений, показывает, что оба метода дают примерно одинаковый разброс. Это говорит о том, что преимущества экспериментальных результатов по определению предела выносливости при отсутствии концентрации напряжений теряются из-за неточности результатов.  [c.143]

Отклонение расчетных значений пределов выносливости, полученных методом В, от их экспериментальных значений, считающихся точными, не превышает 19% для всех типов концентраторов, приведенных в табл. 6.6. Если же отбрасываются все типы концентраторов с величинами коэффициента концентрации напряжений, превышающими 3,5, с которыми не хотелось бы (или не следовало бы) встречаться при конструировании, то указанное отклонение становится равным 12%. При использовании метода В для радиусов закругления, меньших 1,8 мм, определение степени совпадения результатов весьма сложно и поведение материала обсуждается ниже в каждом отдельном случае.  [c.171]


Так как область контакта увеличивается медленно, то полная величина эффективного коэффициента концентрации при циклически изменяющихся напряжениях получается лишь при очень большом числе циклов- На этом основании в уравнении (7.6) выбирается высокое значение постоянной Ь, определенной экспериментально и имеющей величину порядка 1000. Отсюда при циклически изменяющихся напряжениях и разрушении при п lg циклах эффективный коэффициент концентрации выражается приблизительным соотношением  [c.218]

Рассмотрим теперь экспериментальные данные, характеризующие влияние концентрации напряжений и масштабного фактора на сопротивление усталости, полученные путем испытания большого числа образцов, достаточного для оценки рассеяния пределов выносливости. Одновременно будет проиллюстрирована и методика определения параметров уравнения подобия в форме (3.47) или (3.56).  [c.100]

Применение формул для расчета деталей, в которых заложены средние номинальные значения напряжений без учета их действительного распределения и особенно без учета наличия концентраций напряжений, часто вызывает неправильное конструктивное выполнение отдельных узлов или деталей. Математические методы теории упругости довольно сложны и трудоемки, поэтому экспериментальные методы определения полей напряжений являются в ряде случаев единственно доступными и надежными. Экспериментальные данные, полученные на модели с помощью коэффициентов геометрического и силового подобия, переносятся на исследуемую модель. Первый коэффициент показывает, во сколько раз деталь превосходит модель, второй представляет собой отношение силы, действующей на деталь, к силе, действующей на модель-  [c.214]

По его мнению, они некорректны математически, а также по здравому смыслу . Он также не верил экспериментальному методу определения напряжения. Измерения, полученные с помощью точных экстензометров, казались ему нереальными. Относительно метода фотоупругости он заметил Этот метод исследования недавно достиг некоторого успеха только потому, что он интересный и дает некоторые красивые световые эффекты . В эти же годы для определения максимального напряжения в отверстии применялся элементарный метод, показанный на рис. 4. Я привел эти четыре случая, чтобы охарактеризовать условия, которые существовали 30 лет тому назад. В наше время никто не будет пользоваться только что указанным методом для исследования концентрации напряжений. С того времени произошел большой прогресс в области определения напряжений.  [c.665]

Параллельно с этими теоретическими исследованиями продолжалось экспериментальное изучение концентрации напряжений. Для определения максимальных напряжений, вызванных отверстиями, галтелями и выточками, были проведены испытания с использованием моделей, выполненных из хрупких материалов, таких, как стекло 2) или алебастр ). Предполагалось, что в случае материалов, следующих до разрушения закону Гука, уменьшение предела прочности образца от концентрации напряжений, по сравнению с гладким образцом, будет давать эффект концентрации напряжения. Эксперименты не подтвердили этого предположения, однако испытания моделей из хрупкого материала дают значительно меньший эффект концентрации напряжения, чем это предсказывается теорией.  [c.671]

Сформулированы деформационные и энергетические критерии усталостного разрушения металлов и выполнена их экспериментальная проверка. Проанализированы методы ускоренного определения пределов выносливости, основанные на деформационных и энергетических критериях. Рассмотрено влияние неупругих циклических деформаций на несущую способность неоднородно напряженных конструктивных элементов, в том числе при наличии концентрации напряжений. Изложены методы прогнозирования характеристик сопротивления усталостному разрушению металлов с учетом влияния концентрации напряжений, сложного напряженного состояния, режима нагружения и наличия усталостных трещин.  [c.2]

Весьма важным и сложным является вопрос распространения ускоренных методов определения пределов выносливости, обоснованных на лабораторных образцах, на случай испытания конструктивных элементов. Такой переход следует делать весьма осторожно, поскольку в случае неоднородного напряженного состояния, концентрации напряжений, сложного напряженного состояния, наличия технологических дефектов, при коррозионном воздействии и т. п. механизм усталостного разрушения, лежащий в основе того или иного метода ускоренного определения предела выносливости, может войти в противоречие с действительным механизмом накопления усталостного повреждения в материале в конкретном случае. Это приводит к несоответствию расчетных и экспериментальных результатов и дискредитации ускоренного метода в целом.  [c.216]

Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритруб-ной или наружной дефектоскопии и контроля коррозии.  [c.139]

Из эпюры видно, что напряжения по поперечному сечению стержня распределены резко неравномерно и достигают наибольшего значения Онаиб у дна выточки. (Напомним, что при растяжении цилиндрического или призматического стержня нормальные напряжения распределены по его поперечному сечению равномерно.) Заметим, что определение напряжений в зоне концентрации напряжений не может быть выполнено методами сопротивления материалов эти напряжения определяют методами теории упругости или экспериментально.  [c.329]

Для суждения о прочности тела недостаточно располагать решением теории упругости или пластичности о концентрации напряжений около надрезов или трещин. Необходимы ещ е так называемые критерии прочности, которые устанавливают момент (или процесс) исчерпания несуш,ей способности материала в точке или же, в других трактовках, всего тела в целом. Формулировка этих критериев такова, что соответствуюш ие соотношения обязательно содержат некоторые постоянные материала (или, возможно, образца вместе с испытательным устройством), определяемые экспериментально. К этим постоянным прежде всего относятся такие п вест1[ые механические характеристики материала, как предел текучести, прочности, истинное сопротивление разрыву и т. п., методика определения которых на гладких образцах стандартизована.  [c.27]


Разделы, содержащие информацию, реобходимую для решения этой задачи, включают основы теории упругости анизотропного тела и механики разрушения композиционных материалов, результаты исследования напряженного состояния стержней, пластин и оболочек, анализа распространения волн и ударных воздействий, определения концентрации напряжений в окрестности линий возмущения и узлов соединений, оценки надежности, описания процессов автоматизированного проектирования и некоторых экспериментальных методов.  [c.9]

В настоящей главе была сделана попытка дать сводку результатов, полученных в различных экспериментальных и теоретических работах по волнам и колебаниям, возникающим в направленно армированных композитах, для случая малых деформаций и линейных определяющих уравнений. Эта попытка представляется своевременной, так как за последние годы достигнуты значительные успехи в понимании особенностей линейного динамического поведения композиционных материалов. Линейная теория с ее точными результатами для слоистой среды и различными хорошо обоснованными приближенными подходами к описанию как слоистых, так и волокнистых композитов в настоящее время близка к полному завершению. Этот объем теоретических сведений дополняется экспериментальной проверкой результатов, относящихся к распространению сину-соида льных волн и импульсных возмущений. Следует отметить, однако, что необходимость проведения дальнейших экспериментальных исследований все еще остается важной. Многое еще предстоит сделать и в решении задач с нестационарными волнами, в особенности в определении локальных значений полевых переменных, таких, как напряжения на поверхности раздела фаз и динамическая концентрация напряжений.  [c.388]

В существующих в настоящее время нормативных материалах при расчете труб на прочность не учитываются в явном виде характеристики малоциклового разрушения, а также такой фактор, как концентрация напряжений и обусловленное этим появление упругопластических деформаций от эксплуатационных нагрузок. Это вызывает необходимость проведения специальных экспериментальных исследований работы сварных труб большого диаметра при уровнях внутреннего давления, соответствующих эксплуатационным, с целью определения особенностей сопротивления их деформированию и разрушению при статическом и повторностатическом нагружениях.  [c.138]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

Следует иметь в виду, что найденное таким образом напряжение получено для гомогенного анизотропного упругого материала. Поэтому желательно сопоставить концентрацию напряжений с концентрацией, имеющей место в действительности у композитов, армированных волокном. Хираи и др. [7.5] использовали для определения концентрации напряжений метод фотоупругих покрытий, а Хаяси [7.6] проводил экспериментальные исследования концентрации напряжений методом фотоупругости на прозрачных моделях.  [c.204]

Математическое решение задач распределения напряжений при плоском и объемном напряженных состояниях -см. [31, (41, [6], [71, [8], [101, [11], [12]. Экспериментальные методы определения напряжений см. гл. XV. Концентрация напряжений — см. гл. XIII.  [c.19]

Таким образом, в конце 1980-х годов был создан фундамент нормативной базы экспериментального определения характеристик тре-щиностойкости конструкционных материалов. В то же время имеется ряд нерешенных методических вопросов при экспериментальном определении характеристик трещиностойкости в условиях упругопластического деформирования (испытания тонколистовых материалов, сталей низкой и средней прочности, наличие концентрации напряжений), при реализации смешанных моделей деформирования, а также в условиях продольного и поперечного сдвигов. Кроме того, к числу нерешенных в плане разработки нормативных документов следует отнести вопросы определения характеристик трещи-ностойкости структурно-неоднородных конструкционных материалов (волокнистые композиционные материалы, конструкционная керамика, слоистые металлкомпозиционные материалы, сверхпроводящие материалы и т.д.)  [c.20]

На рис. 38 представлены экспериментальные точки при растяжении — сжатии и кручении, соответствующие моменту образования микротрещин размером 0,1 мм в зоне концентрации напряжений. Как видно из рисунка, экспериментальные точки для исследуемых материалов укладываются в общую полосу разброса зависимости (Ig Mf). Оэвпадение кривых усталости при кручении и растяжении — сжатии в данных координатах для образцов с концентраторами напряжений в виде круглого отверстия подтверждает справедливость использования полученных выражений для определения расчетных кривых усталости.  [c.67]

Предполагается, что однонаправленные ленточные композиции должны обладать высокой трансверсальной прочностью. Теоретические расчеты, выполненные с использованием ЭВМ, подтверждают это предположение [96]. Однако на практике часто наблюдается низкая прочность таких композиций [97]. Если адгезионная прочность сцепления ленты с матрицей мала, то прочность композиций резко падает с увеличением концентрации лент [96]. Кроме того, даже при хорошей адгезии экспериментальные значения прочности могут быть низкими из-за того, что матрица не удовлетворяет предъявляемым к ней требованиям. Для достижения высокой прочности ленточных композиций необходимо выполнение следующих условий [98] повышенная адгезия полимера к ленте пластичность и высокие значения удлинения при разрыве матрицы для сведения к минимуму влияния концентрации напряжений из-за термических напряжений, возникающих в процессе получения образцов и изделий высокие значения wit (выше определенного критического уровня) и перекрывание лент для обеспечения полной передачи напряжений от матрицы к лентам регулярное распределение лент, с тем, чтобы обеспечить размер перекрываемых участков выше критического, а также полное отсутствие пор, пустот, отслоений матрицы от лент (это условие может быть выполнено только при высокой точности технологических процессов получения композиций) прочность матрицы при растяжении и сдвиге должна быть выше ее предела текучести композиция должна разрушаться трансверсальным разрывом лент, а не разрушением при сдвиге матрицы.  [c.285]

Чисто математические выводы о концентрации напряжений были встречены, как это часто бывает, с изрядной долей скептицизма в среде инженеров-нракти-ков (путь к современной науке о прочности и здесь не был гладким). Кроме того, еще одно весьма острое противоречие стояло на этом пути. Попробуем в нем разобраться. Допустим, пас заинтересовал вопрос о прочности какого-нибудь материала. Зная, например, силы сцепления, связывающие два атома в твердом кристаллическом теле, можно определить прочность материала путем строгого расчета. Таким образом, мы получим так называемую теоретическую прочность. А можно изготовить образец из того же материала и оцределить значение прочности экспериментально. Прочность, определенную таким путем, принято называть технической. Так вот, оказалось, что техническая прочность значительно (в де-  [c.26]



Смотреть страницы где упоминается термин Концентрация напряжений 403 — Определение экспериментальное : [c.15]    [c.133]    [c.496]    [c.45]    [c.41]    [c.19]    [c.94]    [c.176]    [c.21]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.490 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.490 ]



ПОИСК



Концентрация напряжений

Концентрация напряжений 403 — Определение экспериментальное в условиях пластичности

Концентрация напряжений — Определение

Коэффициент концентрации напряжений экспериментальное определение

НАПРЯЖЕНИЯ Экспериментальное определение в зонах концентрации

Напряжение Определение

Напряжения Концентрация — си. Концентрация напряжений

Напряжения Определение экспериментальное

Определение концентрации напряжений Определение



© 2025 Mash-xxl.info Реклама на сайте