Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие технические приложения

В других технических приложениях доверительный уровень вероятности обычно меньше. Так, например, при нормировании долговечности конических передач авиационных редукторов был принят доверительный уровень вероятности Рд == 0,95, а при установлении долговечности подшипников качения — Р — 0,90 [49].  [c.54]

Очень большое практическое значение имеет создание теории плановых течений при наличии плотностной стратификации применительно к решению инженерных задач о сбросе сточных и отработанных вод промышленных предприятий, о работе водоемов-охладителей тепловых и атомных электростанций. Последняя проблема особенно актуальна и потому, что возможности физического моделирования гидротермических явлений сильно ограничены в принципиальном отношении (см. также 12 и 13). В этой связи, а также в связи с некоторыми другими техническими приложениями требуется создание теории двумерных плановых течений в стратифицированных по плотности водоемах с учетом тепло- и массообмена с внешней средой. Важным является также вопрос о гидродинамических характеристиках потока на участке сопряжения сбросной струи с основным потоком и их влиянии на процессы теплообмена, происходящие в этой зоне.  [c.753]


ДРУГИЕ ТЕХНИЧЕСКИЕ ПРИЛОЖЕНИЯ 59  [c.59]

ДРУГИЕ ТЕХНИЧЕСКИЕ ПРИЛОЖЕНИЯ 61  [c.61]

Рассмотренные выше задачи о ламинарных установившихся течениях решались точными или приближенными аналитическими методами. Путем надлежащего использования граничных условий Б этих задачах удавалось упростить уравнения движения и привести их к интегрируемому виду. Существует немало других задач, решения которых получены тем же путем и находят важные технические приложения. Однако современное развитие инженерной практики требует решения и более сложных задач, в которых приходится учитывать все члены уравнений Навье—Стокса, что не позволяет их решить в квадратурах. Широкие возможности открывает использование ЭВМ и применение численных методов решения. Последние основаны на замене (аппроксимации) дифференциальных уравнений уравнениями в конечных разностях, которые решаются на ЭВМ как система алгебраических уравнений. Разработаны и успешно применены к различным гидродинамическим задачам несколько численных методов, причем в некоторых из них используются не только эйлеровы, но и лагранжевы переменные.  [c.318]

Рассмотренные выше задачи о ламинарных установившихся течениях решались точными или приближенными аналитическими методами. Путем надлежащего использования граничных условий Б этих задачах удавалось упростить уравнения движения и привести их к интегрируемому виду. Существует немало других задач, решения которых получены тем же путем. Большинство этих задач поставлены запросами практики, и их решения находят технические приложения. Однако современные запросы инженерной практики требуют решения и более сложных задач, в которых прихо-  [c.353]

Из основных теоретических распределений непрерывных случайных величин в технических приложениях чаще других встречаются распределения по закону равной вероятности, по закону Симпсона, по закону Гаусса, по кривой Максвелла композиции этих законов между собой и с некоторыми другими распределениями модификации законов распределения (в основном распределения по закону Гаусса) в связи с ограничением поля распределения границами поля допуска.  [c.296]

Допускается применение пропорциональных коротких цилиндрических образцов другого диаметра или типа ГОСТ 1497—84. Испытания при повышенных температурах по требованию, оговоренному в стандарте или другой технической документации, допускается проводить на пропорциональных длинных цилиндрических образцах № 2 и 3 по Приложению 1 к ГОСТ 9651—84.  [c.481]


Основной практической задачей исчисления вероятностей, относящихся к случайным событиям, является установление правил вычисления вероятностей одних событий, когда уже известны (заданы) вероятности других событий. Правила, установленные для вычисления вероятностей событий, полностью распространяются также и на вычисление вероятностей значений дискретных случайных величин, рассмотрение которых имеет для технических приложений большее значение, чем рассмотрение событий. Большинство правил, установленных для вероятностей, распространяется и на соответственные частости.  [c.12]

В этой главе рассматриваются законы распределения одномерных случайных величин, которые наиболее часто встречаются в технических приложениях, и кратко указываются некоторые условия их применения. Сначала будут рассмотрены распределения дискретных случайных величин. В частности, сюда относятся, биномиальное и гипергеометрическое распределения, распределение Пуассона. Кроме того, приводятся еще и некоторые другие законы распределения дискретных случайных величин (геометрическое, Паскаля, Маркова и др.). .  [c.61]

В технических приложениях, помимо обычного изучения функциональных зависимостей между величинами, при которых значение одной величины достоверно определяет значение другой, приходится изучать еще и другие виды связей между величинами, когда значение одной величины определяет условный закон распределения другой величины, т. е. ряд значений, каждое из которых может появиться с определенной вероятностью.  [c.157]

Вид функции опять-таки находится опытным путем. Тот и другой способы расчета встречаются в технических приложениях.  [c.201]

В технических приложениях часто встречается много других примеров общей и локальной потери устойчивости. Большое значение имеют задачи о выпучивании криволинейных балок, колец, арок, тонких пластин, панелей, тонких оболочек (как с внутренним давлением, так и без него), куполов, тонких труб, балок с полками различных конфигураций и при различных условиях нагружения. Подробное обсуждение этих задач выходит за рамки настоящей книги многие из них достаточно хорошо освещены в литературе (см., например, [1, 4, 5, 71).  [c.568]

Монография посвящена обобщению исследований авторов в области статических и динамических задач контактного взаимодействия тел сложной конфигурации, неоднородных тел и задач с усложненными условиями в зоне контакта на основе разработанных аналитических методов. Актуальность темы монографии обусловлена важностью технических приложений теории контактных взаимодействий, которая находит широкое применение в машиностроении, строительстве, электронике и других отраслях человеческой деятельности. Несмотря на значительный прогресс в этой фундаментальной области знаний, на практике изучение реальной картины напряженно-деформируемого состояния в зоне контакта взаимодействующих тел потребовало исследования новых контактных задач и разработки новых методов расчета. Это прежде всего относится к контактным задачам для тел конечных размеров канонической и неканонической формы, периодически неоднородных тел, пространственным контактным задачам и к задачам с учетом сил трения в области контакта, в том числе с заранее неизвестной областью контакта. Численные методы в чистом виде во многих случаях не решают возникающих здесь проблем.  [c.5]

Исследование проблем контактного взаимодействия в механике сплошных сред представляет важную задачу науки и техники, от решения которой во многом зависят успехи в машиностроении, строительстве, электронике, сейсморазведке, неразрушающем контроле изделий и материалов и в других областях человеческой деятельности. Кроме того, широкий интерес к задачам контактного взаимодействия обусловлен не только важностью их технических приложений, но и внутренней логикой развития этого современного раздела механики сплошной среды, что в свою очередь является сильнейшим стимулом развития соответствующих фундаментальных разделов математики.  [c.6]

Авторский коллектив ставил перед собою задачу в полной мере использовать все ценное, что имеется в работах советских и зарубежных исследователей по истории механики, чтобы показать развитие механики как теоретической науки в различных общественных условиях и в связи с развитием других наук, запросами практики, техническими приложениями. Вместе с тем авторы стремились дать изложение, не загроможденное выкладками и специальной терминологией.  [c.5]


Излагаемая методика бьша включена в качестве приложения к ныне отмененному гост 14892—69 Машины, приборы и другие технические изделия, предназначенные для эксплуатации в районах с холодным климатом. Общие технические требова 1ия .  [c.374]

Отсюда, с другой стороны, конечно, не следует, что общий курс механики жидкости и газа должен содержать лишь теоретическое изложение основных законов и быть оторванным от практических применений. Приходится, однако, ввиду крайнего разнообразия современных применений гидроаэродинамики, довольствоваться лишь изложением отдельных, наиболее важных областей приложения теории. Так, например, настоящий курс подчинен в этом смысле общей для подавляющего большинства технических приложений гидроаэродинамики проблеме взаимодействия жидкости или газа с движущимися в них твердыми телами или со стенками труб и каналов, сквозь которые  [c.10]

После окончания капитального ремонта составляют акт приемки агрегата по типовой форме с приложением ведомости объема выполненных работ, технических показателей работы агрегата до и после ремонта, формуляров, снятых при ремонте,, и другой технической документации.  [c.123]

Укажем, что теоретические работы (А. Н. Колмогоров и другие авторы) пока еще не приводят к рекомендациям для технических расчетов, хотя успешно объясняют закономерности механизма турбулентного движения. Поэтому здесь в технических приложениях используем решения, основанные на гипотезе Прандтля.  [c.129]

Для гидродинамики особый интерес представляет частный случай кипения, которое возникает в движущейся жидкости вследствие местных понижений давления до давления насыщенного пара. Такой вид кипения называют кавитацией. Это явление играет особую и главным образом отрицательную роль в гидродинамике машин и аппаратов и других технических приложениях. Кавитация может проявляться как в виде отдельных пузырьков, возникающих в местах пониженного давления и уносимых потоком (пузырьковая перемещающаяся кавитация), так и в виде сплошных, заполненных парами жидкости, полостей, присоединенных к поверхности обтекаемых тел (суперкавитация). Могут существовать и другие внешние проявления кавитации.  [c.23]

Теплообмен излучением играет важную роль в космической технике например, в космических аппаратах сбрасываемое тепло от энергетической установки, электронного оборудования и различных элементов аппарата переносится жидк им теплоносителем к космическим радиаторам, где оно путем теплопроводности передается к поверхности ребер, а затем путем теплового излучения отводится в открытый космос. Поскольку космические радиаторы, по-видимому, относятся к наиболее тяжелым элементам системы терморегулирования космического аппарата, следует выбрать наиболее эффективную геометрию ребер с точки зрения отвода тепла излучением, а также точно определить тепловые характеристики радиатора, чтобы минимизировать его вес. На фиг. 6.1 показаны типичные радиаторы космических ап паратов. В работах [1,2] рассматривается широкий круг связан ных с ними инженерных проблем. Основной механизм теплообмена в космическом радиаторе — совместное действие теплопроводности и излучения в прозрачной среде. Характеристики теплообмена для простых излучающих ребер исследовались до-, статочно широко [3—14]. Для геометрических форм ребра, представленных на фиг. 6.1, в, г, теплообменом излучением между поверхностью ребра и его основанием можно пренебречь, что значительно упрощает анализ. Однако для случаев, представленных на фиг. %Л,а,б,д, этот теплообмен необходимо учитывать, что усложняет проведение расчетов. Оптимизация веса ребра также существенна в других технических приложениях. Эта проблема рассматривалась рядом исследователей, определявших тепловые характеристики развитых излучающих поверхностей.  [c.231]

Применение кипящих теплоносителей для охлаждения ядерных реакторов и ракетных двигателей позволяет получить большие значения объемного тепловьщеления (вплоть до величины порядка 10 Вт/смз). Во многих таких случаях тепловыделение, по существу, постоянно и не регулируется поэтому, если охлаждение недостаточно, стенка может расплавиться или разрушиться под действием высокотемпературной коррозии. Вследствие важности этих и других технических приложений изменению теплопередачи при вынужденных колебаниях давления было уделено большое внимание.  [c.302]

В раде прикладных задач эти вопросы образуют единую проблему, взаимодействуют между собой сложным образом и не являются независимыми в других технических приложениях некоторые из них можно рассматривать как независимые, хотя эта независимость требует дополнительного обоснования. Детерминированная или вероятностная нестахщонар-ность может иметь времени или п странственную зависимость рассматриваемый процесс может обладать одновременно пространственной и временной нестационарной структурой. В большинсгве работ пространственно нестационарные процессы называют неоднородными мы также будем придерживаться этого термина. Следует отметить, - что в большинстве теоретических и экспериментальных работ случайные стационарные процессы и почти во всех работах случайные нестационарные процессы анализируют во временной области. Вместе с тем, часто распространение и рассеяние волн различной физической природы на пространственных неоднородностях среды или граничных поверхностях рассматриваются как во временной, так и в пространственной областях. Так, в работе [62] пространственные неоднородности предполагаются замороженными во времени в работе [l] рассматривается рассеяние акустических и радиоволн на неоднородностях поверхности, являющихся случайньши функциями координат и времени.  [c.4]

Строгий математический полхпд к решению задач о распространении сейсмических волн, безусловно, обеспечивает полное по-пнмаиие физики волновых процессов и соответственно свойств горных пород. Успехи, достигнутые в математике в течение многих лет, привели к появлению бо-1ьшого количества теоретических работ, связанных с сейсмологией землетрясений, сейсмической разведкой и другими техническими приложениями звуковых волн. К счастью, многие результаты теоретических подходов к изучению геологических объектов могут быть приняты и применены на практике без глубокого знания математического аппарата, используемого для обоснования этих результатов.  [c.5]


Другие технические приложения. — u6 amojy. Для ииределения собственных частот инженерных конструкций иногда применяется специальный механизм, называемый вибратором ). Ои состоит из двух роторов, врашаю-щихся в вертикальной плоскости в противоположных направлениях с равными по величине скоростями (рис. 47).Опоры роторов установлены на жесткой раме, которая должна быть жестко прикреплена к конструкции, колебания  [c.59]

Сквозные дисперсные потоки имеют многочисленные технические приложения пневмотранспорт ряда материалов, движение сыпучих сред в силосах и каналах, сушка в слое и взвеси (шахтные, барабанные, пневматические и другие сушилки), камерное сжигание топлива, регенеративные и рекуперативные теплообменники с промежуточным твердым теплоносителем, гомогенные и гетерогенные атомные реакторы с жидкостными и газовыми суспензиями, химические реакторы с движущимся слоем катализатора или твердого сырья, шахтные и подобные им печи — все это далеко не полный перечень. Возникающие при этом технические проблемы изучаются давно, но разрозненно и зачастую недостаточно. Исследование различных форм существования сквозных дисперсных систем в качестве особого класса потоков, выявление режимов их движения, раскрытие механизма теплообмена и влияния на него различных факторов (в первую очередь концентрации), использование полученных данных для увеличения эффективности существующих и разрабатываемых аппаратов и процессов — все это представляется как чрезвычайно актуальная и важная для современной науки и различных отраслей техники проблема. Так, например, применение проточных дисперсных систем в теплоэнергетике позволяет разрабатывать новые экономичные неметаллические воздухоподогреватели, высокотемпературные теплообменники МГД-установок, системы интенсивного теплоотвода в атомных реакторах, высокоэффективные сушилки, методм энерго технологического использования топлива и др.  [c.4]

Исследование влияния структуры сил на устойчивость движения началось по существу с работ Томсона и Тета ). В 1879 г. они дали общее определение гироскопических сил и доказали чет1.г])с теоремы об устойчивости движения. Это направление по развивалось около семидесяти лет. По-видимому, ото мо/кно объяснить тем, что за эти годы была создана общая теория устойчивости движения с ее эффективными методами исследования. Другая причина состоит в том, что теоремы Томсона и Тета были сформулированы только для линейных автономных систем. Наконец, эта теория не включала неконсервативные позиционные силы, значение которых для многочисленных технических приложений прояснилось в полной мере лишь за последние десятилетия.  [c.150]

Задача о движении твердого тела вокруг неподвижной точки издавна привлекала к себе внимание крупнейших механиков и математиков, Трудами Эйлера, Лангранжа, С. В. Ковалевской и ряда других ученых были разрешены некоторые важнейшие задачи о движении твердого тела вокруг неподвижной точки и, в частности, задача о движении гироскопа. Теория гироскопа является одним из интереснейших разделов динамики твердого тела как по обилию неожиданных результатов, так и по разнообразию тех приложений, которые гироскоп нашел в современной технике. Технические приложения гироскопов в настоящее время столь многочисленны и разнообразны, что привело к необходимости выделить учение об этих приложениях из общей теории гироскопов в виде особой дисциплины, которой присвоено наименование прикладной теории гироскопов.  [c.696]

Физика элементарных частиц занимает особое место не только в ядерной физике и даже не только в физике вообще, но и в науке в целом. Эта выделенность состоит в том, что в других областях физики, таких как физика плазмы, физика твердого тела, ядерная спектроскопия и т. д., основные фундаментальные законы уже установлены. Это не значит, конечно, что развитие этих наук приблизилось к завершению. Напротив, в этих областях открывается большое количество новых и интересных явлений, находяш,их важные технические приложения полупроводники, лазеры, эффект Мёссбауэра и др. В физике элементарных частиц изучаются явления, фундаментальные законы которых не установлены.  [c.273]

Преимущества сцинтилляционных счетчиков таковы. Во-первых, у них высока эффективность регистрации, равная почти 100% для заряженных частиц и 30% для у-квантов. Во-вторых, у сцинтилляционных счетчиков очень мало разрешающее время, предел которого определяется длительностью люминесцентной вспышки. Продолжительность вспышки зависит от вещества сцинтиллятора. Для неорганических кристаллов, таких как Nal, это время имеет порядок 10" с, для органических кристаллов (антрацен, нафталин) — примерно 10" с, для пластических сцинтилляторов доходит до 10"° с. Поэтому неорганические и особенно пластические сцинтилляторы особенно хороши там, где требуется высокое разрешение по времени. Третьим преимуществом люминесцентного счетчика является возможность измерения энергии как заряженных частиц, так и у-квантов. Для измерения энергии более пригодны неорганические кристаллы, так как в органических кристаллах и пластиках плохо выполняется линейность зависимости интенсивности вспышки от энергии первичной частицы. Но даже и в счетчиках с неорганическими кристаллами энергия измеряется с точностью порядка 10% в области энергий от сотен кэВ и выше и с точностью порядка 50% в области десятков кэВ. Сцинтилляционным счетчиком можно измерять не только энергию, но и скорость тяжелых заряженных частиц с энергиями в области десятков МэВ. Для этого используется тонкий кристалл. В таком кристалле измеряется не вся энергия частицы, а лишь потеря энергии на расстоянии толщины кристалла, т. е. —dE/dx. А это и есть измерение скорости (см. гл. VIII, 2, формула (8.24)). Если же на пути частиц поставить комбинацию из тонкого и толстого кристаллов, то можно измерить энергию и скорость, т. е. энергию и массу. Таким путем можно легко отделять, например, протоны от дейтронов, измеряя в то же время энергии и тех, и других частиц. Как недостаток сцинтилляционных счетчиков отметим то, что с ними труднее работать, чем с газоразрядными. Например, кристалл Nal очень гигроскопичен и боится больших потоков света. Поэтому этот кристалл приходится тщательно герметизировать и экранировать от наружного освещения. Сцин-тилляционный счетчик сейчас является одним из основных типов детекторов как в самой ядерной физике, так и в ее технических приложениях. В сцинтилляционных счетчиках в качестве рабочего вещества иногда используются жидкие прозрачные сцинтилляторы, которые могут иметь неограниченно большой эффективный объем (вырастить большой кристалл трудно).  [c.501]

Из законов распределения непрерывных случайных величин рассматриваются распределения, связанные с понятием равновероятности (закон равномерной плотности, распределение Симпсона, трапецеидальное распределение) распределения, связанные с промежутками времени между появлением случайных событий, число появления которых известно (экспоненциальное и показательно-степенное распределения) распределения, связанные с величинами, образованными по схеме суммы большого числа слагаемых (распределение Гаусса, распределения Релея и Максвелла, законы распределения с функциями а (/) и Ь t). Кррме этих распределений, рассматриваются еще и некоторые другие законы распределения непрерывных случайных величин, нашедшие применение в технических приложениях.  [c.61]

Основным предельным теоретическим законом распределения величин, образованных по схеме суммы большого числа слагаемых, является закон распределения Гаусса. Закон Гаусса называется также нормальным распределением. Этот термин основан на идее универсальности закона Гаусса и противопоставления его всем другим распределениям, хотя на практике при вполне определенных условиях весьма часто встречаются негауссовы распределения. Закон Гаусса это один из многих типов распределений, встречающихся в технических приложениях, с относительно большим удельным весом приложимости.  [c.80]


Полупроводники [5, 6]. Как отмечалось в гл. 3, переход к наноструктурам в случае полупроводников сопровождается сдвигом спектров люминесценции в коротковолновую область, увеличением ширины запрещенной зоны и другими явлениями, что находит интересные и важные технические приложения. Монокристаллические наночастицы Сб5е в полимерных матрицах рассматриваются как возможные светодиоды и оптические переключатели для лазерных систем, а также сенсоры в биологических объектах.  [c.166]

Новый подход (или концепция) введен в 1985 г, В новых директивах требования формулируются в общей форме. Это обеспечивает длительность действия без изменения, тогда как старые директивы сопровождаются большим числом дополнений и массой поправок (до 100). В отличие от старых новые имеТот унифицированную структуру — две части, одна из которых правовая, другая — техническая в виде 4—6 приложений. Принципиальное отличие новой директивы в том, что в ней делается запись о том, каким европейским стандартам должна соответствовать продукция. В этом случае к термину европейский стандарт добавляется определение гармонизированный .  [c.97]

Адгезионный износ часто характеризуется как самый основной, или фундаментальный, вид износа, поскольку он в той или иной степени проявляется во всех случаях контакта трущихся поверхностей двух твердых тел и имеется даже тогда, когда других видов износа нет. Явление адгезионного износа можно лучше уяснить, приняв во внимание, что все реальные поверхности независимо от тщательности изготовления и полировки обладают волнистостью, на которую накладываются местные неровности и шероховатости. Поэтому, когда две поверхности вступают в контакт, в действительности соприкасается лишь относительно небольшая часть выступов и действительная площадь контакта А, составляет лишь незначительную часть кажущейся площади контакта А . Как показано с помощью опытов на электропроводность [6, гл. 1 7, гл. III, в обычных технических приложениях отношение реальной и кажущейся площадей контакта ArlA находится в диапазоне от 10 до 10 . Таким образом, даже при очень малых внешних нагрузках локальные давления в местах контакта бывают настолько высокими, что превышается предел текучести материала одной или двух поверхностей и возникают локальные пластические деформации.  [c.572]

Последние тридцать лет отмечены для нашей области более разнообразными и, как и во всех других областях науки, более многочисленными достижениями. Многие из них были в1>1званы к ж изни другими научно-техническими проблемами либо обусловлены потребностями практики. Несомненно, что в этом прогрессе заинтересованы не только те, кому нужны лишь технические приложения, но, хотелось бы надеяться, также и научные работники, для которых успехи в казалось бы не связанных 1между o6oi i дисциплинах могут послужить источником новых идей.  [c.28]

Появились также почти немедленно и отрицательные отклики в форме едких нападок на эксперименты, оборудование и на каждое в отдельности, а также в целом на все наблюдения Тарстона, высказанных Фридрихом Киком, профессором экспериментальной механики из Праги. Первоначальное возражение Кика было направлено против пренебрежения инерцией системы. Однако его заявление, что из-за этого все результаты полностью обесцениваю Г-ся, было обоснованно снято в ответе Тарстона ), а также позднее было отведено как неосновательное и многими другими авторами, включая Баушингера, у которого были другие важные претензии к предмету обсуждения. Кик решительно отвергал всякое научное значение опыта, хотя допускал, что возможны его некоторые существенные технические приложения. Кик был прав в своей критике пренебрежения Тарстоном такими обстоятельствами, как распределение напряжений при пластическом кручении, когда тот полагал, что измерения диаметра позволяют ему представить графически некоторые из данных по кручению в форме зависимостей растяжение — удлинение, что, по-видимому, повлияло на враждебность характера комментариев работ Тарстона, появившихся в следующее десятилетие ). Однако эта критика не принималась во внимание, когда изобретение механизма автоматической записи графика деформирования в испытательной машине покорило лаборато-  [c.43]

Современная теория годографа в ньютоновой механике позволяет полностью исследовать поведение годографа траектории в ньютоновом векторном пространстве любого данного порядка. Теория годографа для баллистических траекторий представлена уравнениями движения, контурными сетками и функциями преобразования годографа в векторных пространствах скоростей и ускорений. Одно из основных направлений, в которых эта область продолжает развиваться,— разработка и применение определяющих уравнений годографа и метода синтеза к исследованию активных участков траекторий главным образом путем использования дифференциальной геометрии. Другое важное направление — применение теории годографа к траекториям, связанным более чем с одним притягивающим центром (ограниченная задача трех тел и задача п тел). Оба направления обещают принести свои плоды как с аналитической точки зрения современной небесной механики, так и в отношении технических приложений к проектированию перспективных систем наведения и управления. Илл. 25. Библ, 50 цазв.  [c.236]

Особенно активно стремятся создать собственную базу для производства атомного оружия западногерманские реваншисты. Как сообщалось в техническом приложении к западногерманской газете Индустрикурир от 6 августа 1958 г., недалеко от г. Эльвейлера, в нескольких километрах от рудника, строится завод по переработке урановой руды. Он будет производить сухой концентрат закиси-окиси урапа, который для дальнейшей очистки и переработки будет отправляться на другие предприятия. Завод в Эльвейлере сможет перерабатывать 50 т руды в сутки. Годовая производительность завода составит примерно 12 пг закиси-окиси урана.  [c.161]


Смотреть страницы где упоминается термин Другие технические приложения : [c.21]    [c.94]    [c.105]    [c.656]    [c.10]    [c.215]    [c.332]    [c.491]    [c.313]    [c.109]   
Смотреть главы в:

Колебания в инженерном деле  -> Другие технические приложения



ПОИСК



Другие приложения



© 2025 Mash-xxl.info Реклама на сайте