Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предельные основные

Тип Обозначение НСХ Предельная основная погрешность, % Время установления выходного сигнала Предприятие-изгото- витель  [c.342]

Пример. Определить предельную основную резонансную частоту для дюралюминиевой мембраны (р=2,5-10 кг/м ) толщиной 10 мкм (10 м) и радиусом м. Допустимое натяжение  [c.51]

К числу распространенных анализаторов жидкости относятся кондуктометры серии КК, которые содержат как двух- и четырехэлектродные преобразователи, так и безэлектродные. Приборами этой серии можно производить измерения электропроводности от 10 до 1 См/см при диапазоне рабочих температур 25 15°С и предельной основной погрешности 2,5 7о-  [c.191]


Изложение строится следующим образом. Вначале обсуждается несколько вводных положений классической термодинамики предполагается, что читатель знаком с макроскопической термодинамикой в объеме, обычно содержащемся в инженерных курсах. Далее обсуждаются некоторые общие термодинамические результаты, применимые ко всем материалам (в том числе и к материалам, обладающим памятью). Затем для одного очень простого предельного случая исследуется, как использование концепции памяти влияет на термодинамические результаты, и, наконец, приводятся основные результаты термодинамической теории для простых жидкостей с затухающей памятью.  [c.147]

На рис. 97 показан чертеж втулки, которая запрессовывается в отверстие головки шатуна. При рассмотрении этого чертежа замечаем, что для сопрягаемых элементов деталей предельные отклонения размеров указывают непосредственно после номинального (т. е. основного расчетного) размера в виде условного буквенного обозначения или числовыми величинами.  [c.133]

Для своевременного предупреждения вахтенного персонала о недопустимом изменении основных параметров котельные установки оборудуются звуковыми и световыми устройствами сигнализации. Существуют сигнализаторы предельного уровня воды в барабане, предельных температур пара, останова вспомогательных механизмов и др.  [c.162]

Основные условия для получения максимальной работы от системы требуют, чтобы движуш,ая сила и сила сопротивления были уравновешены во всех случаях. Такой процесс можно назвать равновесным , или обратимым , поскольку только бесконечно малые изменения в силах действующей и противодействующей будут вызывать процесс, обратный своему направлению. Такой процесс является предельным — к нему можно приближаться, но нельзя достигнуть в действительности. Он является стандартным или относительным процессом, с которым можно сравнить реально выполненные процессы.  [c.37]

Потоки рассматриваются во всем диапазоне концентраций (вплоть до предельной ее величины — плотный движущийся слой). Для основных групп существования СКВОЗНЫХ потоков полученная система уравнений конкретизируется на основе соответствующих условий однозначности (гл. 2, 4, 5, 9, 10).  [c.33]

Характер движения и структура слоя при первом режиме движения были рассмотрены ранее ( 9-5, 9-6). Остановимся на режимах, характерных разрывом слоя. При увеличении скорости до величин, близких к предельной, предвестники разрыва слоя наблюдались в пристенной зоне. Эти местные разрывы, локальные воздушные мешки, имеющие в основном продольную протяженность, как правило, вызывались некоторым местным отличием состояния поверхности стенок. Дальнейшее небольшое повышение скорости до Уцр увеличивало частоту появления местных разрывов до их слияния по периметру канала. Возникал пробковый разрыв слоя, который также периодически исчезал, уступая место неустойчивому плотному слою. Наконец увеличение скорости сверх предельного значения полностью разрушало остатки предельного равновесия сил в слое и приводило к полному распаду плотной среды в гравитационно падающую взвесь с высокой концентрацией частиц.  [c.302]


Как было сказано выше, при пересмотре ГОСТ 3458—59 особое внимание обращалось на соответствие правил нанесения размеров на чертежах, установленных в Советском Союзе, международным правилам, в первую очередь рекомендациям по стандартизации ИСО Р 129 и СЭВ P 974—67. Но так как эти рекомендации в основном относятся к машиностроительным чертежам, а ГОСТ 2.307—68 является обязательным и для строительных чертежей, он имеет ряд отличий и исключений, необходимых для выполнения последних. Так, например, на машиностроительных чертежах размерные линии всегда заканчиваются стрелками и только в том случае, когда они не умещаются между выносными линиями, допускается вместо стрелок наносить ярко выраженные точки или засечки, а на строительных чертежах во всех случаях допускается взамен стрелок наносить засечки. На строительных чертежах допускается размеры наносить замкнутой цепочкой, повторять отдельные размеры несколько раз. Линейные размеры и предельные отклонения линейных размеров на чертежах указывают в миллиметрах, без обозначения единицы измерения. В том случае, л<огда размеры указывают в других единицах измерения (сантиметрах, метрах и т. д.), соответствующие размерные числа записывают с обозначением единицы измерения или, если на всем чертеже приняты одни единицы измерения, указывают их в технических требованиях. На строительных чертежах в аналогичных случаях допускается не указывать единицы измерения, если они оговорены в соответствующих документах, утвержденных в установленном порядке. Кроме перечисленных, имеется ряд других допущений в части нанесения размеров на строительных чертежах, о которых будет сказано далее.  [c.54]

В части правил нанесения предельных отклонений размеров ГОСТ 2.307—68 мало отличается от ГОСТ 9171—59. Основные ol-личия. вызваны стремлением сократить трудоемкость при выполнении чертежей и конкретизировать отдельные правила, с тем чтобы упростить пользование чертежами.  [c.59]

ГОСТ 10 356—63 Отклонение формы и расположения поверхностей. Основные определения. Предельные отклонения , введенный в действие с 1 января 1964 г., впервые установил общие для всех отраслей промышленности определения отклонений формы и расположения поверхностен, определение отдельных видов отклонений, а также ряды предельных отклонений. ГОСТ 3457—46 не отражал многие важные положения ГОСТ 10356—63, на основе которого должны назначаться величины допускаемых отклонений формы и расположения поверхностей.  [c.62]

Продолжалась работа и по международной стандартизации чертежей. Так, в ноябре 1958 г. состоялось совещание специалистов стран — членов СЭВ, на котором рассматривались предложения о шрифтах (латинском и греческом), об условных обозначениях резьб, основных надписях, условных изображениях зубчатых (шлицевых) соединений и др. В сентябре 1959 г. были рассмотрены предложения о чертежах пружин, предельных отклонениях формы и расположения поверхностей и др. в октябре 1960 г. — предложения об основных требованиях к рабочим чертежам, оформлении рабочих чертежей зубчатых колес, условных обозначениях для кинематических схем и др. Происходили и заседания ИСО/ТК Ю. Например, в 1959 г. для рассмотрения предложения по обозначениям шероховатости, по нанесению размеров и предельных отклонений конических элементов, в 1960 г. по обозначению ыа чертежах допусков на форму поверхности и на расположение поверхностей и др.  [c.174]

На величину пластической деформации, которую можно ДОСТИЧЬ без разрушения (предельная деформация), оказывают влияние многие факторы, основные из которых — механические свойства металла (сплава), температурно-скоростные условия деформирования и схема напряженного состояния. Последний фактор оказывает большое влияние на значение предельной деформации. Наибольшая предельная деформация достигается при отсутствии растягивающих напряжений и увеличении сжимающих. В этих условиях (схема неравномерного всестороннего сжатия) даже хрупкие материалы типа мрамора могут получать пластические деформации. Схемы напряженного состояния в различных процессах и операциях обработки давлением различны, вследствие чего для каждой операции, металла и температурно-скоростных условий существуют свои определенные предельные деформации.  [c.54]


Основные определения и предельные отклонения формы и расположения поверхностей предусмотрены ГОСТ 10356—63.  [c.46]

Атомы наносимого элемента после хемосорбции или химической реакции растворяются и диффундируют в глубь основного металла. Различают два вида диффузии атомную, при которой не образуются новые фазы, а максимальная концентрация внедряемого элемента ограничена его предельной растворимостью в твердом растворе при данной температуре и плавно понижается по мере удаления от поверхности в глубь металла (рис. 78, а), например Сг в Fe, и реактивную, при которой в поверхностном слое возникает одна или несколько новых фаз, отличных от твердого раствора, через которые и идет диффузия, а распределение концентрации внедряемого элемента характеризуется наличием скачков концентраций на границах фаз (рис. 78, б), например А1 или Si в Fe.  [c.119]

Поскольку разрушение сварных соединений происходило в основном по зоне термического влияния (ЗТВ), локализованной у сопряжения шва с основным металлом, то в расчете необходимо было использовать именно характеристику предельной пластичности металла ЗТВ. Величина критической деформации ЗТВ стали ЮХСНД в соответствии с работой [262] была принята равной 22 %.  [c.46]

В данной главе рассматриваются хрупкое, вязкое и усталостное разрушения поликристаллического материала при кратковременном статическом и малоцикловом нагружениях. Разрушение поликристаллического металла при кратковременном статическом нагружении (т. е. при скорости деформирования I с ) является в большинстве случаев внутризеренным и в зависимости от температуры и характера НДС хрупким или вязким. Феноменологически первый тип разрушения сопровождается низкими затратами энергии в отличие от второго, для которого характерны значительные пластические деформации и, как следствие, высокая энергоемкость. Разрушение конструкционных материалов при малоцикловом нагружении также в основном связано с накоплением внутризеренных повреждений и развитием разрушения по телу зерна. Общим для рассматриваемых типов разрушений является также слабая чувствительность параметров, контролирующих предельное состояние материала, к скорости деформирования и температуре. Указанные общие особенности хрупкого, вязкого и усталостного разрушений послужили основанием для их анализа в одной главе.  [c.50]

Основными механическими свойствами материала, характеризующими разрушение образца, являются критическая деформация (или предельная пластичность) е/ и истинное разрушающее напряжение 5к. В различных металлах зависимости ) Т) и Sk T) ведут себя различно. Во многом это определяется типом кристаллической решетки металла. У металлов с гране-центрированной кубической решеткой (ГЦК металлов) температурная зависимость механических свойств в широком диапазоне температур [211, 242, 243] практически отсутствует. Примерно так же ведут себя и предельные характеристики е/ и 5к в пластичных металлах с гексагональной плотноупакованной решеткой (ГПУ металлах), например в а-титане, хотя влияние температуры сказывается на них сильнее [211].  [c.51]

Изложенные здесь основные закономерности межзеренного разрушения в условиях длительного статического и циклического нагружений положены в основу рассматриваемой ниже физико-механической модели. Анализ влияния скорости деформирования на критические параметры, контролирующие предельное состояние материала, может быть выполнен исходя из схемы, приведенной на рис. 3.2. Для этого значения критической деформации е/ или долговечности Nf при межзеренном накоплении повреждений, рассчитанные по предлагаемой ниже модели, должны сравниваться с аналогичными параметрами, полученными в предположении внутризеренного характера зарождения макроразрушения по одной из ранее разработанных методик (см. гл. 2).  [c.155]

Вторые предельные отклонения — неосновные отклонения вычисляют по формулам (4.9), (4.10), полагая известными основные отклонения и допуски. Для валов и отверстий, расположенных ниже нулевой линии, искомыми являются нижние отклонения  [c.59]

Решение. По известным предельным отклонениям необходимо определить квалитеты, основные отклонения и условные обозначения полей допусков. По формуле (5.6) находим допуски в мкм первого вала Тд. = — 25 — (— 50) = -= 25 второго вала ТЦ = 34 — 9 = 25 По табл. 5 2 в интервале свыше 30 до 50 мм находим, что для обоих валов назначены допуски по седьмому квалитету. Находим основные отклонения. Так как ими всегда являются ближайшие отклонения — меньшие по абсолютным значениям, то для первого вала основное отклонение ев = — 25, а для второго е1 = 9 мкм. Затем по табл. 5.3 в интервале свыше 30 до 50 мм находим, что в первом случае принято отклонение / во втором отклонение ш. Таким образом, для валов назначены поля допусков /7 и ш7.  [c.63]

Решение. 1. Соединение оси 7 с корпусом 12. По условию находим предельные отклонения и допуски в мкм для отверстия во всех трех случаях Е1 =- 0 ES = TD = 15 т, е отверстия являются основными отверстиями Н для вала es = — 5 el = — 14 Td = 9, По табл. 5.2 устанавливаем квалитеты TD = IT7 Td = IT6. По табл. 5.3 находим основное отклонение вала es = eg. Следовательно, в первом случае соединение осуществлено по посадке с зазором 0 10//7/g6.  [c.65]

Применительно к приборам для линейно-угловых измерений обычно нормируют предельную основную погрешность или погрешность показаний Ант, п, которую и проверяют во время периодических поверок. Эта норма называется пределом допускаемой погрешности средства измерений Предельная погрешность показаний представляет собой предельную погрешность измерений, отличаюигихся от обычных измерений в производственных условиях тем, что 1) они имеют целью получение информации не об истинном размере измеряемого объекта (этот размер бывает уже известен с точностью в несколько раз более высокой, чем точность поверяемого прибора), а о величине погрешности показаний поверяемого прибора 2) они выполняются не в обычных  [c.63]


Манометрические термометры могут работать в условиях вибрации, а также во взрывоопасных и пожароопасных помещениях. Источники погрешностей термометров изменение барометрического давления и температуры окружающей среды, характер взаимного расположения термобаллона и манометра. В табл. 5.3 приведены некоторые технические характеристики показывающих манометрических термометров ТГП-100М1 (газовые), ТКП-100М1 (конденсационные), ТЖП-100 (жидкостные). Более подробные сведения см. в [21]. Для термометров типа ТКП-100М1 предельная основная погрешность устанавливается для последних  [c.331]

Пример. Определить предельную основную резонансную частоту для дюралюминиевой мембраны (р = 2-5Ы0 кг/м ) толщиной 10 мкм (10 м) и радиусом 10 м. Допустимое натяжение Тм акс —15 10 10 —1500 н/м. ПрбДбльнзя рбзо нансная частота  [c.68]

Признаком начала и развития второго периода, как и при бессемеровании, является появление и формирование пламени. Здесь оно не бывает ослепительно белым, так как температура томасироваиия ниже температуры бессемерования. В ходе продувки шлак меняет свой состав, в нем все в большей степени растворяется известь. К концу второго периода известь растворяется полностью, и шлак становится предельно основным. К зтому же времени значительно снижается температура, так как реакция окисления углерода закисью железа шлака поглощает тепло. Пламя по мере выгорания углерода уменьшается и исчезает.  [c.527]

В Швеции и Японии разработаны проекты атомных п ных танкеров, в которых предусмотрено новое средство НИЯ личного состава — всплывающие спасательные конте (см. рис. 19), позволяющие оставлять корабль на любо бине погружения вплоть до предельной. Основное препя применения таких контейнеров на боевых подводных ках — большая численность экипажей.  [c.192]

Примером турбинного тахометри-ческого расходомера, использование которого возможно на ТЭС, является расходомер топочного мазута ТМ-1. Эти расходомеры имеют дифференциально-трансформаторный тахометри-ческий преобразователь, сигнал от которого поступает к нормирующему преобразователю с выходным сигналом О—5 мА. Преобразователи расхода таких расходомеров изготавливаются с диаметрами условных проходов от 32 до 200 мм для давления до 6,4 МПа и температуры от 50-до. 150 °С. Расходомеры могут иметь шкалы с верхними пределами 6,3—240 м ч. Диапазон измерения этих расходомеров (0,2-f--Ь1) Qв.п В диапазоне (0,3-ь1) Qв tt предельная основная погрешность равна 2 % и в диапазоне (0,2-т-0,3) Qв.a  [c.133]

Основным параметром, иэменяющим в значительной степени напряжение бй-лпри одинаковых прочих условиях, является предельный коэффициент вытяжки. Поэтому, найдя указанное напряжение для анализа влияния причин параметров, строят график напряжения вытяжки 4 — в зависимости от предельного коэффициента ,  [c.30]

Конструкция небольшого ферментатора для индивидуального потребителя предельно проста тепло- и гидроизоли-рованная яма с гидрозатвором, заполненная разжиженным сырьем (влажность 88—94 %) с плавающим в ней колоколом-аккумулятором для вывода газа. Производительность ферментатора составляет грубо около 1 м газа в сутки с 1 м его объема при температуре в нем 30—40 °С. Ферментатора размерами 2Х Х2Х 1,5 м вполне достаточно для работы двух бытовых газовых горелок. Сырье загружается порциями по крайней мере 1 раз в сутки. Получающийся газ состоит в основном из метана и диоксида углерода с небольшими количествами сероводорода, азота и водорода. Его сжигание (учитывая более высокую эффективность) дает не меньше энергии, чем непосредственное сжигание кизяка. Получающиеся в процессах ферментации жидкие отходы используются в качестве высококачественного удобрения, содержащего вдвое больше связанного азота, чем исходное сырье.  [c.122]

Соприкасающимся эталоном кинематической поверхности основного вида в заданной ее точке называют предельное положение винтовою тора, который с заданной кинемагической поверхностью основного ви-да имеет три общих бесконечно близких хода.  [c.411]

Основные требоианпя к чертежам , ГОСТ 2.305 — 68 Изображения , ГОСТ 2.307-68 (СТ СЭВ 1976-79, СТ СЭВ 2180 — 80) Нанесение размеров и предельных отклонений , ГОСТ 2.311-68 (СТ СЭВ 284-76) Изображение резьбы , ГОСТ 2.403-75. .. ГОСТ 2.408-63 (правила выполпения чертежей зубчатых колес, реек, звездочек п т. п.), ГОСТ 2.409 — 74 (СТ СЭВ 650 — 77) Правила выполнения чертежей зубчатых шлицевых соединений , ГОСТ 2.312-72 Условные изображения и обозначения швов сварных соединений , ГОСТ 2.313 — 82 (СТ СЭВ 138-81) Условные изображения и обозначения швов неразъемных соединений , ГОСТ 2.419-68 Правила выполнения документации при плазовом методе производства , ГОСТ 2.401-68 (СТ СЭВ 285-76, СТ СЭВ 1 185-78) Правила выполнения чертежей пружин , ГОСТ 2.410 — 68 (СТ СЭВ 209 — 75, СТ СЭВ 366 — 76) Правила выполнения чертежей металлических конструкций , ГОСТ 2.411—72 Правила выполнения чертежей труб и трубопроводов , ГОСТ 2.113 — 75 (СТ СЭВ 1179 — 78) Групповые и базовые конструкторские документы . В учебнике см. 14 15.  [c.225]

В сборнике представлены задачи на все основные разделы курса сопротивления материалов растялсение-сжатие, аюж ное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, слож ное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное действие нагрузок. Общее количество задач около 900. Некоторые задачи снабжены решениями или указаниями.  [c.38]

Для плотного гравитационного слоя массовая скорость увеличивается за счет линейной скорости, поскольку концентрация его практически неизменна. Однако при превышении предельной скорости слоя наступает его разрыв и переход в режим падающего слоя. Здесь наблюдается как бы та же картина, что в кипящем слое, но применительно к другим условиям. Разнонаправленное влияние двух факторов — увеличение теплоотдачи за счет роста скорости и ее уменьшение за счет падения концентрации (плотности) потока — уравновешено в критической точке. Переход через критическое число Фруда (здесь — через оптимальную массовую скорость) в ряде случаев определяет превалирующее влияние второго фактора. В области потоков газовзвеси основным интенсифицирующим фактором является концентрация твердой фазы. На рис. 1-4 линия, характеризующая поток газовзвеси, построена для Un = onst следовательно, увеличение массовой скорости вызвано лишь ростом концентрации. При переходе в область флюидных потоков наблюдается второй максимум.  [c.25]

Современное состояние вопроса общего математического описания дисперсных систем нельзя признать до-статочло удовлетворительным, несмотря на растущий интерес к этой проблеме. Каж травило, в работах, шо-священных этому вопросу, фактически используется феноменологический подход к исследованию дисперсного потока в целом. Идея условного континуума п03(В0Ляет полностью использовать математический аппарат механики сплошных сред, но несет с собой погрешности физического порядка тем более существенные, чем значительней макроднскретность системы. Системы таких уравнений, полученные рядом авторов как общие, все же не охватывают класс дисперсных потоков во всем диапазоне концентраций (вплоть до плотного движущегося слоя). Они не учитывают качественного изменения структуры потока и в связи с этим изменения закономерностей распределения частиц, появления новых сил (например, сухого трения), изменения с ростом концентрации (до предельно большой величины) условий однозначности и пр. В основном большинство работ посвящено турбулентному течению без ограничений по концентрациям, хотя при определенных значениях р наступает переход к флюидному транспорту, а затем — плотному слою. Сама теория турбулентности применительно к дисперсным потокам находится по существу в стадии становления (гл. 3). Наиболее перспективные методы — статистические (вероятностные) применяются мало, по-видимому, в силу недостаточной изученности временной и пространственной структур дисперсных систем Общим недостатком предложенных систем уравнений является их незамкнутость, которая объясняется отсутствием конкретных данных о тензорах напряжений и  [c.32]


ДЛЯ правильного понимания чертежа и для изготовления по нему детали необходимой точности. Общие правила указания размеров, требования к выбору размеров, к назначению их предельных отклонений приведены в разделе I Основные положения . Из них следует, что общее количество размеров на чертеже должно быть минимальным, но достаточным для изготовления и контроля изделия. Не рекомендуется загромождать чертеж лишними размерами, т. е. такими, которые по данному чертежу не выполняются и не подвергаются контролю. Не допускается повторять размеры одного и того же элемента на разных изображениях, в технических требованиях, основной надписи и в спецификации приводить размеры, которые выполняются по другим чертежам или приведены в других документах. Это правило соответствует основному — не допускать дублированных указании на чертежах, которые могут привести к ошибкам, особенно при внесении в них изменений. В этом случае один или несколько дублированных размеров могут оказаться не исправленными и изготовитель не будет точно знать, какие размеры он должен вьщержать. Если в технических требованиях необходимо дать ссылку на размер, нанесенный на изображении, то этот размер или элемент, к которому он относится, следует обозначить буквой, на которую затем следует ссылаться в технических требованиях (черт. 67).  [c.51]

Рассмотрим результаты экспериментов, характеризующие влияние скорости деформирования на критические параметры, контролирующие предельное состояние материала, и сопоставим их с механизмами накопления повреждений и разрушения. Основная закономерность, которая наблюдается при различных схемах деформирования в условиях, когда скоростные параметры нагружения влияют на характеристики разрушения, состоит в уменьшении критических значений этих характеристик при снижении эффективной скорости деформирования. Так, при испытании на ползучесть в определенном температурном интервале снижение скорости установившейся ползучести, вызванное уменьшением приложенных напряжений, может приводить к уменьшению деформации ef, соответствующей разрушению образца. В качествее примера на рис. 3.1, а приведены результаты опытов на ползучесть для ферритной стали, содержащей 0,5% Сг, 0,25% Мо, 0,25% V, при 7 = 550°С и напряжении а =150- 350 МПа [342]. При скорости установившейся ползучести порядка 10 3 с деформация до разрушения образца составляет всего несколько процентов.  [c.151]

Соединение оси 7 с рычагом 6. Находим предельные отклонения только для вала es = 28 el == 19 Td — 9, т. е. Td — ITQ. По табл, 5 3 находим основное отклонение вала el — е . Во втором случае применена посадка с натягом Н71г6.  [c.65]

В одноименных посадках с натягом в системах отверстия и вала значения натягов не изменяются при одинаковой точности сопрягаемых деталей, и поэтому основное отклонение неосновного отверстия вычисляют по общему правилу. На рис. 5.4 показаны схемы полей допусков, предельные отклонения и натяги для посадок 0бОЯ7/и7 и 060(77/ 7. Обычно посадки с натягом для размеров более 1 мм получают, сопрягая менее точные отверстия с более точными (на один ква-литет) валами. В подобных случаях для получения в системах отверстия и вала одинаковых натягов основное отклонение неосновного отверстия вычисляют по специальному правилу.  [c.66]


Смотреть страницы где упоминается термин Предельные основные : [c.332]    [c.23]    [c.75]    [c.214]    [c.440]    [c.248]    [c.250]    [c.340]    [c.265]    [c.184]    [c.52]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.845 ]



ПОИСК



516—535 — Ошибки основных для объективов микроскопов 501 — Допуски 481 Размеры предельные

586, 587 — Поля допусков основные 548 — Отклонения предельные

588-595 - Обозначение 587 - Отклонения 597 - Поля допусков 586-597 Радиусы закругления впадин 596 Размеры основные 582-584 - Степени шаги и основные размеры 599 - Допуски 600 - Предельные отклонения

89 — Отклонения предельные и посадки 102, ЮЗ — Размеры основны

89 — Отклонения предельные и посадки 102, ЮЗ — Размеры основны предельные

Валы класса точности классов точности 1—5 диаметром 1—500 мм основные — Отклонения предельные

Вторая основная теорема о множестве предельных точек полутраектории

Звездочки для пластинчатых цепей 670, 682-685 - Предельные отклонения основных размеров 703 - Расчет

Момент предельный сопротивления для основных форм

Несущая способность деталей из предельная для основных случаев

Номинальные размеры, предельные износы, зазоры и натяги в основных сопряженных деталях двигателя

Номинальнье размеры, предельные износы, зазоры и натяги в основных сопряженнь х деталях двигателя

Общие методы решения основных уравнений теории пластичности Теория предельного состояния Постановка задачи теории пластичности. Основные уравнения теории пластичности

Основные гипотезы предельных состояний

Основные зависимости для пересчета позиционных допусков на предельные отклонения размеров, координирующих оси отверстий

Основные понятия о расчете по предельным состояниям

Основные расчетные положения Общие сведения о методе расчета конструкций по предельным состояниям

Основные термины и определения допусков и посадок — Обозначение размеров и предельных отклонений на чертежах

Основные уравнения задачи предельного состояния круглых и кольцевых пластин

Основные характеристики предельных рабочих резьбовых калибров

Особенности предельного состояния толстостенных оболочковых конструкций, работающих под давлением, выбор критериев потери их несущей способности. Основные условия и допущения

Отверстия в отливках — Размеры класса точности 1 диаметром 1—180 мм основные — Отклонения предельные

Отклонения диаметра предельные Отклонения основные 548 — Отклонения предельные

Перзая основная теорема о множестве предельных точек полутраектории

Предельное состояние армированных пластин при изгибе Основные уравнения изгиба анизотропных пластин

Предельные основные крепёжные

Предельные отклонения основных отверстий и Отклонения валов и отверстий прессовых посадок для диаметров от 1 до 500 мм

Предельные точки и множества. Основные свойства траекторий

Предельные точки множества. Основные свойства

Приложение В. Основные нормы взаимозаменяемости. Общие допуски. Предельные отклонения линейных и угловых размеров с неуказанными допусками по ГОСТ

Расчет конструкций по предельным состояниям Основные понятия о предельном состоянии

Резьба упорная для диаметров от Отклонения формы и расположения поверхностей. Основные определения Предельные отклонения

Резьбы трубные конические предельные 107, 108, 110 — Обозначения 88 — Применение в тяшелопагружспиых соединениях 149 Профили и размеры основные

Статический коэффициент. Предельная нагрузка. Теорема о единственности предельной нагрузки. Кинематический коэффициент. Основная теорема о предельной нагрузке. Теорема о существовании девиатора напряжений для предельной нагрузки Стационарные течения

Стержни закрученные — Основные соотношения теории предельного напряжения от гибкости

Таблицы для подсчёта основные — Диаметры 758 — Примеры подсчёта предельных размеров 761 — Шаг

Теория предельного состояния. Основные теоремы предельного состояния

Учет пластических деформаций. Расчет по предельным нагрузкам (М. Н. Рудицын) Основные понятия



© 2025 Mash-xxl.info Реклама на сайте