Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение констант элемента

Определение констант элемента.  [c.9]

Блок команд, отвечающих за построение модели. (Определение типа элемента. Определение опций элемента. Определение констант элемента. Определение свойств материала. Создание конечно-элементной модели. Приложение нагрузок.)  [c.14]

Допускается определение констант Са и по известным механическим свойствам металла обследуемого конструктивного элемента по следующим формулам  [c.398]


Для аналитической интерпретации данных по малоцикловому разрушению и определения констант критериальных уравнений малоцикловой прочности (1.1.10) — (1.1.12), а также расчета долговечности необходимо располагать характеристиками статической прочности и пластичности. Такие данные определяются по результатам статических испытаний образцов с записью диаграмм деформирования вплоть до разрушения. Статический разрыв образцов производится на тех же испытательных малоцикловых установках, причем масштаб записи канала деформаций и чувствительный элемент деформометра подбираются из условий обеспечения при непрерывном нагружении регистрации полной диаграммы деформирования. В связи с отсутствием временных эффектов статические испытания до разрушения можно проводить с промежуточными разгрузками образца для создания запаса хода чувствительного элемента, используемого для циклических испытаний деформометра.  [c.238]

На этапе определений используется информация, вводимая с перфокарт в следующем порядке 1) общий список имен, фигурирующих в математических определениях элементов 2) поэлементный список имен собственных переменных 3) поэлементный список имен несобственных переменных с двусторонними ограничениями 4) поэлементный список систем уравнений, являющихся математическими определениями т-элементов 5) текст описаний массивов чисел (констант) 6) текст оператора ввода массивов чисел 7) определения 6-связей 8) определения с-связей 9) описания процедур, задаваемых исследователем.  [c.64]

Не возникают трудности и при вычислении внутренней энергии элементов, и при этом не требуется переход от локальной к глобальной системе координат. В отличие от классического метода конечных элементов ни в одной точке не требуется переходить от нагрузки в виде распределенного давления к эквивалентным узловым силам. Благодаря малому количеству элементов размер матрицы коэффициентов уравнений для определения констант в функциях формы невелик, что позволяет обходиться при счете оперативной памятью (следовательно, нет трудностей с хранением числового материала и с машинным временем).  [c.124]

Этот выбор, вообще говоря, произволен и его можно критиковать, однако он имеет то преимущество, что атомные диаметры являются константами элементов и не зависят от свойств сплавов В более поздних работах для определения пределов благоприятного размерного фактора была. принята разница в атомных диаметрах равной 15 /о ниже дается пояснение, что концепция размерного фактора не должна ограничиваться слишком жесткими пределами, и поэтому определение отклонения от указанного пр едела е ряде случаев -не имеет значения.  [c.130]


Теория подобия позволяет заменить обычные размерные величины обобщенными, которые называются критериями. Для их определения можно применить метод масштабного преобразования уравнений в безразмерный вид, метод почленного деления элементов уравнения на один из его членов либо метод подобного преобразования уравнений с помощью констант подобия с,  [c.117]

Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]

Этот результат является новым по сравнению с ньютоновской механикой, где полная энергия частицы определяется с точностью до произвольной постоянной. Никаких оснований для выбора какого-либо определенного значения этой постоянной в рамках ньютоновской механики нет, и ее просто полагают равной нулю, так что покоящаяся классическая частица обладает и нулевой полной энергией. В релятивистской механике полная энергия частицы задается выражением (47), лишенным каких-либо произвольных элементов (вспомним, что константа в формуле (40) оказалась равной нулю вследствие того, что iS / — четвертая составляющая вектора Q) поэтому, в частности, покоящаяся частица обладает энергией  [c.466]

К сожалению, на этом фоне резким диссонансом выглядит сложившаяся практика изучения физических постоянных, которая явно не соответствует их действительно фундаментальному значению в науке. Пока все сводится к сос щению о них скупых и разрозненных данных в различных разделах курса физики. Мало внимания уделяется систематизации и объединению сведений о них, анализу связи констант между собой, исследованию их основополагающей роли в развитии и становлении физических теорий и построении современной научной картины мира. В учебной литературе совершенно не рассматривается диалектика возникновения, развития и формирования этого важнейшего структурного элемента физической науки. Отсутствует более или менее удовлетворительное определение понятия фундаментальная физическая постоянная . Не удивительно, что этот термин часто ассоциируется с более или менее подробной таблицей физических констант, числовые значения которых следует применять при решении задач. Проблема фундаментальных постоянных еще не пришла на страницы учебников. Невольно формируется принципиально неверное представление о физических постоянных как о статичном справочном материале. Известно, что изменить  [c.4]

Накладывая определенные связи, например, закрепляя элемент, мы подчиняем пять констант трем условиям, две постоянные по-прежнему остаются неопределенными и их можно зафиксировать произвольным образом. В дальнейшем, если не оговаривается противное, мы будем полагать а = = О, следовательно, (р(0) = 0.  [c.331]

Метод усреднения деформационных констант расчетных элементов, не отражая их взаимодействия, носит условный характер. В определенных условиях усреднение жесткостей по Фойгту или Рейссу может приводить к точным значениям, например для слоистой модели в плоской задаче  [c.82]

Если и матрица, и волокно упруги, неэффективная длина б есть константа, зависящая от геометрии и свойств материала. Если материал матрицы вязкоупругий, сдвиговое напряжение вдоль границы раздела волокно — матрица релаксирует во времени, вызывая понижение осевого напряжения в волокне около разорванного конца (рис. 18). Имея в виду определение неэффективной длины б, видим, что б — возрастающая функция времени, причем скорость роста б зависит от свойств матрицы. Модель разрушения строится с учетом того, что рост неэффективных длин происходит как рост числа элементов материала, которые считаются разрушенными. Такой подход приводит к статистическому определению времени до разрушения при данной нагрузке.  [c.289]


Массив — это последовательность известной длины скалярных констант определенного типа. Число элементов определяется заранее при его описании и не изменяется. В отличие от файла каждая компонента массива может быть явно обозначена теми же именем и индексами (их может быть несколько в соответствии с размерностью массива). По имени с индексами осуществляется обращение к этим компонентам.  [c.146]

Здесь интеграл берется вдоль границы зоны полного насыщения S = = 3(т), ds — длина ее элемента, аналогично г означает пару координат точки границы, G(r, — известная двухточечная функция, /( ) и С — подлежащие определению интенсивность источников и константа. Граница S состоит из Г, отрезка Го оси ж, принадлежащего зоне полного насыщения (а в задаче о системе борозд с некоторого момента Т2, в который зона полного насыщения, распространяясь вправо, достигает прямой у = Y, — из ее отрезка Гу), а также из дуги Гу переднего фронта и из дуги Г возникающего при г = ti заднего фронта. Уравнение (2.2) и его следствие, получающееся дифференцированием (f из (2.2) по нормали к , справедливы, в частности, и на S. Это дает два уравнения  [c.305]

Однако элементами теплообменных аппаратов, широко используемыми в различных областях техники (включая атомную энергетику), обычно являются тонкостенные трубки. Если трубка достаточно тонка, напряжениями Ор пренебрегают и напряженное состояние оказывается плоским (сГф, сг,). Смещения точек трубки в направлении радиуса можно считать практически постоянными по толщине (не требуя, чтобы нулю равнялись радиальные деформации), откуда следует постоянство деформации по толщине. Как и в задаче о толстостенной трубе, но уже для произвольного значения коэффициента Пуассона [г (т. е. без допущения о несжимаемости) нужные для решения деформации определяются двумя константами (на этот раз ими служат сами деформации 8ф, 8 ) Для их определения используют два уравнения равновесия упомянутое выше для нормальной силы и условие равновесия части трубки, отсеченной диаметральной плоскостью, согласно которому среднее по толщине окружное напряжение равно (р — Рь) RnJ > где и б — средний радиус и толщина трубки, — внутреннее и наружное давле-  [c.241]

Так как все условия считаются осесимметричными, единственным возможным движением всей оболочки как жесткого целого является ее осевое смещение. При необходимости его можно исключить путем приравнивания нулю осевого перемещения os ф — о sin ф на одном из краев каждого элемента оболочки. Для простоты это может быть край, на котором 5=0, Осуществить названное исключение можно, например, включив его в число граничных условий, входящих в систему уравнений для определения констант к . С-другой стороны, полагая сразу ki=k6 tg9, можно уменьшить на единицу количество уравнений и констант, понижая, таким образом, количество степеней свободы с И до 10 с соответствующим понижением размера матрицы уравнений для граничных условий.  [c.110]

Соотношение (9.91) вместе с формулами (9.29) и (9.30) для функций распределения, формулой (9.45) для свободной энергии каждого компонента и спектроскопически определенными атомными и молекулярными константами может быть использовано для определения константы равновесия любой химической реакции, описываемой уравнением типа (9.80). На практике константы равновесия для нескольких из большого числа возможных химических реакций затабулированы, В большей мере затабулированы более удобные и гибкие константы образования различных химических соединений из элементов. Они могут быть использованы для определения констант равновесия многих химиче-  [c.349]

Примечание 36.3. Изложенные в данном параграфе схемы обоснования методов БГР в задачах глобальной устойчивости пологих оболочек обобщаются и на случаи, когда аппроксимация решений производится методами конечных разностей или конечных элементов. И здесь важно выполнение двух условий 1) аппарат аппроксимации должен обеспечить приближение любого элемента из Нх, если используются схемы Папковича, или любого элемента пз Htx (соответственно Нд ), если используются схемы X. М. Муштари (соответственно В. 3. Власова) 2) определение констант аппроксимации производится на основе какого-либо вариационного принципа Лагранжа или Алумяэ.  [c.331]

Термин ППЗУ, или программируемое ПЗУ, относится к тем микросхемам, в которых запоминание двоичных кодов программы осуществляется с помощью плавких перемычек. Каждый хранимый в микросхеме бит содержится в элементе памяти , состоящем из одного транзистора. Обычно применяется биполярный транзистор с плавкой перемычкой в цепи эмиттера. В процессе про граммирования перемычки либо сохраняются нетронутыми, либо расплавляются проходящим через них током около 1 А. ППЗУ программирует пользователь, а в поставляемой микросхеме имеются все плавкие перемычки. Пользователь селективно выжигает перемычки, формируя двоичные коды прикладной программы, и после этого изменить хранимые коды нельзя, что свойственно для ПЗУ. Строго говоря, некоторую модификацию программы можно осуществить и после программирования ППЗУ, так как сохраыивщиеся перемычки можно разрушить при повторной операции программирования. Примером может служить ситуация, когда какая-то константа при первом программировании была неизвестна и все соответствующие перемычки остались целыми. После определения константы осуществляется повторное программирование ППЗУ.  [c.44]

Не все элементы требуют определения констант. Более подробно о том, какие константы соответствуют типу элемента, необходимо смотреть в разделе помощи по каждому элементу ANSYS Elements Referen e.  [c.10]

При использовании детерминированных зависимостей в ММ, полученных по усредненным данным, из-за случайных отклонений имеет место элемент неопределенности, влияюш,ий на величину целевой функции. Поэтому очень важно проверить модель на чувствительность к такого рода случайным отклонениям. Больщинст-во констант, показателей степени в эмпирических зависимостях, характеризующих материал обрабатываемой заготовки, применяемый инструмент, метод обработки и т. д., всегда имеют случайные отклонения от значений, принятых в ММ. Решение задачи проверки модели на чувствительность состоит в том, чтобы сравнить вектор рассчитанных параметров режима обработки и экстремум целевой функции, полученные по усредненным зависимостям с их действительными случайными величинами. Наилучшие режимы резания для конкретных условий обработки могут существенно отличаться от режимов резания, определенных по усредненным данным [12].  [c.79]


База данных может содержать сведения сиравоч юго характера, например сведения о структуре унифицированных деталей определенного типа — крепежных, профилей проката, приборов измерительных, сведения о типовых технологических процессах, о правилах и ограничениях из нормалей и ОСТов, а также числовые значения параметров часто используемых элементов, различные физические константы, нормативы, закодированные чертежи типовых изделий и т. н. В базу данных входят результаты выполнения предыдущих этапов проектирования, предназначенные для использования на последующих этапах. В настоящее время различные проектные организации и научно-исследовательские институты, работающие в области создания САПР, занимаются разработкой библиотек типовых элементов чертежей отрасли н созданием банков графических данных.  [c.329]

ПС которого могут применяться символы =, ф, >, <, Кванторы существования g н всеобщности V позволяют от-исстм высказывание ко всему рассматриваемому множеству. Так, вырал<еиие 3.<еХ (f x)>a) озмачает, что среди элементов множества X найдется по крайней мере одни, при котором оказывается истинным неравенство, заключенное в скобках. Если использовать квантор всеобщности у хе f(x)>a), то получим высказывание для всех элементов множества X некоторая функция f(x) больше заданного значения а. Неравенство (f(x)>a) представляет собой предикат функция от х больше константы а . Предикат принимает значение истина (1) или ложь (0). Областью определения аргумента х предиката является множество X. Если указанный предикат обозначить Р х) и опустить явное указание области определения X, то получим более принятую в исчислении предикатов запись ЭхР(х) п ухР х).  [c.59]

Как было указано в главе XVI Л, скорость и полнота химической реакции определяются химическим сродством реагирующих элементов. Степень химического сродства элементов определж тся величиной максимальной работы, причем для изохорно-изотерми-ческой реакции максимальная работа определяется уменьшением изохорного потенциала F, а для изобарно-изотермической — уменьшением изобарного потенциала Z. Чем большее значение имеет максимальная работа реакции, тем больше химическое сродство элементов, тем полнее проходит реакция, т. е. тем меньше делается к моменту равновесия исходных веществ и больше конечных. Из формулы (19.8) видно, что чем полнее проходит реакция, тем меньше значение константы равновесия. Можно заключить, что максимальная работа реакции связана определенными зависимостями с константой равновесия. Уравнение, связывающее эти две величины, называется изотермой химической реакции. Для вывода этого уравнения предположим, что в смеси обратимо происходит реакция по уравнению  [c.217]

Теперь остается определить константу EIQq. Она должна быть выбрана так, чтобы прогиб па правой опоре был бы равен нулю. Правая опора принадлежит третьему участку. Поэтому при определении прогиба надо брать все элементы строки, т. е.  [c.59]

Вместе с тем сама точка с координатами А и В уСтойчиЁа, и ее можно использовать в оценках на-груженности элемента конструкции, поскольку в области этой точки рассеивание величины скорости и КИН может быть рассмотрено как пренебрежимо малое [51]. В связи с этим вполне естественно вводить в кинетическое уравнение в качестве константы материала не вязкость разрушения, а величину КИН в точке вращения кинетических кривых. Поскольку этому КИН соответствует определенная скорость роста трещины, для удобства дальнейшего изложения будем оперировать координатами рассматриваемой точки вращения кинетических кривых в виде величин Kis(AKis) и da/dN)is или  [c.191]

Роль элементов, входящих в диборидную фазу, уже обсуждалась в разд. Б. Как отмечалось, влияние состава сплавов Ti—V на константу скорости реакции, показанное на рис. 16, может быть связано с изменением стехиометрического состава диборида при легировании. Согласно оценкам, нестехиометрический диборид титана с избытком бора переходит в стехиометрический при содержании, 20 ат.% ванадия, что приблизительно совпадает с минимумом на рис. 16. Исходя из этого, Кляйн и др. [20] и Шмитц и др. [40] разработали сплавы, в которых скорость роста диборида регулируется обоими механизмами. Один из таких сплавов включен в табл. 6 константа скорости взаимодействия бора с этим сплавом равна 0,2-10 см/с , что составляет 4% константы скорости реакции с нелегиро ванным титаном. Это означает, что время, необходимое для образования определенного количества продукта реакции в случае реакции бора с разработанным сплавом, в 625 раз больше, чем с нелегированным титаном.  [c.135]

Перед тем как проводить нелинейный анализ, необходимо выполнить ряд вычислений на основании линейного подхода для определения как начальных характеристик жесткости композита, так и его предела текучести. Эта процедура осуществлена при помощи метода конечных элементов для повторяющегося сегмента структуры однонаправленного композита. Таким образом определены модули упругости в направлении армирования и в поперечном направлении, модуль сдвига и соответствующие коэффициенты Пуассона однонаправленного слоя. Эти константы позволяют рассчитать упругие свойства композита. Далее из начальных линейных зависимостей о(е) композита можно определить линейные приближения для деформаций композита, соответствующих любым конкретным нагрузкам в плоскости. Затем вычисляются деформации каждого слоя в предположении о том, что нормали к поверхности недеформированного композита остаююя прямыми и перпендикулярными после нагружения. Осредненные напряжения в каждом слое определяются через уже известные соотношения о(е) для слоя.  [c.276]

Применение общих принципов теории. С. в., как я др. типы взаимодействий элементарных частиц, должны описываться квантовой теорией поля (КТП). Осп. препятствием для построения квантовоиолевых моделей в течение мн. лет была большая величина эфф. константы связи адронов, не позволявшая использовать л1вто-ды возмущений теории, по существу — единственного хорошо разработанного аналитич. подхода в КТП. Поэтому большое развитие в теории С. в. получили методы, к-рые используют общие принципы теории для определения свойств матрицы рассеяния. К числу таких общих принципов относятся унитарность, релятивистская инвариантность, перекрёстная симметрия (кроссинг-симметрия), причинность (см. Причинности принцип). В этом подходе осн. роль играет изучение аналитич. свойств матричных элементов, рассматриваемых как ф-цви комплексных переменных, к-рыми служат кинематич. инвариааты, такие, как квадрат энергии и квадрат передаваемого импульса.  [c.499]

В метрологии за основную принята система СИ. Ф. ф. к. в ней применяются для установления соотношений между единицами физ. величин с целью их воспроизведения. При этом возникает единая система взаимосвязанных эталонов осн. единиц. Такая система эталонов базируется в осн. на квантовых явлениях (квантовая метрология), ее осн. элемент—эталон времени-частоты. Повышение точности измерения с привело к тому, что оказалось выгоднее фиксировать значение константы с и принять (1983) новое определение единицы длины метра как расстояния, проходимого в вакууме плоской эл. Гк1агн. волной за (1/с) долю секунды. Т, о., эталон длины стал связан с эталоном времени-частоты, в результате чего точность воспроизведения единиць[ длины существенно повысилась.  [c.382]


Определение килограмма не связано с ФФК или др. осн. единицами СИ. Междунар. прототип, безусловно, подвержен износу, степень к-рого определить принципиально невозможно, поэтому поиск путей создания Э. килограмма, опирающегося на ФФК или атомные константы —важная проблема метрологии. Так, напр., ведутся работы по определению килограмма через вольт и ом с помощью обращённых ампер-весов (см, ниже). Теоретически Э. килограмма мог бы служить идеальный кристалл, содержащий известное число атомов определ. хим. элемента, но способов выращивания такого кристалла пока нет.  [c.639]

I и I, г также от расположения уровней ямы друг относительно друга. Это расположение изменяется при вариации параметра асимметрии т]. Расчет был выполнен в [32] с потенциалом, определенным формулой (6.11). Под тремя значениями параметра асимметрии т] помещены три потенциала с энергетическими уровнями, соответствующими этому значению параметра. Функция S (д) выбиралась в виде Sq sin kq, а константа So подбиралась такой, чтобы вероятность переходов между уровнями, расположенными выше барьера, равнялась единице. Мы видим, что матричный элемент Sm, отвечающий переходам между уровнями одной ямы на несколько порядков превосходит элемент, отвечающий переходам между уровнями разных ям. В потенциале б между уровнями разных ям наступает квазнрезонанс. В этом случае резко возрастает матричный элемент, отвечающий межъямным переходам, и соответствующим образом уменьшается матричный элемент, отвечающий внутриямным переходам.  [c.76]

После расплавления шихты в сталеплавильной печи образуются две несме-шивающиеся среды жидкий металл и шлак. Шлак представляет собой сплав оксидов с незначительным содержанием сульфидов. Образование шлака связано с окислением элементов металлической фазы во время плавки и образованием различных оксидов с меньшей плотностью, чем металл, собирающихся на его поверхности. В соответствии с законом распределения (закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения), постоянного для данной температуры. Поэтому большинство компонентов (Мп, Si, Р, S) и их соединения, растворимые в жидком металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.  [c.33]

Картина косого удара существенно зависит от принятой гипотезы удара и от физических констант — коэффициентов восстановления скорости, мгновенного трения, сухого трения, знание которых необходимо для применения той или иной гипотезы. Определение этих констант требует экспериментальных исследований известно, что они зависят от материалов, из которых изготовлены элементы ударной пары, от формы этих элементов, от состояния поверхностей и от ряда других факторор, влияние которых до сих пор достаточно не изучено.  [c.329]

Замещение собственного атома в кристаллической решетке на чужеродный, как и образование вакансии, создает барьеры ближнего действия. Однако легирование вызывает ряд косвенных эффектов может изменяться межатомное взаимодействие как по величине, так и по характеру, что изменяет сопротивление кристаллической решетки движению дислокаций. Легирование титана железом увеличивает, по-видршому, долю ковалентных связей в р-титаие, а легирование оловом — как в а-, так и 3-титане (такие эффекты наблюдаются при введении значительных количеств легирующего элемента). Введение чужеродных атомов изменяет время релаксации вакансий и, следовательно, избыточную концентрацию вакансий. Легирование, поскольку при этом меняется энергия дефектов упаковки, может увеличивать плотность дислокаций и изменять их свойства. При легировании могут возникать малоугловые границы, меняются константы упругости и диффузии и, наконец, условия фазовых превращений. Это непосредственно или косвенно может оказать влияние на прочность твердого раствора. При его образовании более вероятным становится скольжение по негкольким плоскостям, т. е. грубое скольжение (множественное) вместо тонкого (единичного), что приводит к увеличению то,2. Как правило, легирование приводит к увеличению сопротивления пластической деформации. Однако известны случаи обратного влияния, например введение хрома в определенных условиях уменьшает предел прочности железа [270, 271], что, возможно, связано с изменением энергии дефектов упаковки [15].  [c.297]


Смотреть страницы где упоминается термин Определение констант элемента : [c.623]    [c.647]    [c.156]    [c.96]    [c.55]    [c.83]    [c.126]    [c.112]    [c.11]    [c.386]    [c.119]    [c.205]   
Смотреть главы в:

Основы анализа конструкций в ANSYS  -> Определение констант элемента



ПОИСК



282 — Определение 282 — Элемент

Константа



© 2025 Mash-xxl.info Реклама на сайте