Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод простых источников

Метод простых источников. По этому методу звуковое давление представляется в виде интеграла от неизвестной функции распределения некоторых фиктивных источников (монополей) на поверхности  [c.68]

Метод простых источников был использован для решения ряда задач излучения и дифракции звука в работе [81]. Этот метод обладает  [c.69]

Даже если излучательная способность данной поверхности известна недостаточно хорошо или если меняется пропускание ат.мосферы на пути луча или окна, или. меняется размер самого источника, встречаются иногда ситуации, когда эти эффекты слабо зависят от длины волны. В этих случаях оказывается полезным двухцветный пирометр, или пирометр отношения. Принцип метода прост. Используя вместо функции Планка приближение Вина, достаточно точное для этих целей, можно написать  [c.384]


В ЦНИИ РТК ведется разработка новых подходов к построению систем информационной безопасности для ИПИ приложений, как с теоретической, так и практической точек зрения. Установлено, что эффективной может быть и весьма простая система безопасности, сам факт и характер функционирования которой скрыт от участников информационного обмена. В компьютерных сетях реализация различных методов сокрытия источников сообщений хорошо разработана и основана на использовании специальной или альтернативной системы адресации. Однако эти методы пока не нашли широкого применения в системах защиты для ИПИ систем. В ЦНИИ РТК принцип сокрытия адресов нашел свое применение при создании сетевых систем управления и по аналогии с известными примерами из области авиационной техники получил название стеле технологии.  [c.47]

Подобные несложные расчеты показывают, что эксергетическая ценность холода при температуре сжиженного природного газа способна служить эффективным и сравнительно простым источником энергии при его испарении перед подачей в Газопровод для потребления. Так, 1 т испаряющегося природного газа в теоретическом случае способна произвести в тепловой машине около 70 квт-ч электроэнергии. Возможность достаточно полно возвратить энергию, затраченную на сжижение газа, повышает эффективность метода транспортировки газа в сжиженном состоянии от мест его добычи к местам потребления.  [c.207]

Из аналитических методов наиболее успешно используется теория, разработанная Н. Н. Рыкалиным. В его работах [1, 2] применен и развит метод элементарных источников теории теплопроводности, который в сочетании с принципом наложения позволил получить сравнительно простые и наглядные решения для ряда задач по распространению тепла в свариваемых изделиях. Однако применение указанного метода ограничено рядом допущений рассматриваются тела только такой формы, для которых применен метод отражения теплофизические свойства материала не зависят от температуры не учитываются выделение и поглощение теплот фазовых и структурных превращений.  [c.411]

Сначала мы рассмотрим голографическую спектроскопию Фурье при спектрально-некогерентном источнике, так как этот метод прост и имеет особое значение в некогерентной голографии.  [c.176]

Ясно, что (16.1.9) не является решением, так как второй член в правой части (16.1.8) содержит неизвестную функцию 4L t) и его нельзя считать просто источником. В действительности (16.1.9) представляет собой интегральное уравнение, эквивалентное системе уравнений (16.1.8) и (16.1.5). Однако достоинство подобного интегрального уравнения состоит в том, что его очень удобно решать методом итераций. Действительно, отбрасывая второе слагаемое в правой части этого уравнения, получаем нулевое приближение  [c.158]


Преимущества динамических методов объясняются, в частности, двумя причинами. Во-первых, имеется большее число параметров уравнения нестационарного теплообмена, благодаря чему измеряемыми величинами могут быть не только теплопроводность, но и температуропроводность, а также величины, являющиеся комбинациями этих двух величин объемная теплоемкость ср и коэффициент тепловой активности. Во-вторых, эти методы позволяют получить во время опыта и больший объем информации по сравнению со статическими методами. Здесь источником информации является не просто поле температуры, но изменения ее Б пространстве и во времени.  [c.130]

В этом случае полимерный порошок воздушной струей подается в мощный поток тепловых лучей, под действием которых частицы полимера плавятся и с большой скоростью устремляются к защищаемой поверхности. Ударяясь о поверхность, полимер сцепляется с ней, образуя покрытие. Этот метод прост в аппаратурном оформлении (рис. 7.6), является более универсальным и высокопроизводительным, чем метод газопламенного напыления. В качестве источника тепла используют кварцевые лампы, установленные в фокусах параболических отражателей (полированный тонколистовой алюминий).  [c.171]

Описанный выше метод не ограничивается лишь Рх-приближением, и для этой задачи с простым источником с его помощью можно решить многогрупповые уравнения Рд -приближения. В действительности любой из методов, используемых для решения односкоростных задач, можно применять в многогрупповых приближениях.  [c.144]

В [150] описан один из возможных путей улучшения качества изображений, восстанавливаемых по методу кодированного источника. Исходя из того, что корреляционный метод восстановления математически эквивалентен восстановлению изображений просто обратным проецированием, сделан вывод о необходимости фильтрации проекционных данных. Прелагается эту операцию выполнить методами некогерентной оптической обработки с помощью специально разработанного авторами [150] киноформа. Обратное проецирование и суммирование проекций выполняется растровой проекционной системой. Таким образом, каждая линза растра осуществляет сдвиг и фокусировку проекций, в то время как киноформ выполняет их пространственную фильтрацию для подавления вклада нежелательных плоскостей. Экспериментальная проверка предложенного метода показала некоторое улучшение качества восстановленных изображений.  [c.193]

Емкостный метод целесообразно использовать в некоторых исследовательских работах, где необходимо точно измерить амплитуду колебаний от -дельных участков поверхности. Емкостный преобразователь представляет собой конденсатор, один электрод которого неподвижен, другой является поверхностью колеблющегося тела. Изменение зазора при колебаниях приводит к изменению емкости конденсатора, регистрируемому хорошо известными в радиотехнике методами. Простейшая схема включения емкостного преобразователя предусматривает наличие источника смещения Е и нагрузочного сопротивления, а также разделительного конденсатора, предотвращающего появление высокого потенциала на выходе схемы. Заряд на емкости С преобразователя равный Q = СЕ остается постоянным при не слишком медленных колебаниях емкости.  [c.86]

Соотнощение между измеряемой величиной и термодинамической температурой оказывается очень простым, однако шумовая термометрия не используется в качестве основного метода первичной термометрии. Причина заключается в том, что не удается достаточно точно измерить напряжения порядка нескольких микровольт и при этом избежать посторонних источников шума, как теплового, так и нетеплового происхождения, а также сохранить постоянными полосу пропускания и коэффициент усиления измерительных приборов. В шумовой термометрии, несмотря на достигнутые за последние годы успехи, остается еще много нерешенных проблем. Точность измерения термодинамической температуры шумовым методом, кроме области очень низких температур, намного ниже точности других первичных термометров. По этой причине, не вдаваясь в подробности предмета шумовой термометрии, рассмотрим в общих чертах основные принципы тех приемов, которые применялись на практике.  [c.113]


Оба описанных выше метода требуют применения дополнительного источника теплового излучения. В промышленности широкое применение нашел другой, более простой метод [35]. Вместо отдельного дополнительного источника здесь используется сама поверхность совместно с позолоченным полусферическим зеркалом, которое находится в контакте с поверхностью или в непосредственной близости от нее. Для измерений плотности излучения внутри полусферы в качестве детектора используется кремниевый фотоэлемент. Если полусфера является идеальным отражателем (коэффициент отражения золота в инфракрасной области больше 99%), а площадь поверхности полусферы, занятая кремниевым элементом, пренебрежимо мала.  [c.391]

Относительно просто решается рассматриваемая задача методом двухэтапного расчета. На первом этапе рассчитывается плотность тока у-квантов на внешней поверхности объемного источника. При этом не принимается во внимание наличие защиты и соответственно обусловленное ею обратное рассеяние у-квантов. На втором этапе рассчитывается мощность удельного энерговыделения в защите от плоского источника у-квантов, расположенного на границе защиты. Отнесенная к единице площади мощность источника принимается равной рассчитанной на первом этапе плотности тока у-квантов из источника. Предполагается, что у-кванты испускаются источником сферически симметрично в угол 2 л.  [c.116]

Компонента излучения прямой видимости. Для расчета компоненты нерассеянного прострельного излучения от видимой нз точки детектирования части источника служит метод прямой видимости. Расчет этой компоненты обычно не вызывает затруднений для наиболее простых случаев удается получить аналитические функции, в остальных случаях решение сводится к численному интегрированию.  [c.143]

Группа методов, называемая методами особенностей, основана на замене заданного контура тела системой непрерывно распределенных вдоль него точечных особенностей (источников, стоков, диполей, вихрей). Широкое распространение получил метод распределенных вихрей или просто вихревой метод, в котором контур тела заменяется вихревым слоем (см. п. 7.2). Такая  [c.247]

Группа методов, называемых методами особенностей, основана на замене заданного контура тела системой непрерывно распределенных вдоль него точечных особенностей (источников, стоков, диполей, вихрей). Широкое распространение получил метод распределенных вихрей или просто вихревой метод, в котором контур тела заменяется вихревым слоем ( 2 гл. 7). Такая замена имеет физические предпосылки, так как при обтекании тел реальной (вязкой) жидкостью на их поверхности образуется тонкий пограничный слой,  [c.292]

Для того чтобы при работе с ядерными излучениями их доза не превышала предельно допустимую, нужна защита. Простейшим по своей идее методом защиты является удаление от источника излучения на достаточное расстояние, так как даже без учета поглощения в воздухе интенсивность излучения убывает как IR при удалении на расстояние R от источника. Поэтому ампулы, содержащие радиоактивные препараты, не следует брать руками,  [c.674]

Развиваются экспрессные методы активационного анализа без разрушения, опирающиеся на измерение короткоживущих активностей и даже просто продуктов ядерных реакций. Эти методы используются, в частности, для непрерывного автоматического контроля за ходом различных технологических процессов. Идентификация проводится по Р-распадным электронам, по у-квантам радиационного захвата (п, у), по нейтронам и другим частицам, вылетающим в результате ядерных реакций. Используются и у-кванты, возникающие при возвращении ядра в основное состояние после неупругого столкновения с нейтроном. Для повышения селективности анализа обычно измеряется энергия у-квантов, а для каскадных процессов часто используется регистрация на совпадения. Примером экспрессного анализа по короткоживущей активности может служить определение содержания кислорода посредством активации быстрыми нейтронами, вызывающими реакцию вО (п, p)7N . Период полураспада изотопа составляет всего лишь 7,3 с. Регистрируются обычно не 3-электроны, а жесткие у-кванты с энергиями 6,1, 6,9 и 7,1 МэВ, возникающие при переходе продукта распада — изотопа — в основное состояние. Примером использования ядерных реакций для элементного анализа может служить использование ракции 4Ве (у, п)4Ве для анализа на бериллий. Эта реакция имеет на редкость низкий порог 1,66 МэВ (обычно порог реакции (у, п) лежит в области 10 МэВ). Регистрируются вылетающие нейтроны. Малость порога, во-первых, делает метод исключительно селективным, а во-вторых, дает возможность использовать для активации дешевые и простые в обращении изотопные источники у-излучения.  [c.688]

Простейшим методом термодинамического анализа эффективности преобразования энергии, основанным на первом законе термодинамики, является энергетический метод, суть которого состоит в следующем. Вначале анализируется обратимый теоретический цикл, а затем — необратимый (реальный) цикл с учетом основных источников необратимости.  [c.140]

Здесь приведен простейший пример, и в данном случае источник погрешности и ее размер определить не так уж трудно, хотя при очень точных измерениях плотности описанное обстоятельство может играть немаловажную роль. При более сложных измерениях нужно всегда очень тщательно продумывать их методику, чтобы избежать больших ошибок такого рода и чем сложнее опыт, тем больше оснований думать, что какой-то источник систематических погрешностей остался неучтенным и вносит недопустимо большой вклад в погрешность измерений. Один из наиболее надежных способов убедиться в отсутствии таких погрешностей - провести измерения интересующей нас величины совсем другим методом и в других условиях. Совпадение полученных результатов служит известной, хотя, к сожалению, не абсолютной, гарантией их правильности. Бывает, что и при измерении разными методами результаты отягчены одной и той же ускользнувшей от наблюдателя систематической погрешностью, и в этом случае оба совпавшие друг с другом результата окажутся одинаково неверными.  [c.19]


Существуют два основных источника получения теплоты для приведения в действие тепловых двигателей — сжигание горючих веществ и деление ядер некоторых веществ. Кроме того, сюда можно отнести и солнечное излучение (табл. 6.1). Будут рассмотрены методы подсчета количества энергии, высвобождающейся в ходе простых химических реакций. Результаты этих исследований помогут выявить наиболее подходящий источник получения теплоты для каждого" конкретного случая ее использования. Однако необходимо помнить, что решения в области энергетики принимаются обычно на основе чисто экономических, а не технических соображений.  [c.112]

Чтобы получить представление о чувствительности и светосиле масс-спектрометра, достаточно измерить максимальную интенсивность слабо распространенного изотопа аргона ( Аг) в атмосферном воздухе. Этот метод прост и удобен, его можно рекомендовать для всех случаев сравнительных испытаний масс-спектрометров, проверки работы различных типов источников ионов, при ремонте и настройке приборов во время эксплуатации, а также при оценке возможности масс-спектрометричес-кого анализа и расчете погрешности измерений.  [c.32]

Методы регистрации изменений во времени спектров люминесценции разработаны давно. Применение классических источников света позволило продвинуться при таких измерениях в субнаносекундную область (см., например, [15, 9.1, 9,2]), Появление лазеров представило возможность дальнейшего усовершенствования методов. Простейший принцип измерений проиллюстрирован на рис. 9.2. Импульсный лазер возбуждает образец, начинающий люминесцировать. Излучение регистрируется и разрешается во времени фотоприемником. Сигнал с фотоприемника усиливается и подается на осциллограф. Временное разрешение определяется фотоприемником и электронной схемой. Оно достигает при благоприятных условиях нескольких единиц 10 ° с. Люминесцентное излучение может пропускаться  [c.325]

Гамма-дефектоскопия имеет ту же физическую сущность основы, что и рентгенодефектоскопия, но при этом используются гамма-лучи, испускаемые искусственными радиоактивными изотопами различных металлов (кобальта, иридия, европия, тантала, цезия, туллия и др.). При гамма-дефектоскопии используют энергию излучения от нескольких десятков кэв до 1—2 Мэв для просвечивания деталей большой толщины. Этот метод имеет существенные преимущества перед рентгенодефектоскопией аппаратура для гамма-дефектоско-пии сравнительно проста, источник излучения компактный, что позволяет обследовать труднодоступные участки изделий. Кроме того, этим методом можно пользоваться в том случае, когда применение рентгенодефектоскопии затруднено (например, в полевых условиях). При работе с источниками рентгеновского и гамма-излучения должна быть обеспечена эффективная биологическая защита.  [c.542]

Практическое определение цветовой температуры осуществляется обычно либо методом визуального уравнивания цветов, либо методом красно-синего отнощения. Определение цветовой тем пературы методом уравнивания цвета может быть произведено с помощью фотометра. При этом цвет тела, температура которого измеряется, сравнивается с цветом источника, предварительно градуированного по черному телу. Этот метод прост по техническому осуществлению и сравнительно широко применяется для измерения температуры источников малых размеров Существенный недостаток этого метода состоит в том, что нуль-прибором является глаз наблюдателя. Поэтому результаты измерения находятся в прямой вавиоимости от способности глаза различать цвета и измерение не может быть произведено достаточно быстро. При этом исключается возможность осуществить автоматическую запись и регулирование температуры.  [c.315]

Путь интегрирования Fj в комплексной плоскости изображен на рис. 28.1. При да- ьнейшем анализе интегралов с применением метода перевала функции /о, go U ho будут относиться к классу медленно меняющихся по отношению к обеим переменным и . Хорошее рассмотрение простейших источников упругих воли читатель может найти в книге Уайта [266].  [c.198]

Здесь индекс г относится к Лг-й энергии у-квантов уп(- г), Уч Ег) —массовые коэффициенты истинного поглощения энергии у-квантов в воздухе и породе ( г) — дифференциальные гамма-постоянные Ка и его короткоживущих продуктов распада (см. например, [8]). Полная гамма-постоянная радия (без начальной фильтрации) /(7=9,36 р-см /(ч-мкюри). В этих формулах, полученных по так называемому у-методу, учтено многократное рассеяние у-квантов в материале источника. Принимая эффективное значение уэфф = 0,032 см г по всему спектру и выражая удельную активность Q [мкюри/г порс Ды], можно получить простое приближенное соотношение для экспозиционной мощности дозы внутри забоя  [c.216]

Полученный результат можно сформулировать в более общих терминах. Очевидно, что, рассматривая, как накладываются интерференционные картины, создаваемые элементарными источниками ASi, мы исследовали пространственную когерентность той квазимонохроматической волны, которую испускает однородный протяженный источник S. Для данных условий опыта модуль степени когерентности (равный видимости интерференционной картины) меняется по закону (sin л /л , где х = 2ndf dh), и в зависимости от соотношения между размерами источника и условиями наблюдения может принимать любые значения в интервале от О до 1. Степень когерентности можно вычислить непосредственно из выражения (5.9а) для функции корреляции. Общность такого метода, конечно, больше, чем довольно искусственного приема суммирования действия элементарных излучателей, который был применен выше. Но проведенные вычисления видимости суммарной картины представляются более наглядными и простыми.  [c.202]

Если поверхностная структура не периодична, то следует применить для разбора задачи метод Рэлея. Картина получится более сложной. В частности, если структура состоит из частиц, близких по размерам и форме, но всевозможно ориентированных (запыленная пластинка, морозные узоры на стекле), то такая структура экви-валентн-а совокупности простых решеток всех возможных ориентировок, а соответствующая дифракционная картина представится в виде ряда концентрических кругов. Явление легко наблюдать, рассматривая небольшой яркий источник света сквозь такую пластинку.  [c.227]

Мы нашли выражение для разрешающей силы микроскопа, исходя из предположения, что точки объекта посылают некогерентные волны (объект самосветящийся), так что ди()зракционные картины просто накладываются одна на другую. Однако обычно в микроскоп рассматривают объекты освещенные, а не самосветящиеся. Это значит, что отдельные точки объекта рассеивают падающие на них волны, исходящие из одной и той же точки источника, и, следовательно, свет, идущий из разных точек объекта, оказывается когерентным. К такому случаю, гораздо более распространенному, наш вывод разрешающей силы микроскопа непосредственно неприложим (см. упражнение 120). Аббе указал весьма интересный прием определения разрешающей силы для случая освещенных объектов и нашел, что и в данном случае разрешающая сила также определяется числовой апертурой объектива. Метод рассмотрения Аббе состоит в следующем.  [c.350]

Если необходимо получить большое число голограмм одного и того же объекта, то можно сделать необходимое число копий с одного оригинала. При этом для копирования голограмм можно использовать нелазерный источник света и очень простые оптические схемы. Соответствующие методы позволяют получить копии, которые восстанавливают изображения, мало отличающиеся от тех, которые дает голограмма — оригинал. Это свойство может быть использовано в серийном производстве голограмм и оптических. элементов на их основе.  [c.27]


Капиллярные методы контроля нашли широкое применение для обнарркениятолько поверхностныхдефектов. Их преимущество заключается в высокой чувствительности, превышающей остальные методы, дешевизне контроля, применении простого оборудования (например, ультрафиолетовых источников света при люминесцентном методе) или вообще без него (цветной метод), возможности контро-ля магнитных и немагнитных материалов. Недостатком яв-  [c.219]

Построение аналитических и даже числовых решений полной системы уравнений газовой динамики связано со значительными трудностями не только из-за сложности физико-химических процессов, но и потому, что в общем случае течение содержит дозвуковые, трансзвуковые и сверхзвуковые области, для описания которых требуется различный математический аппарат. При этом приходится иметь дело сразу с эллиптическими, параболическими и гиперболическими уравнениями в частных производных. В то же время построение некоторых аналитических решений, основанных на приближенных предпосылках, позволяет, значительно упростив методы решения, установить многие качественные закономерности. В настоящем параграфе будут рассмотрены некоторые аналитические решения, позволяющие выявить ряд важных закономерностей движения газа и являющиеся необходимыми тестовыми примерами при численных расчетах. К числу таких решений относятся одномерная теория сопла, теория простой волны (течение Прандт-ля — Майера, волна Римана), обтекание клина, распад произвольного разрыва, точечный взрыв, решение методом источников и стоков, решение уравнения для потенциала.  [c.54]

Для получения нейтронных пучков с энергиями до 14 МэВ существуют методы, не связанные с использованием ускорителей. Во-первых, исключительно мощным источником нейтоонов в этой области энергий является ядерный реактор (см. гл. XI, 3). Во-вторых, в этой же области энергий используются простые и широко доступные источники, в которых нейтроны получаются ва-активном препарате за счет вторичной реакции а-частиц с ядрами примесей-определенного вида (см. 3, п. 2).  [c.467]

Для определения величины m , которая, в сущности, является собственным значением нелинейной краевой г ада-чи (6.12.47), (6.12.48), Зельдовичем и Франк-Каменецким предложен простой метод, основанный на физических соображениях. Обозначим Q интенсивность химических источников теплоты в уравнении (6.12.47). Если температура Т достаточно мала, то в силу экспоненциальной зависимости Q от температуры этот член мал по сравнению с другими членами уравнения, характеризующими кондуктивный и конвективный перенос теплоты, и уравнение существенно упрощается  [c.354]

Обратимся теперь к самому простому случаю обтекания ветровым потоком одиночного здания прямоугольного сечения высотой Н (рис. 162). Критической точкой отрыва является наветренный угол С. Наблюдая за таким течением непосредственно в гидролотке или на аэродинамической модели, а также по материалам фото- и киносъемок получаем следующую картину течения. Основной поток обтекает как бы некоторое тело овальной формы это движение можно считать потенциальным. Соответствующий спектр течения получают методами гидроаэродинамики невязкой жидкости, в частности, как комбинацию плоскопараллельного потока, источника и двух стоков ( 18). Границей указанного воображаемого тела является некоторая поверхность раздела, которая на рис. 162 показана линией С — С.. Эта линия сначала поднимается от точки отрыва, достигая приб)1изительно двойной высоты на расстоянии порядка 2,5Я, а затем постепенно опускается, пересекая плоскость отметки преграды на расстоянии около 8Я.  [c.305]

Данные табл. 8.3 показывают, что загрузка объекта существенно зависит от его положения в системе, приоритетов потребителей и источников, наличия резервуарных парков. Системный простой для большинства интенсивно используемых объектов значительно превышает эквивалентное время простоя из-за собственных отказов. Это предопределяет преимущества системных методов резервирования перед резервированием мощности самих объектов, поскольку первые осуществляют защиту частей системы. Большие значения простоев трубопроводов 14, 16 и 68 по системным причинам дюжно объяснить тем, что при нехватке продукта в узлах 15, 5 и 39 или ограничениях приема из узлов 14, 21, 35 становится нерациональным осуществлять перекачку по этим направлениям.  [c.188]

Было предпринято несколько попыток преодолеть эти трудности. Эдельман [24] предложил метод изготовления фотоупру-гих моделей, свободных от усадки. Дженкинс [41], Пи и Сатлиф [52], а также автор пытались применить методы рассеянного света, которые являются неразрушающими и позволяют проводить испытания при комнатной температуре, при которой коэффициент Пуассона матрицы таков же, как у моделируемого композита. На рис. 33 показано исследование простой модели в полярископе рассеянного света с лазерным источником модель состояла из заделанного в эпоксидную матрицу стеклянного стержня и подвергалась сжатию. На рис. 34 представлена картина полос в рассеянном свете, получающаяся в том случае, когда луч лазера направлен вдоль границы раздела параллельно оси волокна.  [c.540]


Смотреть страницы где упоминается термин Метод простых источников : [c.424]    [c.257]    [c.313]    [c.139]    [c.80]    [c.5]   
Смотреть главы в:

Излучение и рассеяние звука  -> Метод простых источников



ПОИСК



Источник простой

Метод источников



© 2025 Mash-xxl.info Реклама на сайте