Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источник простой

Для простоты предположим, что путем соответственной затраты энергии амплитуда колебаний этого источника поддерживается постоянной, так что колебания воздуха везде будут носить установившийся характер. Сразу же ясно, что при этом условии в среднем за период у устья резонатора не совершается никакой работы над содержащимся в резонаторе воздухом энергия последнего остается постоянной, и, следовательно, в свою очередь эта масса воздуха не совершает никакой работы над внешней атмосферой. Увеличение излучения звука должно вызываться изменением условий, вносимым резонатором в область вблизи первичного источника. Если не поддерживать постоянную амплитуду колебаний источника, а считать, что источник просто начал колебаться, имея некоторый начальный запас энергии (как в случае камертона), то под действием резонатора этот запас будет быстрее расходоваться.  [c.337]


Каждый член представляет такую стоячую волну, которая в конце концов установилась бы благодаря продолжительному действию источника простых гармонических колебаний оба члена относятся к областям соответственно над и под источником.  [c.678]

В двух частных случаях, соответствующих идеальному металлу (ш = 0, если и—Еу ш = оо, если и = Ну), задача при любом возбуждении имеет простое решение — поле равно сумме полей, создаваемых (в вакууме) заданными и отраженными источниками. Простое решение задача имеет и в другом частном случае — при падении плоской волны при любом w возникает только отраженная плоская волна. Это обстоятельство будет положено в основу метода, намеченного в 16.9. В общ,ем случае структура решения сложнее.  [c.155]

Фактически, это то же самое решение, что и (76, но с источниками на г = +00. При таком перемещении источников просто изменяется отсчет глубин и углов на противоположный.  [c.78]

Хотя большинство тем, связанных с дифференциальной динамикой, разрабатывается в этой книге достаточно глубоко, мы не пытались написать энциклопедическое исследование дифференциальной динамики. Даже если бы это было возможно, результатом такой работы явился бы просто некоторый источник ссылок, бесполезный в качестве учебника или введения в предмет. Таким образом, мы отнюдь не пытаемся представить самые сильные из известных результатов, но вместо этого предоставляем читателю хорошо структурированный набор принципов, на которых базируются методы и результаты. Далее, данная книга не является введением в прикладную динамику, и наши примеры, вообще говоря, не выбираются из множества прикладных моделей, широко изучаемых в различных дисциплинах. Напротив, они возникают естественно из внутренней структуры изучаемого предмета и содействуют его пониманию. Внимание, которое уделяется различным направлениям в той или иной области, не определяется ни долей работ, опубликованных на эту тему, ни размахом научно-исследовательской деятельности в этих направлениях, а лишь отражает наше понимание того, что именно является основным и фундаментальным в данной области. Очевидное несоответствие возникает в случае одномерной (вещественной и особенно комплексной) динамики, активность в которой постоянно росла в течение последних 15 лет, что привело к появлению множества блестящих результатов. Эта область играет сравнительно скромную роль в данной книге. Вещественная одномерная динамика используется главным образом как источник простых моделей, в которых со значительным успехом могут применяться различные методы. Комплексная динамика, которая является с нашей точки зрения увлекательным, но довольно специальным предметом, появляется лишь как источник примеров гиперболических множеств. С другой стороны, мы стараемся отмечать и подчеркивать взаимосвязь динамики с другими областями математики (теорией вероятностей, алгебраической и дифференциальной топологией, геометрией, вариационным исчислением и т. п.) даже в некоторых ситуациях, в которых на сегодняшний день окончательное понимание еще во многом не достигнуто.  [c.13]


Два точечных источника. Мы называем протяженным всякий источник волн, отличный от точечного (в смысле определения, данного в 5). Совокупность двух точечных источников — простейший случай протяженного источника.  [c.475]

Существенно, что в области, расположенной выше конвективного элемента, среда слабо возмущена. Это обстоятельство позволяет ввести подвижную горизонтальную плоскость (конвективный фронт), отделяющую область развитой конвекции от области практически невозмущенной среды. Зависимость высоты подъема конвективного фронта в заданной среде полностью определяется заданием на подстилающей поверхности потоков импульса и тепла. Целесообразно рассмотреть источники простейшей геометрической структуры точечные, линейные и плоские однородные источники тепла и импульса. Точечные источники реализуются при выбросах горячих газов в атмосферу из дымовых труб производственных коллекторов. Линейные источники могут реализоваться при некоторых типах повреждений подводных газопроводов. Плоские однородные источники реализуются на поверхности открытых водных водоемов, где ветровое волнение создает поток импульса, а испарение с поверхности - поток тепла.  [c.90]

Рассмотрим простейший случай, когда имеется один горячий с температурой Ti и один холодный с температурой Ti источники теплоты. Теплоемкость каждого из них столь велика, что отъем рабочим телом теплоты от одного источника и передача ее другому практически не меняет их температуры. Хорошей иллюстрацией могут служить земные недра в качестве горячего источника и атмосфера в качестве холодного.  [c.22]

Теплота может быть полностью превращена в работу при непериодическом процессе при периодическом процессе, она может быть превращена в работу только частично. Непрерывное превращение теплоты в работу требует применения циклических процессов с периодическим возвращением к первоначальному состоянию. Для того чтобы получить максимальное превращение теплоты в работу, все стадии в цикле должны быть обратимы. Простейшим возможным циклом считается тот, в котором количество теплоты поглощается обратимо из единственного источника при температуре Ti. При этом теплота частично превращается в работу, а частично передается обратимо единственному теплоприемнику при температуре Та, которая обязательно должна быть меньше температуры Т . Стадии изотермического переноса теплоты могут состоять из расширения или сжатия газа при постоянной температуре с помощью сдвига фазового равновесия системы, когда температура и давление остаются постоянными, или сдвига химического равновесия газовой системы путем изменения давления  [c.196]

Соотнощение между измеряемой величиной и термодинамической температурой оказывается очень простым, однако шумовая термометрия не используется в качестве основного метода первичной термометрии. Причина заключается в том, что не удается достаточно точно измерить напряжения порядка нескольких микровольт и при этом избежать посторонних источников шума, как теплового, так и нетеплового происхождения, а также сохранить постоянными полосу пропускания и коэффициент усиления измерительных приборов. В шумовой термометрии, несмотря на достигнутые за последние годы успехи, остается еще много нерешенных проблем. Точность измерения термодинамической температуры шумовым методом, кроме области очень низких температур, намного ниже точности других первичных термометров. По этой причине, не вдаваясь в подробности предмета шумовой термометрии, рассмотрим в общих чертах основные принципы тех приемов, которые применялись на практике.  [c.113]

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]


Принцип действия оптического пирометра с исчезающей нитью прост и иллюстрируется на рис. 7.30 а. Линза объектива формирует изображение источника, температура которого измеряется в плоскости раскаленной нити миниатюрной лампы. Наблюдатель через окуляр и красный стеклянный фильтр видит нить и совмещенное изображение источника. Ток через лампу регулируют до тех пор, пока визуальная яркость нити не станет точно такой же, как яркость изображения источника. Если оптическая система сконструирована правильно, в этот момент нить на изображении источника исчезает. Пирометр градуируется в значениях тока, проходящего через миниатюрную лампу. Так как детектором равенства яркостей является глаз человека, то доступная непосредственно для измерений область температур ограничена с одной стороны границей приемлемой яркости, с другой — яркостью, слишком слабой для наблюдения. Нижний предел зависит от апертуры оптической системы и составляет примерно 700°С, верхний предел равен примерно 1250°С. Для измерения более высоких температур между линзой объектива и нитью помещается нейтральный стеклянный фильтр (С на рис. 7.30а), понижающий яркость изображения источников. Плотность фильтра выбирается такой, чтобы обеспечить небольшое перекрытие областей. Например, току лампы, эквивалентному, скажем 700 °С на шкале без фильтра, на следующей шкале, с фильтром, будет соответствовать температура 1100°С. Таким образом, с помощью одного прибора температурные измерения могут быть расширены до любой желаемой максимальной температуры. Коэффициент пропускания фильтра т, который требуется для того, чтобы понизить яркость источника от температуры Т до температуры, например точки золота Гди, можно найти, используя приближение Вина, по формуле  [c.365]

Комбинацию этих двух эффектов называют просто эффектом размера источника , а его величина при поочередном наблюдении черного тела в печи и ленточной вольфрамовой лампы в нормальных условиях достигает значений в несколько десятых долей процента. Это показано на рис. 7.36. Величину компонента, обусловленного дифракцией, нетрудно вычислить [13]. На рис. 7.36 он показан штриховой линией. При сравнении вольфрамовой ленты шириной 2 мм, но очень длинной, с черным телом в печи эффект размера источника будет достигать примерно 0,2%. При сравнении двух черных тел эффект размера источника будет зависеть от различия в распределении яркостей в двух печах. Как и во всех процессах дифракции и рассеяния, эффект возрастает очень быстро при малых углах и очень медленно спадает при больших углах, как ясно из рис. 7.36.  [c.379]

Даже если излучательная способность данной поверхности известна недостаточно хорошо или если меняется пропускание ат.мосферы на пути луча или окна, или. меняется размер самого источника, встречаются иногда ситуации, когда эти эффекты слабо зависят от длины волны. В этих случаях оказывается полезным двухцветный пирометр, или пирометр отношения. Принцип метода прост. Используя вместо функции Планка приближение Вина, достаточно точное для этих целей, можно написать  [c.384]

Оба описанных выше метода требуют применения дополнительного источника теплового излучения. В промышленности широкое применение нашел другой, более простой метод [35]. Вместо отдельного дополнительного источника здесь используется сама поверхность совместно с позолоченным полусферическим зеркалом, которое находится в контакте с поверхностью или в непосредственной близости от нее. Для измерений плотности излучения внутри полусферы в качестве детектора используется кремниевый фотоэлемент. Если полусфера является идеальным отражателем (коэффициент отражения золота в инфракрасной области больше 99%), а площадь поверхности полусферы, занятая кремниевым элементом, пренебрежимо мала.  [c.391]

Существует большое число способов пайки, например (по источнику нагрева) паяльником (простейший способ), погружением в расплавленный припой, газопламенный, лазерный, электронно-лучевой и др. (Подробнее см. ГОСТ 17349—79. Пайка. Классификация способов ГОСТ 17325—79. Пайка и лужение. Основные термины и определения.)  [c.277]

В некоторых литературных источниках [15, 34-40, 112, 116] сопловые устройства формирования закрученной струи называют завихрителями. Такое название соплового ввода, формирующего закрученный поток, вносит некоторую двусмысленность, связанную с завихренностью турбулентных течений. Изучение закрученных течений, особенно при достаточно высоких степенях закрутки, неразрывно связано с необходимостью изучения микроструктуры течения, а следовательно, и с завихренностью. Поэтому, когда речь идет о техническом аппарате, устройстве, использующем закрученные потоки, более оправдано употребление терминов устройство формирования закрученной струи (закручивающее устройство) или просто сопловой ввод.  [c.11]

Полученный ряд Z f удобен в случав простого аналитического задания функции источников Р. Для численной ке реализации он требует хранения в памяти ЭВМ и обработку функции четырех аргументов. Поэтому целесообразнее представить функцию 9 в форме ряда  [c.119]

Дискретизация границы рассматриваемой области. Для приближенного решения (1.92) производится дискретизация границы рассматриваемой области. Аналогично МКЭ разбиение границы на элементы можно производить различными способами. В простейшем случае граница аппроксимируется линейными элементами. Отдельный элемент определяется координатой своей средней точки. Интенсивность неизвестных источников р 1) в пределах элемента принимается постоянной.  [c.63]

Рассмотренных в 2.4 моделей простейших элементов подсистем, зависимых источников и элементов связи подсистем достаточно для получения ММ многих технических объектов. Но гораздо удобнее использовать более сложные элементы подсистем, ММ которых получены заранее, т. е. в программном обеспечении САПР каждой такой модели соответствует подпрограмма. Пользователь САПР при этом избавлен от необходимости описания достаточно сложных зависимостей, реализованных в модели.  [c.89]


Математическая модель МД П-т р а н з и-с т о р а — в своем достаточно простом варианте может быть задана эквивалентной схемой (рис. 2.18) и выражением для зависимого источника тока  [c.91]

В некоторых областях технологического применения с лазером конкурируют электронный луч и полихроматические источники света, что связано прежде всего с более простым в изготовлении и эксплуатации оборудованием для осуществления процессов, в которых используются эти источники.  [c.115]

Источники теплоты считают либо сосредоточенными, либо распределенными по соответствующему закону, который позволяет относительно просто описать процесс распространения теплоты.  [c.158]

В простейших инженерных схемах расчета воспроизвести сложную пространственную форму выделения теплоты при электрошлаковой сварке не представляется возможным. Хорошо отвечает фактическому распределению температур и форме проплавления следующая расчетная схема источника теплоты (рис. 7.21,6) в сплошной пластине без сварочного зазора / движутся три (равномерных по толщине металла) источника теплоты в виде линий АС, BD, расстояние между которыми равно 1, ч А В. Мощность источника на линии А В соответствует  [c.233]

Элементы расчетной модели и их характеристика. В расчетной модели виброзащитной системы можно выделить три основные части источник возмущения (//), объект защиты (О) и виброизолирующее устройство (ВУ). В простейшем случае источ-  [c.282]

Виброизолирующее устройство часто выполняют в виде соединения нескольких виброизоляторов, образующих сложный виброизолятор. При определенных условиях реакция R такого соединения может аппроксимироваться зависимостью (10.23), где 6 — дефор-мация соединения в целом. Тогда рассматриваемый сложный виброизолятор эквивалентен (в смысле воздействия на источник и объект) простому, коэффициенты с, и Ь, называются эквивалентными коэффициентами жесткости и демпфирования.  [c.286]

В общем случае центральное колесо и водило могут получать вращение от двух независимых источников. Такая планетарная передача имеет две степени свободы и называется дифференциальной (рис. 1.147, а, б). Если закрепить центральное колесо, то получим передачу с одной степенью свободы — движение можно передавать либо от водила к сателлиту, либо от сателлита к водилу такая передача называется простой планетарной (рис. 1.147, в, г).  [c.121]

Рассеяние энергии, связанное с наличием трения, оказывает существенное влияние на характер движения динамической системы, поэтому изучение этого влияния представляет определенный интерес. Наиболее простые закономерности выявляются в системе с полной диссипацией энергии, т. е. в такой системе без источников энергии, в которой силы трения действуют по всем степеням свободы. Рассмотрим сначала простейший пример системы с полной диссипацией энергии.  [c.37]

Для простых геометрических конфигураций при некоторых упрощающих предположениях интегрирование в формуле (9.60) удается провести аналитически, например для сферической геометрии при гомогенной активной зоне радиусом / о с равномерным распределением источников (рис. 9.14). В этом случае, выражая в формуле (9.60) элемент объема через переменную /= ]г—г , можно записать [12]  [c.50]

Одним из первых этапов расчета защиты является разбиение контура па участки простой геометрической формы. Трубопроводы малого диаметра интерпретируются линейными источниками, отдаленные участки с малыми поперечными размерами и, следовательно, с малым самопоглощением излучений — объемными сферическими и даже точечными источниками.  [c.101]

Если источник излучает частицы одного типа с одинаковой энергией и размеры его малы по сравнению с длиной свободного пробега этих частиц, то излучаемая источником мощность рассчитывается весьма просто. Например, для стандартного радиоактивного источника, испускающего у-кванты, она определяется по формуле  [c.108]

Относительно просто решается рассматриваемая задача методом двухэтапного расчета. На первом этапе рассчитывается плотность тока у-квантов на внешней поверхности объемного источника. При этом не принимается во внимание наличие защиты и соответственно обусловленное ею обратное рассеяние у-квантов. На втором этапе рассчитывается мощность удельного энерговыделения в защите от плоского источника у-квантов, расположенного на границе защиты. Отнесенная к единице площади мощность источника принимается равной рассчитанной на первом этапе плотности тока у-квантов из источника. Предполагается, что у-кванты испускаются источником сферически симметрично в угол 2 л.  [c.116]

Простейший гамма-апги.рат включает радиационную головку с радиоактивным изотопом, припод источника излучения, амнуло-  [c.124]

Для получения реалистичного тонированного изображения в Auto AD предоставляется возможность создавать, перемещать и настраивать источники света. Установка в рисунке источников света - простейший способ улучшить внешний вид тонированных моделей.  [c.367]

Схема опыта по рассеянию света. Простая схема опыта для исследования рассеяния света изображена на рис. 13.2. Мощный источник света расположен в фокусе линзы. Падающий на кювету К свет рассеивается находящимся в ней веществом. Призма Николя служит для обнаружения поляризации рассеянного света. С целью уничто-  [c.308]

Источник больших размеров (превосходящих 5—10 длин свободного пробега у-квантов) можно заменить полубесконеч-ным пространством, а для заданного распределения скоростей испускания у-квантов в нем подобрать простую аи.алитическую функцию (линейную или экспоненциальную), представляющую достаточно правильно это распределение лишь вблизи 1 раницы с зашитой. В результате этого интегрирование формулы (11.15) может быть существенно упрощено.  [c.116]


Смотреть страницы где упоминается термин Источник простой : [c.429]    [c.287]    [c.584]    [c.32]    [c.217]    [c.176]    [c.25]    [c.232]    [c.139]    [c.103]    [c.293]    [c.6]    [c.200]    [c.80]   
Теоретическая гидродинамика (1964) -- [ c.196 , c.429 ]



ПОИСК



Задача с простым источником

Источник гармонический простой

Источник звука простой

Источники простые и двойные

Комплексный потенциал для простого источника

Метод простых источников

Миогогрупповое диффузиоиио-возрастиое задача с простым источником

Общие сведения . Ш Простой нестаблизированный источник питания

Потенциал скоростей. Поле источника и диполя. Непрерывное распределение источников и диполей. Ньютонов потенциал Потенциал простого и двойного слоев

Простейшие случаи циклического и нециклического движеИзображение источника относительно окружности. Потенциал Скорости нескольких источников

Простые гармонические колебания. Источники и диполи. Распространение энергии

Силовая часть с простейшими источниками энергии

Труба неограниченная с простым источником 158 — переменного сечения



© 2025 Mash-xxl.info Реклама на сайте