Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение термодинамической температуры

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


ВОДИТЬ термодинамическую температуру. Если же, однако, расхождения этих двух шкал велики, становится очень трудно избежать скачков наклона в точках соединения различных интерполяционных приборов. Измерения термодинамических температур обсуждаются детально в гл. 3, а применительно к оптическим методам в гл. 7.  [c.61]

Измерение термодинамической температуры  [c.77]

Измерение термодинамической температуры Действительная и мнимая части ктп и атп имеют вид  [c.109]

Соотнощение между измеряемой величиной и термодинамической температурой оказывается очень простым, однако шумовая термометрия не используется в качестве основного метода первичной термометрии. Причина заключается в том, что не удается достаточно точно измерить напряжения порядка нескольких микровольт и при этом избежать посторонних источников шума, как теплового, так и нетеплового происхождения, а также сохранить постоянными полосу пропускания и коэффициент усиления измерительных приборов. В шумовой термометрии, несмотря на достигнутые за последние годы успехи, остается еще много нерешенных проблем. Точность измерения термодинамической температуры шумовым методом, кроме области очень низких температур, намного ниже точности других первичных термометров. По этой причине, не вдаваясь в подробности предмета шумовой термометрии, рассмотрим в общих чертах основные принципы тех приемов, которые применялись на практике.  [c.113]

Оптическая термометрия и измерение термодинамической температуры  [c.381]

Единицей измерения термодинамической температуры является градус Кельвина и градус в стоградусной шкале  [c.6]

Осуществление термодинамической шкалы непосредственно по уравнениям (3-90) или (3-91) практически было бы неточным, поскольку в этом случае измерение термодинамической температуры сводилось бы к измерениям количества тепла, подводимого или отводимого в изотермических процессах такие измерения — операция весьма неточная.  [c.75]

В книге английского ученого Т. Куинна, заместителя директора Л еждународного бюро мер н весов, обобщены результаты развития термометрии за последние 25 лет в интервале температур от 0,5 до 3000 К и обсуждается ее современное состояние. Подробно рассмотрены принципы построения термодинамической и практических температурных шкал, возможности различных методов точного измерения термодинамической температуры, термометры сопротивления н термопары, реперные точки температурных шкал, перспективы совершенствования действующей сегодня МПТШ-б8, а также некоторые наиболее важные случаи измерения температуры в промышленных условиях.  [c.4]


Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

Начнем с описания теории излучения черного тела, за которым последует обсуждение различных методов вычисления коэффициентов излучения полостей, близких к черному телу, и обсуждение практической реализации таких полостей. После этого рассмотрим вольфрамовые ленточные лампы как воспроизводимый источник теплового излучения для термометрии. На этой основе мы ознакомимся с термометрией излучения, реализацией МПТШ-Б8 выше точки золота, измерением термодинамической температуры, методами измерений при неполных данных об излучательной способности поверхности и, наконец, термометрией излучения полупрозрачных сред.  [c.311]

В гл. 3 рассматривались измерения термодинамической температуры газовым термометром и другими первичными термометрами. Было показано, что в температурной области выше примерно 30 К практически все численные значения термодинамической температуры основаны на газовой термометрии. Однако усовершенствования в термометрии излучения, возможно, это изменят. Уже измерения температурных интервалов в области от 630 °С до точки золота показали, что МПТШ-68 вблизи 800 °С содержит погрешность около 0,4 °С [15, 75]. Фотоэлектрический пирометр сам по себе не является первичным термометром, так как им можно измерить не абсолютную спектральную яркость источника, а только отношение спектральных яркостей двух источников, и невозможно, чтобы один из них находился в тройной точке воды. Однако фотоэлектрическая пирометрия может дать очень точные значения- для разностей температур  [c.381]

При температурах ниже 100 °С Куинн и Мартин [73] провели измерение термодинамической температуры прямым измерением  [c.382]

Международная практическая температурная шкала 1968 г. (МПТШ-(58) установлена таким образом, чтобы температура, измеряемая по ней, была возможно близкой к термодинамической температуре. Измерения в этой шкале могут быть выполнены достаточно легко и с высокой воспроизводимостью, в то время как прямые измерения термодинамической температуры весьма трудоемки и недостаточно точны.  [c.412]

Экспериментальные трудности, присущие измерениям термодинамической температуры, привели к принятию международной температурной шкалы. Международная практическая температурная шкала (МПТШ-68) основана на определенных воспроизводимых реперных точках (т. е. легко реализуемых состояний того или иного вещества, температура которых точно известна) и построена таким образом, что разница между термодинамической шкалой и МПТШ-68 меньше погрешности современных средств измерения температуры. (П р и-м е ч. р е д.)  [c.47]


Из сказанного очевидно, что метод Джонстона в его первоначальном виде не может рассматриваться как средство измерения термодинамической температуры точки росы. Определяемые по этому методу температуры по существу есть температуры эквивалентных по условиям электропроводности отложений кислоты. Последняя оговорка весьма существенна, так как проводимость раствора серной кислоты заметно меняется в зависимости от температуры (до 1 %1град) и концентрации. Иными словами, метод Джонстона фиксирует процессы массонередачи в пересчете на электрические эквиваленты по сопротивлению. Так, например, утверждение, что температура точки росы снизилась со 160 до 80° С, следует в первом приближении понимать так, что в новых условиях при 80° С отлагается столько же кислоты, сколько раньше отлагалось при 160° С.  [c.233]

Измерение термодинамической температуры каждым из этих методов связано со многими трудностями. В самом деле, например, газовые термометры, используемые для измерения температуры по идеально-газовой шкале, представляют собой громоздкие, сложные устройства, крайне неудобные для использования в экспериментальной практике, тем более что, как уже отмечалось выше, в показания таких термометров нужно вносить многочисленные поправки на неидеальность газа и др. В связи с этими трудностями VII Международная конференция мер и весов в 1927 г. приняла легко реализуемзгю в практике экспериментальных исследований так называемую Международную практическую шкалу температур.  [c.75]


Смотреть страницы где упоминается термин Измерение термодинамической температуры : [c.23]    [c.45]    [c.64]   
Смотреть главы в:

Температура  -> Измерение термодинамической температуры



ПОИСК



Единица измерения термодинамической температуры

Измерение термодинамической температуры по скорости звука. А. Л. Хедрик и Д. Р. Пардью

Измерения температур

Оптическая термометрия и измерение термодинамической температуры

Температура термодинамическая



© 2025 Mash-xxl.info Реклама на сайте