Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о краевых задачах

ПОНЯТИЕ О КРАЕВЫХ ЗАДАЧАХ  [c.13]

Замечание. Легко проверить [170], что, если компоненты о - непрерывно дифференцируемы по координатам Х , то из вариационного неравенства (4.20) следует, что оу удовлетворяют уравнениям (4.12), (4.14) и (4.15). Это означает, что понятие обобщенного решения задачи теории ползучести действительно является обобщением понятия решения краевой задачи теории ползу чести.  [c.43]

Понятие погрешности аппроксимации можно ввести и другим способом. Для этого в соотношении ah = Rh u)—R u) под и следует подразумевать не обязательно точное решение краевой задачи, а произвольную достаточно гладкую функцию из некоторого функционального класса LI. Тогда говорят о погрешности аппроксимации схемы по отношению к классу функций U. Покажем на примере того же уравнения (3.3), что порядок аппроксимации для точного решения может быть выше, чем для класса функций, обладающих такой же гладкостью. Пусть г=, т. е. x = h. Если и — точное решение уравнения (3.1), то, дифференцируя (3.1), получаем  [c.77]


Понятие о прямых методах решения вариационной задачи. Решение вариационной задачи о минимуме функционала может быть выполнено не только классическим путем, описанным выше, согласно которому она сводится к краевой задаче для некоторого дифференциального уравнения или системы дифференциальных уравнений, но и так называемым прямым методом. Последний состоит в представлении искомой функции (экстремали), минимизирующей функционал, в виде ряда  [c.449]

В противном случае систему называют нелинейной. Линейность дифференциальных уравнений и дополнительных условий относительно и (/) еще не означает линейности оператора Н. Так, параметрические системы нелинейны по отношению к параметрическим возмущениям, что находит отражение, например, в методах их аналитического исследования (см. гл. XIX). Как и в теории детерминистических колебании, вводятся понятия о стационарных и нестационарных системах, о системах с конечным, бесконечным счетным и континуальным числом степеней свободы. Операторное уравнение (2) для распределенных систем обычно реализуется в виде дифференциальных уравнений в частных производных с соответствующими граничными и начальными условиями. Поэтому применительно к задачам случайных колебаний распределенных систем применяют также термин стохастическая краевая задача.  [c.286]

Понятие о допустимости выбора некоторой последовательности функций вида (176) в качестве координатных функций данной вариационной задачи обычно включает требования удовлетворения этими функциями определенным краевым условиям, линейной независимости функций на некотором интервале, а также определенным свойствам гладкости.  [c.116]

Пусть для некоторой оболочки (не обязательно нулевой кривизны) поставлена полная краевая задача безмоментной теории, заключающаяся в том, что на каждом краю сформулированы по два идеализированных тангенциальных граничных условия, среди которых, вообще говоря, будет находиться и некоторое число геометрических условий. Тогда можно ввести важное для дальнейшего понятие о возможных изгибаниях, подразумевая под этим такие изгибания срединной поверхности, которые удовлетворяют всем однородным тангенциальным геометрическим граничным условиям данной полной краевой задачи безмоментной теории. В число тангенциальных граничных условий задачи могут и не входить геометрические граничные условия. Тогда возможными надо считать все изгибания, которые имеет срединная поверхность оболочки, когда ее кр.ая ничем не стеснены. В дальнейшем выяснится, что с прочностной точки зрения наиболее выгодны (они Чаще всего и применяются на практике) те оболочки, в которых тангенциальные геометрические граничные условия обеспечивают жесткость срединной поверхности, т. е. не допускают каких бы то ни было ее изгибаний. В таких случаях будем говорить, что возможные изгибания равны нулю.  [c.219]


Поясним понятие о возможных изгибаниях на примере консольной оболочки нулевой кривизны. Если края такой оболочки проходят вдоль поперечных сечений, то для полной краевой задачи тангенциальные граничные условия формулируются в виде четырех равенств (15.17.1), из которых к геометрическим граничным условиям относятся два последних равенства. Они совпадают с граничными условиями (15.20.4) и, как было показано выше, обеспечивают жесткость срединной поверхности. Это значит, что для консольной оболочки нулевой кривизны возможные изгибания равны нулю.  [c.219]

Понятие о математической постановке и решении краевых задач  [c.18]

Понятие о численном методе характеристик. Теория характеристик играет исключительно важную роль при формулировке краевых условий задач газовой динамики. Кроме того, свойства характеристик широко используются при численном решении уравнений. В дальнейшем при рассмотрении конкретных задач  [c.31]

Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]

Если напряженно состояние оболочки можно считать состоящим из двух слагаемых — безмоментного состояния и крае- вого эффекта, то, используя понятия и терминологию строительной механики, первое из них можно рассматривать как поле усилий в основной статически определимой системе в грузовом состоянии, а краевой эффект — как поле усилий, возникающее в основной системе под действием полной величины неизвестного, каким является некоторый параметр. Например, в задаче о цилиндрической оболочке таким оказывается параметр сил и моментов на кромке. Эти силы и моменты вызывают такое радиальное перемещение в опорном поперечном сечении, которое совместно с радиальными перемещениями от распределительной нагрузки обеспечивает условие жесткой заделки (рис. 57).  [c.180]

Проиллюстрируем эффективность использования понятий краевых и дифракционных сферических волн на примере задачи о нормальном падении плоской волны на отверстие произвольной формы в плоском экране [34, 109].  [c.160]

Содержание книги по существу ограничивается выводом макроскопических свойств системы жидкость — частицы из некоторых основных принципов. Общие понятия математики и гидродинамики подробно не обсуждаются, а раз7>ясняются лишь в той степени, в какой это требуется для дальнейшего изложения. Приводимый в книге экспериментальный материал содержит лишь важнейшие опытные данные, цель которых—продемонстрировать применимость теоретических результатов к реальным физическим системам. После нескольких вводных глав излагаемый материал сгруппирован в соответствии с классом соответствующей краевой задачи (аналогичным принципом построения книги пользовался Озеен в своей классической Гидродинамике ). Начиная с движения одиночной частицы в неограниченной среде здесь последовательно рассматриваются задачи о движении нескольких взаимодействующих частиц, о движении частиц при наличии ограничивающих стенок и, наконец, о движении частиц при наличии обоих упомянутых факторов.  [c.9]


Анализ корректной разрешимости контактных задач при использовании различных теорий оболочек проведен в [13, 84, 214]. Применительно к осесимметричной контактной задаче для круговых цилиндрических оболочек математические аспекты использования моделей Кирхгофа — Лява, Тимошенко и учета трансверсального обжатия, выяснение условий кор->ектности задач, способы-их регуляризации рассмотрены в 130]. Для строгого изучения этих вопросов применены теория обобш,енных функций и методы решения некорректных задач. Приведены сведения из теории краевых задач для обыкновенных дифференциальных уравнений с постоянными коэ1 )фици-ентами и основные понятия теории обобш,енных функций. С помош,ью фундаментальной системы решений дифференциального оператора построены функции Грина и функции влияния для оболочек Кирхгофа — Лява и Тимошенко. Даны постановки задач о контакте оболочек между собой и с осесимметричными жесткими штампами. Методом сопряжения построены обобщенные решения, поскольку классическое существует только для моделей, учитывающих трансверсальное обжатие. Найдены обобщенные решения интегральных уравнений Фредгольма первого рода, рассмотрены методы их аппроксимации классическими (методы регуляризации).  [c.11]

Сделаем некоторые общие замечания к гл. V. Впервые вариационные соображения в нелинейной теории оболочек для доказательства разрешимости краевых задач были использованы И. И. Воровичем [4—5]. Впоследствии появилась работа [7]. Применительно к пластинам вариационные соображения находим в [101. Приведенная в 21—22 схема рассуждений для функционалов нелинейной теории пологих оболочек публикуется впервые. Основу рассуждений, как, видимо, уже заметил читатель, составляют неравенства (21.33) (теорема 21.3) и (22,42) (теорема 22.5). После их установления теоремы 21.4—21.7, 22.6 о существовании абсолютных минимумов функционала немедленно следуют пз результатов М. А. Красносельского [8], которому принадлежит понятие растущего функционала, или М. М. Вайнберга и Р. И. Качуровского [1—3]. Заключительная схема рассуждений теорем 21.4—21.7, 22.6, примененная автором, также не лишена самостоятельного интереса. Отметим также, что в задачах нелинейной теории пологих оболочек функционалы 5 ,х(а), 3 9н с), 3 т(ю), З х(ю) не являются выпуклыми, поэтому не представляется возможным использовать развитую в последние годы теорию для выпуклых функционалов, обзор которой см. в [3].  [c.199]

При наличии в теле трещины для суждения о характере ее распространения и тем самым для суждения о прочности также необходимо знание напряженного состояния. Задача онределения нанряжешюго состояния около конца трещины отличается от обычных задач онределения концентрации напряжений тем, что геометрически линеаризованная постановка краевых условий и физически линейная теория упругости приводят к бесконечным напряжениям и бесконечным градиентам напряжений в конце тонкого разреза. При этом понятие коэффициента концентрации напряжений теряет смысл. Разумеется, мол<ио было бы пытаться сохранить числовое безразмерное выражение коэффициента концентрации напряжений посредством учета сложных детальных особенностей деформации материала у конца разреза. Однако для решения задач о трещине совсем не обязательно интересоваться, детальными процессами, идущими в весьма малой окрестности конца разреза [155, 168]. Достаточно знать характер и интенсивность напряженного состояния в области, окружающей конец разреза вместе с малым объемом, где сосредоточен механизм разрушения (рис. 12.1). Это означает отказ от использования коэффициента концентрации напряжений в пользу a HMntoTH4e Koro  [c.79]

Наибольшее распространение в теории оболочек получил метод расчленения решения задачи на основное и простой краевой эффект [38, 139]. В качестве основного, медленно меняющегося состояния обычно используют решение уравнений без-моментной теории оболочек. О недостатках безмоментного решения в задачах многослойных эластомерных конструкций сказано выше. Сделаем некоторые замечания по поводу краевого эффекта в армирующем слое. На краях слоя обычно задаются статические условия, причем для Перерезывающего усилия и изгибающего момента эти условия являются однородными Qln = Л/г = 0. Если основное решение является без-моментным, то функции 1,, и М определяются только краевым эффектом. А тогда из условий свободного края следует, что простой краевой эффект не реализуется. В теории оболочек понятие безмоментного решения включает решение уравнений равновесия (5.5) и уравнений чистого изгиба 1 = ег = о = 0. В случае симметричной и кососимметричной деформации оболочки вращения чисто изгибиая деформация отсутствует, она сводится к смещениям как жесткого целого.  [c.137]

Дан обзор, в KOTopqM описана история разработки аналитических моделей явления расслоения у свободной кромки. Подчеркивается важность проблемы свободной кромки в теории упругости слоистых композитов для понимания влияния межслойных напряжений на поведение этих материалов. Прослеживаются аналитические разработки, которые выполнены в течение двух десятилетий, прошедших с момента появления в 1967 г. работы Хаяши, посвященной моделированию этого явления, и основополагающих экспериментов Фойе и Бейкера в 1970 г. Обсуждаются понятие об упругом слое, обладающем эффективным модулем, а также его роль в моделировании слоистого композита. Описывается первое решение задачи о свободной кромке в рамках теории упругости, вьшолненное Пайпсом и Пэйгано методом конечных разностей. Это решение оказалось очень полезным при определении общего характера изменения поля межслойных напряжений вблизи свободной кромки. Приводятся результаты первичного моделирования влияния последовательности укладки на поведение слоистых композитов и вывод упрощенных уравнений для оптимизации или минимизации этого влияния в испытанных образцах. Далее следует описание модели, основанной на идее пластины на мягком основании и позволяющей выявить распределение межслойного нормального напряжения, зону краевого эффекта и причастность этого напряжения к возникновению расслоения.  [c.9]



Смотреть страницы где упоминается термин Понятие о краевых задачах : [c.73]   
Смотреть главы в:

Неоднородные среды и теория колебаний  -> Понятие о краевых задачах



ПОИСК



I краевые

Задача краевая



© 2025 Mash-xxl.info Реклама на сайте