Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо и алюминий и их свойства

ЖЕЛЕЗО И АЛЮМИНИЙ И ИХ СВОЙСТВА  [c.4]

Металлы широко распространены в природе из более чем 100 известных в настоящее время химических элементов периодической системы элементов Менделеева 71 являются металлами. Наиболее распространенными в технике металлами являются железо, медь, алюминий, цинк, никель, хром, марганец, вольфрам, магний, свинец, олово и др. В последнее время все большее распространение получают титан, бериллий, ниобий, цирконий, германий, тантал и др. Металлы обладают определенным сочетанием химических, физико-механических и технологических свойств, отличающих их от других твердых тел — неметаллов или металлоидов.  [c.95]


Металлические сплавы — кристаллические тела, полученные При сплавлении металлов с другими металлами или неметаллами. К важнейшим промышленным сплавам относятся сталь и чугун — сплавы металлов с неметаллами сплавы меди — бронза и латунь сплавы алюминия и ряд других — сплавы металлов с металлами. Составляющие части сплава называются компонентами. Число компонентов может быть равно двум, трем, четырем и более. Получение сплава ие всегда возможно. Например, железо со свинцом, свинец с цинком не образуют сплава, так как в жидком виде они не дают раствора. Обязательное условие для образования сплава — получение однородного жидкого раствора соединившихся компонентов. При затвердевании сплавы образуют различные типы соединений, определяющие их внутреннее строение. Внутреннее строение сплавов резко отличается от строения металлов, из которых они получены, поэтому и свойства сплавов отличаются от свойств их компонентов.  [c.18]

Другие элементы, например, азот, углерод, тантал, медь, ниобий, золото, титан, молибден, мышьяк, цинк, вольфрам, алюминий, ванадий, марганец, хром, кремний и бор, расположенные слева от указанной границы, могут образовывать диффузионные покрытия, причем диффузионные слои кремния, бора и других элементов, полученные на железе и стали, повышают механические свойства их поверхности.  [c.115]

Латуни. Латунями называются сплавы меди с цинком (простые латуни). Введение в латунь небольших количеств олова, никеля, алюминия, марганца, железа и других добавок во многих случаях улучшает механические свойства сплава и его коррозионную стойкость (специальные латуни). Простые латуни нашли применение для изготовления арматуры котлов, конденсаторов и других деталей. В химическом машиностроении сплавы Си — 2п вследствие их низкой коррозионной стойкости нашли небольшое применение.  [c.224]

Применяется иногда способ Ц. даже без тока, т. н. контактный способ, основанный на действии электродвижущей силы гальванич. пары, образующейся при взаимном контакте покрываемого металла с другим, более электроотрицательным металлом. Для Ц. железа в качестве такого контактного металла применяют обычно алюминий и ведут процесс в щелочном горячем растворе цинковой соли (в алюминиевых сетчатых корзинах) в течение нескольких часов. Этот метод не дает толстых хороших покрытий. Получаемые обычно тонкие пленки покрытия имеют удовлетворительный вид, но защитные свойства их невысокие.  [c.390]


Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

В современной технике все шире применяют высоколегированные сплавы на основе железа, никеля, молибдена, титана, алюминия, меди и т.д., предназначенные для работы в условиях высоких температур и напряжений, активных сред и др. Свойства этих сплавов в большой мере зависят от характера их микроструктуры — величины зерна, степени и характера разнозернистости и т.д.  [c.382]

Алюминий повышает механические свойства латуней и улучшает коррозионную стойкость их в отношении общей коррозии. Железо задерживает рекристаллизацию латуней и измельчает зерно. Однако при содержании железа более 0,03% латуни обнаруживают магнитные свойства. Особенно благоприятное действие железо оказывает на латуни в сочетании с марганцем, никелем и алюминием.  [c.175]

Состав и некоторые свойства органических теплоносителей приведены в табл. 16.1 и 16.2. Кроме перечисленных здесь теплоносителей применяются также минеральные масла, например, цилиндровое и компрессорное. Недостатком всех органических теплоносителей является то, что они горючи и при температуре выше 400 °С разлагаются. Преимуществом органических теплоносителей перед другими является их относительная инертность к конструкционным материалам. В контакте с органическими теплоносителями устойчивы чугун, железо, углеродистые и нержавеющие стали, медь, алюминий.  [c.255]

При изготовлении приспособлений нельзя использовать железо, медь или их сплавы, так как они, растворяясь в солях, лишают их флюсующих свойств и делают непригодными для пайки алюминия. Материалами для приспособлений могут быть инконель, алюминий и монель-металл, а также другие металлы, но металлизированные алюминием.  [c.285]

Основные примеси в алюминии — железо и кремний — существенно влияют на свойства сплавов магналий, поэтому их содержание ограничивается обычно 0,3—0,5% каждого. Для реализации всех преимуществ этих сплавов суммарное содержание железа и кремния предпочтительно ограничивать 0,5 /о. Присутствие в сплавах магналий более 0,05 о Си заметно понижает их коррозионную стойкость.  [c.172]

Так же, как и в случае сплавов типа дур-алюмин листы из этих сплавов производятся преимущественно плакированными. Для плакировки применяются специальные сплавы алюминия с цинком или с цинком и магнием . Железо и кремний в этих сплавах являются вредными примесями и количество их ограничивается обычно 0,5—О.бс/р каждого. Состав некоторых из этих сплавов, нашедших промышленное применение, и их механические свойства приведены в соответствующих таблицах.  [c.189]

От руды промышленного значения требуется, чтобы концентрация нужного металла в ней делала извлечение его технически осуществимым и экономически целесообразным. Подобная минимальная концентрация бывает различной в зависимости от химических и физических свойств металлов и их соединений, поскольку эти свойства определяют способ извлечения их из руд. Так, для меди минимальная концентрация может быть не больше 1%, для магния допустима концентрация 0,13 п (как, например, в морской воде), а для алюминия и железа концентрация металла должна быть выше 30%. Развитие технологии н изменение экономических требований непрерывно меняют уровень минимальных концентраций металлов в руде и других исходных материалах, идущих для промышленного производства. Нагляднее всего это можно показать на примере меди отходы от ее производства, которые раньше выбрасывались за ненадобностью, сейчас перерабатываются заново, поскольку технологические достижения позволяют извлекать медь при меньшем ее содержании в исходном сырье.  [c.18]


Характер соединений индия, как и других металлов, зависит от валентности, типа образующихся связей и размера атомов или ионов, входящих в соединение. Индий обладает химическими свойствами, в известной степени сходными со свойствами алюминия, железа и особенно олова, несмотря на различие их характерных валентностей. Некоторые более распространенные соединения индия будут рассмотрены ниже.  [c.228]

Следует прежде всего отметить сходство химических свойств обусловленное одинаковым строением наружных оболочек. Но благодаря большому изменению энергии, происходящему при последовательном заполнении с(-уровней, последние сильно сближаются с наружными уровнями и некоторые электроположительные элементы обнаруживают переменную валентность. Так, в переходных элементах группы железа уровень 3d оказывается близким к уровню 4s и в определений валентности принимает участие не только последняя оболочка, но и предшествующая ей. Железо, например, может быть и двух-, и трехвалентным хром имеет валентность +2 (при окислении), когда он отдает один электрон 4s и один из 3d, или валентность -ЬЗ при потере одного из 4s- и двух из Зс -электрон,ов и, наконец, валентность +6 при потере одного электрона 4s и всех пяти электронов 3d-, у марганца валентность меняется от 2 до 7. Медь не является переходным элементом. Подгруппа 3d целиком заполнена. Однако медь бывает двухвалентной. Это частично объясняется тем, что оболочка из 18 электронов (3s 3p 3d °) недостаточно устойчива и некоторые Зс/-электроны могут участвовать в химическом взаимодействии. Изменение валентности в нормальных элементах возможно и по другой причине. Например, у таллия (2 = 81) и свинца (z = 82) часто валентность бывает не 3 и 4, а 1 и 2, хотя внешняя оболочка их содержит 6s p - и 6s2p2 3jieKxpoHbi соответственно. Это объясняется тем, что устойчивость подгруппы rts возрастает с увеличением номера периода п, которое отвечает главному квантовому числу, и в некоторых химических реакциях электроны 6s не принимают участия, а участвуют только 6/7-электроны. Алюминий г = 3) который, как и таллий, находится в III группе, всегда трехвалентен.  [c.15]

Железо-яикель-алюминиевые сплавы, как и железо-никель-алюминиево-медные и железо-никель-алюминие-во-кобальтовые, используются для получения деталей металло-керамическим способом. Этот способ особенно выгоден для изготовления мелких деталей весом от долей грамма до 30 г. Применение металлокерамической технологии решило вопросы производства мелких деталей из сплавов, содержащих кобальт. Металлокерамическая технология обеспечивает при производстве деталей из этих сплавов меньще отходов вследствие отсутствия литейных дефектов, лучшей шлифуемости, большей механической прочности и однородности. При давлении 4—8 г/см и спекании в чистом водороде при 1 300° С металлокерамические магниты из железо-ни-кель-алюминиевого сплава имеют плотность на 8—7% меньше, чем литые, и магнитные свойства, близкие к таковым у литых магнитов. Существует два способа получения магнитов по металлокерамическому принципу. В первом случае детали из смеси чистых порошков или их лигатуры прессуются в пресс-формах в два приема сначала при пониженных давлении и температуре, потом — при полном давлении и последующим окончательным спеканием завершающей операцией является  [c.365]

Сплавы называют изотропными, так как их магнитные свойства одинаковы, независимо от направления намагничивания. Основными материалами этой группы являются сплавы на основе алюминия, никеля, меди и железа. Эти сплавы отличаются высокой твердостью и хрупкостью, даже в горячем состоянии они не поддаются ковке и прокатке, магниты из них изготовляют литьем или прессованием из порошков. Получение высокой коэрцитивной силы связано с механизмом дисперсионного твердения. При определенных условиях охлаждения сплава появляются две фазы слабомагнптный твердый раствор железа и алюминия (Р -фаза) и однодоменные частицы почти  [c.264]

Даже у эффективных магниевых сплавов и при благоприятных условиях значения не превышают 0,55—0,65. Причиной большой доли собственной коррозии является выделение водорода, образующегося по катодной параллельной реакции согласно уравнению (7.56), или же развитие свободной коррозии частиц, отделенных от протектора при сильно трещиноватой его поверхности (см. раздел 7.1.1 [2—4, 19— 21]). Магниевые протекторы изготовляют в основном из сплавов. Содержание железа и никеля не должно превышать 0,003 %, так как при этом их свойства ухудшаются. Влияние меди не является однозначным. Верхним пределом ее содержания считается 0,02 %. При добавке марганца железо выпадает из расплава и при затвердевании становится безвредным ввиду образования кристаллов железа с оболочкой из марганца. Кроме того, марганец повышает токоотдачу (выход по току) в хлоридсодержащих средах. Содержание марганца должно быть не менее 0,15 %. Алюминий облегчает удаление вредного железа благодаря выпадению вместе с марганцем. Впрочем, чувствительность к повышенным содержаниям железа (более 0,003 %) в присутствии алюминия заметно повышается. При добавке цинка коррозионное разъедание становится более равномерным, к тому же снижается чувствительность к другим загрязнениям. Важнейшим магниевым протекторным сплавом является сплав AZ 63, который удовлетворяет также и требованиям стандарта военного ведомства США MIL-A-21412 А [22].  [c.186]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]


В зависимости от плотности и назначения порошковые материалы подразделяются на две группы 1) плотные — материалы с минимальной пористостью, изготовленные на базе порошков железа, меди, никеля, титана, алюминия и их сплавов и 2) пористые, в которых после окончательной обработки сохраняется свыше 10-15 % пор по обьему. Первая группа материалов нашла широкое применение в машино- и приборостроении, автомобильной и авиационной технике и других отраслях оборонного и общегражданского производства. Высокая пористость материалов второй группы обеспечивает приобретение ими специальных свойств и позволяет применять их для изготовления специальных изделий (изделий анти-  [c.789]

Железо и стали. Сдвиговая прочность и упругие свойства железа и сталей в ударно сжатом состоянии изучены менее подробно по сравнению с медью и алюминием и в более узкой области значений О]. Методом измерения главных напряжений динамическая прочность стали Ст.З исследована в [27, 55]. Результаты этих работ и дополнительных экспериментов приведены в табл. 6.12. Их. обработка дает аналитическую связь линейного типа между главными напряж иями (в гигапаскалях)  [c.210]

Раскисление стали ведется для удаления из нее окислов и главным образом железа, вызывающего красноломкость стали и понижение механических свойств. По условиям раскисления различают спокойную и кипящую сталь. Спокойная сталь раскисляется ферромарганцем, ферросилицием и алюминием излом слитка плотный. Кипящая сталь раскисляется только ферромарганцем в ней содержится значительное количество газовых пузырей, сваривающихся при прокате. Раскисление доменным ферромарганцем и ферросилицием ведется непосредственно в конвертере, а раскисление 45-процентным ферросилицием и алюминием — в ковще при введении их в струю металла, когда он сливается из конвертера в ковщ. Ввод их в конвертер не достигнет цели — из-за легкости они не погрузятся в металл.  [c.31]

Дуговая сварка плавлением при помощи электрической дуги или других источников тепловой энергии широко распространена благодаря простоте соединения частей металла путем местного расплавления соединяемых поверхностей. Расплавление основного и присадочного металла облегчает их физические контакты, обеспечивает подобно жидкостям смешивание металлов в жидкой сварочной ванне, одновременно удаляя оксиды и другие загрязнения. Происходят металлургическая обработка расплавленного металла и его затвердевание, образуются новые межатомные связи. В кристаллизуемом металле образуется сварной шов (рис. 1.2, в). Свойства сварного шва и соединения в целом регулируются технологией расплавления металла, процессом его обработки и кристаллизации. Взаимная растворимость в л<идком состоянии и образование сварного шва характерны для однородных металлов, например для стали, меди, алюминия и др. Более сложным оказывается соединение разнородных материалов и металлов. Это объясняется большой разницей их физико-химических свойств температуры плавления, теплопроводимости и др., а также несходством атомного строения. Некоторые металлы, например железо и свинец и др., не смешиваются при расплавлении и не образуют сварного соединения другие — железо и медь, железо и, никель, никель и медь хорошо смешиваются при сварке образуют твердые растворы. Для соединения металлов, не поддающихся смешиванию при расплавлении, применяют особые виды сварки и методы ее выполнения.  [c.8]

Осаждающее раскисление осуществляют введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы (Мп, Si, А1 и др.), которые в данных условиях обладают большим сродством к кислороду, чем <слезо. В результате раскисления восстанавливается железо и образуются оксиды МпО, SiOi, Al.,0 , и другие, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть их может остаться в стали, что понижает ее свойства.  [c.31]

Латуни подразделяются на двойные сплавы медн с цинком, в которых содержание цинка доходит до 50 о, и многокомпонентные, имеющие в своем составе также алюминий, железо,, марганец, свинец, никель и другие добавки, повышающие механические и физические свойства латуни. Латуни обладают хорошими механическими свойствами, высоким сопротивлением коррозии, хорошо поддаются механической обработке. Их обозначают буквой Л и условным буквенным обозначением основных компонентов, а также числами, обозначающими среднее содержание меди и компонентов. Например, ЛК80-3 — кремнистая латунь, содержащая 80 меди и 3% кремния (остальное — цинк).  [c.163]

Д. М. Минцем и Я. Д. Раппопортом был предложен метод получения электрохимическим способом высококонцентрированных коагулирующих растворов путем анодного растворения в пластинчатых электролизерах обрезков железа или алюминия в водных растворах серной кислоты или поваренной соли. Это позволяет получать на месте потребления коагулирующие растворы с заранее заданными технологическими свойствами и затем дозировать их в обрабатываемую воду.  [c.221]

Материалы на основе фенолформальдегидных полимеров (ФФП). Фенолформальдегидные полимеры широко применяют при создании актифрикционных полимерных материалов ввиду их повышенной термической и химической стойкости и износостойкости. Для улучшения триботехнических свойств в ФФП вводят специальные наполнители (графит, свинец, M0S2, оксиды алюминия и меди, кремний, порошки алюминия, железа и меди, а также базальтовые, стеклянные и углеродные волокна, технический углерод, асбест, различные волокна), что позволяет получить самосмазывающиеся материалы с низкими коэффициентом трения без смазки (0,04-0,06) и интенсивностью изнашивания (10 -10 " ) для подшипников скольжения, уплотнений, направляющих, работающих при повышенных температурах. Известны самосмазывающиеся материалы на основе ФФП следующих марок АТМ-1, AMT-IE, Вилан-9Б, Синтек-2, АМАН-24.  [c.37]

В механизме окислительного изнашивания важную роль играют строение окисных пленок и их механические свойства. Строение и свойства пленок окислов в значительной степени зависят от их толщины. Тонкие сплошные пленки (1-10) 10 м, как правило, образуются при невысоких и умеренных температурах. Однослойная окалина (окисная пленка) образуется только на чистых металлах с постоянной валентностью, например на алюминии и никеле. Металлы с переменной валентностью (железо, медь, кобальт, марганец), имеющие различные степени окисления, могут давать многослойнук окалину - несколько окисных фаз, отвечающих различным степеням окисления. Порядок расположения слоев от внешней к внутренней поверхности будет соответствовать убыванию содержания кислорода в каждой окисной фазе. Однако эти же металлы в определенных условиях окисления могут образовывать практически однофазные слои, отвечающие одной степени окисления. Более сложная картина наблюдается при окислении сплавов. Металлы, входящие в состав сплавов, обладают различным сродством к кислороду. Это обстоятельство и разная скорость диффузии металлов в пленке окислов обусловливают более или менее сильную сегрегацию атомов металла в окисной пленке. В сложных сплавах при окислении происходит обогащение или обеднение пленки окислов элементами, входящими в сплавы. При этом степень обогащения ИЛИ обеднення зависит от сродства металла к кислороду и от скорости диффузии металла в слое окисла.  [c.131]

Распространено мнение, что хладноломкость является природным свойством о. ц. к. металлов (например, Fe, Сг, Мо, W, вследствие резкого увеличения их предела текучести при понижении температуры [1]) в отличие от меди, никеля, алюминия и других металлов, имеющих г. ц. к. решетку. Действительно, металлы с г. ц. к. решеткой нехлад -поломки. Однако тантал и щелочные металлы с о. ц. к. решеткой также нехладноломки, чистейшее железо пластично до глубокого охлаждения. С повышением чистоты металлов подгруппы хрома порог хрупкости смещается к низким температурам. Хладноломкость цинка и кадмия обусловлена примесями при чистоте 99,999 % хладноломкость отсутствует. Чистые металлы VA подгруппы также нехладноломки. Хладноломкость у них наблюдается лишь при недостаточно высокой чистоте. Растворимость примесей у металлов VIA подгруппы чрезвычайно мала, и достаточно полная очистка их представляет трудную задачу. Кроме того, при хранении в комнатных условиях они могут поглощать газы из атмосферного воздуха и охрупчиваться.  [c.23]


Обобщены материалы международной конференции (США, 1982 г.J по механизмам и закономерностям сверхпластической деформации, составу и способам подготовки структуры сверхпластичных сплавов на основе титана, алюминия, никеля и железа. Рассмотрены принципы и особенности обработки давлением и диффуаиоиной сварки материалов в сверхпластическом состоянии. Описаны свойства сверхпластичных сплавов н области их применения. Большое внимание уделено практическим аспектам использования эффекта сверхпластичности.  [c.29]

Кюри и уменьшая критическую скорость охлаждения, делает эс ектив-ной термомагнитную обработку отливок, существенно повышающую их магнитные свойства. Для этого в сплавах альнико должно быть не менее 18 % Со. Кобальт вводят в основном за счет алюминия и никеля и лишь частично за счет железа. Это приводит к возрастанию В и увеличению энергетического произведения В На, так как кобальт, подобно никелю и алюминию, повышает Нс.  [c.99]

Увеличение содержания алюминия в бронзах этой системы приводит к повышению механических свойств. Однако, при содержании алюминия свыше 10% отмечается резкое снижение пластичности сплавов, связанное с появлением в структуре хрупкого эвтек-тоида. Р1оэтому верхним пределом содержания алюминия в сплавах этой системы обычно является 9—10%. Увеличение содержания железа в бронзах системы Си—А1—Ре способствует улучшению технологических и повышению их прочностных свойств. Однако, уже небольшие добавки железа ( 1,0%) приводят к появлению в структуре сплавов железистой составляющей в виде мелких рассеянных точечных включений. Повышение содержания железа, особенно в сочетании с нарушением режима литья (пониженная температура заливки и др.), приводит к увеличению числа этих включений и к укрупнению их формы. Иногда на поверхности отливок наблюдается образование сыпи железистой составляющей. Эти места отливок отличаются высокой твердостью и пониженной коррозионной стойкостью. Даже при недлительном хранении отливок в местах скопления включений железистой составляющей появляются ржавые пятна. Все это ограничивает верхний предел содержания железа до — 3—5%. Таким образом, нет основания рассчитывать на получение новых высокопрочных сплавов системы Си—А1—Ре за счет увеличения содержания легирующих  [c.85]

Сплавы, содержащие 9—14% 51, нашли широкое применение после открытия процесса модифицирования. Модифицирование этих сплавов заключается в обработке их флюсом (1/з N30-)-% ЫаР) или в введении незадолго до литья металлического N3 (0,1%), что измельчает частицы кремния и значительно повышает механические свойства литья (лист IV, 4 и 5). Железо является весьма вредной примесью для всех силуминов, так как образует с кремнием и алюминием тройное химическое соединение ( х конституент), которое кристаллизуется в форме грубых игольчатых кристаллов, сильно снижающих механические свойства сплавов и в первую очередь удлинение. Добавление марганца приводит к образованию четверной фазы А1—51—Ре—Мп, кристаллизующейся в более компактной форме ( китайский шрифт ) и гораздо менее вредной для механических свойств сплавов. Однако при  [c.133]

Из алюминия и его сплавов можно изготовлять и другие детали, для реакторных установок трубки, вентили и т. д. Сплавы алюминия с титаном устойчивы в воде при температуре 280—300° С, но механические их свойства при этих условиях недостаточны. Сплавы алюминия с титаном (с концентрацией в них 0,2—0,5% железа, 0,2% марганца, 0,2% кремния и 0,5% никеля) достаточно стойки при температуре 315° С. Увеличение концентрации никеля с 0,5 до 2% при температуре воды 250 — 315° С и скорости ее движения 6—7 м1сек приводит к повышению стойкости сплава. Этого не наблюдается в неподвижной воде. Нейтронное облучение на стойкость сплава алюминия с никелем влияет благоприятно. Титан устойчив на воздухе при температуре 400—700° С (сведения противоречивы). В воде и паре титан и его сплавы также устойчивы. Для повышения устойчивости титана к нему добавляют цирконий, ванадий, тантал, молибден и медь в отдельности. В воде при температуре 250—318° С и наличии кислорода скорость коррозии титана (0,45 мг м час) в три-пять раз меньше, чем у нержавеющих сталей.  [c.297]

ТИКСОТРОГТЙЯ — способность нек-рых дисперсных систем обратимо разжижаться при достаточно интенсивных механич. воздействиях (перемешивании, встряхивании) и отвердевать (терять текучесть) при пребывании в покое. Т.— характерное свойство коагуляц. структур, к-рые можно подвергать разрушению neoi раниченное число раз, причём каждый раз их свойства полностью восстанавливаются. Примерами типичных тиксотропных структур могут служить системы, образующиеся при коагуляции водных коллоидных дисперсий гидроокиси железа, гидроокиси алюминия, пятиокиси ванадия, суспензий бентонита, каолина.  [c.113]

Алюминиевые бронзы. Наиболее часто применяют алюминиевые бронзы двойные и добавочно легированные N1, Мп, Ре и др. Сплавы, содержащие до 9 % А1, однофазные и состоят только из а-твердого раствора алюминия в меди. Фаза р, существующая при температуре свыше 565 "С, представляет собой твердый раствор на базе электронного соединения СнаА1. При содержании алюминия более 9 % в структуре появляется эвтектоид а -р у (у — электронное соединение Сиэ2А19). Фаза сс пластична, но прочность ее невелика. Двухфазные сплавы а -р у имеют повышенную прочность, но пластичность их заметно ниже (рис. 194, б). Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель - улучшает механические свойства и износостойкость как при низких, так и при высоких температурах (500—  [c.415]

Почти все промышленные сплавы алюминия и магния содержат марганец, который повышает их коррозионную стойкость и механические свойства (твердость). Содержание марганца редко превышает 1,2% для магниевых и 1,5/0 для алюминиевых сплавов. При производстве алюминиевых сп.чавов электролитический марганец конкурирует с чистыми окислами, карбонатом марганца и ферромарганцем с низким содержанием железа, которые можно добавлять непосредственно в восстановительные тигли, а при производстве магниевых сплавов — с чистым хлоридом марганца, который добавляют в плавильные тигли.  [c.398]

Вопрос о влиянии незначительных примесей и металлических добавок иа механические свойства редкоземельных металлов мало изучен для иттрия эти данные известны [14]. Обычные примеси элементов внедрения (углерод, азот, кислород и водород), если они присутствуют в малом количестве, слабо влияют на пластичность и прочность иттрия, чем последний разительно отличается от большей части прочих металлов. Твердость, пластичность н предел текучести иттрия больше всего зависят от предшествующей термообработки, ориентировки зерен и степени наклепа. Титан, ванадий и хром дают с иттрием сходные диаграммы состояния, в которых эвтектика смещена к богатому иттрием краю диаграммы. В копцеитращ1и до 5"6 эти металлы не оказывают вредного влияния на пластичность иттрия. Кремний, алюминий, железо н никель малорастворимы в иттрии, так что в концентрации до 0,5% они почти не отражаются на прочности и величине предела текучести иттрия. В пределах до 5% их содержания пластичность иттрия понижается.  [c.602]


Смотреть страницы где упоминается термин Железо и алюминий и их свойства : [c.220]    [c.82]    [c.179]    [c.451]    [c.445]    [c.128]    [c.127]    [c.80]    [c.89]    [c.67]   
Смотреть главы в:

Повышение жаростойкости стальных изделий методом алитирования  -> Железо и алюминий и их свойства



ПОИСК



Алюминий — Свойства

Железо — Свойства

Железо — алюминий



© 2025 Mash-xxl.info Реклама на сайте