Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия сварки конструкционных сталей

Условия сварки конструкционных сталей Щ  [c.111]

УСЛОВИЯ СВАРКИ КОНСТРУКЦИОННЫХ СТАЛЕЙ  [c.111]

Условий сварка конструкционных сталей  [c.113]

Условия сварки конструкционных сталей в зависимости от группы стали  [c.114]

Фазовые и структурные превращения при сварке конструкционных сталей нередко вызывают понижение технологической прочности, механических и эксплуатационных свойств металла сварных соединений. Под технологической прочностью понимают способность материалов без разрушения выдерживать термомеханические воздействия в процессе сварки. В условиях указанных воздействий часто существенно понижаются механические свойства металла, что вместе с довольно высокими сварочными деформациями и напряжениями может служить причиной образования трещин.  [c.511]


Электроды НИИ-48 применяются для сварки хромистых и хромоникелевых сталей, а также для сварки конструкционных сталей высокой твердости, конструкции которых работают в условиях динамических нагрузок.  [c.289]

Размещение сварных точек определяется условиями шунтирования и беспрепятственной деформации. С увеличением толщины деталей увеличиваются минимальный допустимый шаг точек и минимальное расстояние от их центра до элементов, затрудняющих деформацию деталей. Данные по размещению точек при сварке конструкционных сталей приведены в табл. И. При рациональном технологическом  [c.131]

В процессе сварки конструкционная сталь заполняет пространство специальной фаски в матрице, чем обеспечивается прочная опорная поверхность для заготовок 1 из быстрорежущей стали по всему периметру. Этим самым создаются благоприятные условия для качественного соединения заготовок на всей сопрягаемой площади поперечного сечения. На фиг. 10 показана заготовка, сваренная с применением матрицы. Заготовка выведена из патрона.  [c.20]

Сваркой соединяют мягкие стали обыкновенного качества, по ГОСТ 380—71, конструкционные стали, по ГОСТ 1050—60 , и низколегированные, по ГОСТ 5058—65 , чу-гуны U алюминий при определенных условиях, винипласт и полиэтилен. Рис. 1. Сварка плавлением а — газовая б — электродуговая ручная и автоматическая под флюсом.  [c.123]

Исследования прочности и надежности сварных конструкций в условиях низких температур проводятся в Институте физико-технических проблем Севера ЯФ СО АН СССР. Новые методические подходы к выявлению вклада различных факторов, определяющих наступление хладноломкости конструкций, позволяют разрабатывать конструктивные и технологические меры повышения хладостойкости сварных конструкций. Для практики важное значение имеют технологические особенности сварки распространенных конструкционных сталей в условиях низких температур до —50°С, установленные В П. Ларионовым с сотрудниками.  [c.3]

Если выполнить наплавку на чугун электродами, предназначенными для сварки углеродистых или низколегированных конструкционных сталей, то в 1-м слое даже при относительно небольшой доле участия основного металла получится высокоуглеродистая сталь, которая при скоростях охлаждения, имеющих место в условиях сварки без предварительного подогрева изделия, приобретает резкую закалку. Поэтому металл 1-го слоя будет иметь высокую твердость, низкую деформационную способность и окажется подверженным образованию холодных трещин, а также пористости. Во 2-м слое, естественно, доля участия чугуна уменьшится, однако содержание углерода в нем будет находиться еще на высоком уровне, что также приведет к закалке и возможному образованию трещин. В последующих слоях доля участия чугуна окажется незначительной, и металл шва будет обладать определенным уровнем пластичности.  [c.421]


Зарождение трещин в околошовной зоне в зависимости от легирования металла, условий сварки и режима последующего отпуска или эксплуатации может идти разными механизмами. По данным работы [107], в Сг-Мо-У и Сг-Мо сталях и швах наиболее вероятно первоначальное образование дефектов типа зародышевых пор по границам зерен первичного аустенита. В конструкционных сталях повышенной прочности и высоконикелевых сплавах возникают преимущественно зародышевые клиновые трещины.  [c.98]

Обширный экспериментальный материал по характеристикам циклической трещиностойкости конструкционных сталей указывает на зависимость параметров С и п от условий нагружения и характеристик механических свойств. Однако, несмотря на широкий диапазон изменения в рамках одного класса сталей, для параметров Сип с определенной степенью вероятности могут быть приняты постоянные значения. При нормальном законе распределения параметра п его средние значения, как показал анализ экспериментальных результатов (рис. 2.32, 2.33), составляют п = 3,04 для низколегированных и п = 3,03 — для малоуглеродистых сталей. Международный институт сварки (МИС) рекомендует [93] при использовании уравнения (2.35) принимать значение п = 3,0 для сталей низкой и средней прочности и п = 3,5 для сварных соединений из этих сталей.  [c.66]

Высоколегированные стали и сплавы составляют значительную группу конструкционных материалов. К числу основных трудностей, которые возникают при сварке указанных материалов, относится обеспечение стойкости металла шва и околошовной зоны против образования трещин, коррозионной стойкости сварных соединений, получение и сохранение в процессе эксплуатации требуемых свойств сварного соединения, получение плотных швов. При сварке высоколегированных сталей могут возникать горячие и холодные трещины в шве и околошовной зоне. С кристаллизационными трещинами борются путем создания в металле шва двухфазной структуры, ограничения в нем содержания вредных примесей и легирования вольфрамом, молибденом и марганцем, применения фтористо-кальциевых электродных покрытий и фторидных сварочных флюсов, использования различных технологических приемов. Присутствие бора может привести к образованию холодных трещин в швах и околошовной зоне. Предотвращение их появления достигается предварительным и сопутствующим подогревом сварного соединения свыше 250 — 300 °С. С помощью технологических приемов можно также предотвратить кристаллизационные трещины. В ряде случаев это достигается увеличением коэффициента формы шва, увеличением зазора до 1,5 — 2 мм при сварке тавровых соединений. Предварительный и сопутствующий подогрев не оказывает заметного влияния на стойкость против образования кристаллизационных трещин. Большое влияние оказывает режим сварки. Применение электродной проволоки диаметром 1,2 — 2 мм на умеренных режимах при минимально возможных значениях погонной энергии создает условия для предотвращения появления трещин. Предпочтение следует отдавать сварочным материалам повышенной чистоты. При сварке аустенитных сталей проплавление основного металла должно быть минимальным. Горячие трещины образуются  [c.110]

Расчетные сварные соединения основных (рабочих) элементов металлоконструкций должны выполняться с применением электродов по ГОСТ Электроды металлические для дуговой сварки конструкционных и теплоустойчивых сталей. Типы или сварочной проволоки по ГОСТ Проволока стальная сварочная , обеспечивающих временное сопротивление разрыву сварного соединения не ниже нижнего предела временного сопротивления основного металла, установленного для данной марки стали ГОСТ или техническими условиями, и угол загиба не менее 100°. Это требование распространяется также на приварку перил и подвесных лестниц. Качество применяемых электродов и проволоки должно быть подтверждено сертификатами завода-поставщика.  [c.276]


Строительные конструкционные стали должны быть прочными, обладать хорошей пластичностью в горячем и холодном состоянии, хорошей свариваемостью, должны быть дешевыми и не содержать дорогих и дефицитных легирующих элементов. Строительные конструкционные стали — все низколегированные стали перлитного класса. Они прочнее нелегированных углеродистых сталей, поэтому конструкции одинаковой грузоподъемности, изготовленные из легированных строительных сталей, весят меньше, чем изготовленные из углеродистых сталей. Стали для конструкций и сооружений, подверженных динамическим нагрузкам, должны обладать достаточно высокой ударной вязкостью в рабочих условиях. Строительные стали применяют в состоянии поставки (без дополнительной термической обработки). Часто строительные конструкции изготавливают из гнутых профилей и листов. Поэтому строительные стали должны быть достаточно пластичными. Стальные конструкции изготовляют преимущественно сварными. При их изготовлении широко применяют автоматическую и полуавтоматическую сварку. Чтобы обеспечить хорошую свариваемость без предварительного и сопутствующего подогревов, в строительные стали вводят не более 0,15% углерода при невысоком суммарном содержании легирующих элементов (до 2—3%). Сварные швы строительных сталей не требуют последующей термической обработки.  [c.165]

Применение качественных электродов необходимо для изготовления конструкций, подвергающихся динамической нагрузке, и для сварки конструкций, работающих в условиях высоких давлений и температур или корродирующей среды. Для дуговой сварки конструкционных и теплоустойчивых сталей применяют электроды согласно ГОСТ 9467—60, в котором для каждого типа электродов регламентированы механические свойства металла шва и сварного соединения. При проектировании конструкций достаточно указать принятый тип электрода, чтобы гарантировать необходимую прочность. При изготовлении сварных изделий можно применять электроды разных марок при условии, что они соответствуют заданному типу согласно стандарту.  [c.264]

Трубы из углеродистых конструкционных сталей. Сварка труб в полевых условиях  [c.394]

Возникновению горячих трещин при сварке углеродистых и низколегированных конструкционных сталей способствует направленно встречный вид структуры металла шва. Поэтому узкие швы с глубоким проваром при прочих условиях более склонны к образованию трещин, чем широкие швы с менее глубоким проваром. В угловых швах трещины образуются чаще, чем в стыковых, а в наплавленных на поверхность валиках — весьма редко.  [c.76]

Углерод повышает прочность, снижает пластичность и вязкость легированной стали он также повышает чувствительность к перегреву и закаливаемости стали и поэтому отрицательно сказывается на ее свариваемости. Увеличение содержания углерода в стали при обычных условиях сварки способствует образованию трещин в околошовной зоне и шве. В современных низколегированных сталях углерод содержится в пределах 0,18—0,25%. В некоторых случаях в сталях, к свариваемости которых предъявляются повышенные требования, содержание углерода не превышает 0,12—0,14%. Низколегированные и среднелегированные конструкционные стали повышенной прочности, содержащие до 0,45% углерода, сваривают с предварительным подогревом и последующей термической обработкой сварных соединений.  [c.157]

Тщательность подготовки кромок и сборки под сварку — непременное условие получения качественного соединения. Благодаря притуплению кромок на основном слое (на глубине 1,6—2,4 мм) и плотной сборке создается возможность избежать проплавления плакирующего слоя и в то же время почти полностью проварить конструкционную сталь. От качества исполнения первого слоя сварного шва конструкционной стали во многом зависит. качество соединения в целом. Сварку обычно ведут на строго контролируемом режиме, лучше электродами диаметром 3,25 мм. Чрезмерное проплавление, проникающее в облицовочный слой, приводит к образованию мартенсита в шве, склонности к появлению трещин и хрупкости. В дальнейшем, это затрудняет обработку корня шва. Слишком малое проплавление приводит к необходимости углубления разделки со стороны облицовочного слоя. Первый слой выполняют, как правило, ручной сваркой, последующие слои могут быть выполнены автоматической сваркой под флюсом.  [c.194]

Полуавтомат А-1230 (рис. 36) предназначен для сварки углеродистых и низколегированных конструкционных сталей тонкой электродной проволокой сплошного сечения в защитной среде углекислого газа. Отсутствие промежуточного пульта управления, небольшая масса и габариты переносных узлов полуавтомата позволяют применить его для работы в монтажных условиях.  [c.87]

В порядке выполнения программы усталостных испытаний стыковых сварных соединений в гражданских сооружениях [1] в 1943 г. была сделана попытка исследования влияния технологии и условий сварки на сопротивление усталостному разрушению сварных соединений деталей из углеродистой конструкционной стали. Однако выделить влияние отдельных факторов оказалось затруднительно ввиду значительного разброса данных испытаний, а также ввиду того, что качество сварки части образцов, изготовленных для испытаний, оказалось очень низким. Такая сварка могла быть типичной для некоторых сварочных цехов в 1943 г., но не характеризует современное качество выполнения сварки квалифицированным сварщиком.  [c.111]

Так, при изготовлении конструкций из углеродистых и низколегированных конструкционных сталей наибольшее применение находят как ручная дуговая сварка качественными электродами с толстым покрытием, так и автоматическая и полуавтоматическая сварка под флюсом, а также сварка в углекислом газе при сварке конструкции из высоколегированных сталей, цветных металлов и сплавов на их основе предпочтительное использование находит аргоно-дуговая сварка, хотя при определенных условиях применяются и некоторые другие разновидности электрической дуговой сварки.  [c.359]


На пятом участке околошовной зоны, именуемом участком старения при рекристаллизации, металл нагревается от температуры примерно 500° С до температуры несколько ниже температуры 720° С. Здесь происходит сращивание раздробленных при нагартовке (ковке, прокатке) зерен основного металла и некоторое разупрочнение его по сравнению с исходным состоянием. Снижение прочности наблюдается также при сварке основного металла, подвергшегося упрочняющей термообработке. На этом же участке околошовной зоны при сварке углеродистых конструкционных сталей с содержанием до 0,3% С при некоторых условиях наблюдается снижение пластичности и ударной вязкости и повышение прочности металла. Можно предположить, что это обусловливается старением после закалки и дисперсионным твердением.  [c.93]

Низколегированные среднеуглеродистые конструкционные стали применяют в машиностроении обычно в термообработанном состоянии. Для этой группы сталей характерны содержание более 0,22% С и склонность к закалке в условиях термического цикла сварки (табл. 10-4). Технология сварки низколегированных среднеуглеродистых сталей подобна технологии сварки среднелегированных сталей (см. 10-5, 10-6, 10-7).  [c.519]

Каждому типу электродов для сварки конструкционных, теплоустойчивых и высоколегированных сталей может соответствовать несколько марок электродов, особенно много марок разработано и выпускается для сварки конструкционных сталей. Например, к типу электродов Э42А относятся электроды марки УОНИИ-13/45, СМ-11 и др. Характеристика электродов различных марок приведена в табл. 10.5. Наиболее распространены для сварки в заводских условиях электроды марок АНО-1, АНО-6, ВРМ-12, ОЗС-4, МР-3, АНО-4, предназначенные для сварки низкоуглеродистых и низколегированных сталей. В конструкциях, к которым предъявляются повышенные требования пластичности и вязкости сварных швов, для сварки применяют электроды УОНИИ-13/45, СМ-11, УОНИИ-13/55, СК2-50 и другие этих же типов в зависимости от требований к электродам, указанным в проекте. Электроды ОЗС-18 и КД-И предназначены для сварки низколегированной атмосферно-коррозионно-стойкой стали, электроды ВСФ-65У —для сварки конструкций из высокопрочной низколегированной стали. Для сварки высоколегированных сталей используют электроды ОЗЛ-6, ЦЛ-11, ОЗЛ-8 н др., изготовляемые промышленностью, некоторые нз них приведены в табл. 10.5.  [c.139]

При применении в конструкциях ног.ы.ч марок сталей и сплавов необходимо помнить о химическом составе стали или сплава, о влиянии различных легирующих элементов в стали на ее свариваемость, об условиях сварки конструкционных и аустенитных сталей, об особенностях сварки того или иного сплава и в зависимости от этого принять такой метод и технологию сварки, которые гарантировали бы пвдучение высококачественного сварного соединения.  [c.69]

В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]

Электроды металлические для дуговой сварки конструкционных и теплоустойчивых сталей Электроды металлические для дуговой сварки высоколегированных сталей с особовыми свойствами Технические условия на изготовление, хранение и транспортирование покрытых сварочных электродов для энер-1 омашиностроения  [c.517]

При проверке сварочно-технологических свойств электродов выполняют один односторонний сварной тавровый образец или двусторонний сварной тавровый образец. В случаях, установленных стандартами или техническими условиями на электроды конкретной марки, вместо одностороннего сварного таврового образца выполняют трубный сварной стыковой образец (рис. 2.4, табл. 2.41). Ддя проверки данных свойств электродов, предназначенных для сварки углеродистых конструкционных сталей, используются пластины из стали марки СтЗсп и трубы из стали 20, в других случаях - пластины и трубы из низко-, средне- или высоколегированных сталей в зависимости от типа испытуемых электродов.  [c.195]

Для конструкций из малоуглеродистых и низколегированных конструкционных сталей, работающих в интервале температур 150—350" С, необходимо учитываты в определенных условиях опасность хрупких разрушений вследствие проявления эффекта деформационного старения. Она наиболее велика при использовании кипящих сталей, обладающих повышенной чувствительностью к этому эффекту. Примером его проявления является разрушение сварного технологического трубопровода из кипящей малоуглеродистой стали после 5,5 лет эксплуатации при температуре 200° С. Основное количество трещин проходило вдоль спирального шва на расстоянии около 10—20 мм от границы сплавления, т. е. на участке деформационного старения, нагретом при сварке до температур 200—400° С. При длительном осмотре на этом участке были выявлены многочисленные мелкие зародышевые трещины вследствие коррозионного воздействия химически активного продукта. Опыт других разрушений подобного рода также показал, что они возможны, как правило, лишь при наличии различного рода начальных дефектов, например, трещин в сварных швах.  [c.80]

Диффузионные прослойки могут возникать и развиваться /во время сварки, термообработки и эксплуатации при высоких температурах. Они являются причинами снижения свойств данных сварных соединений и возможных преждевременных разрушений комбинированных конструкций в различных условиях эксплуатации. Их развитие, связанное преимущественно с диффузией углерода, может приводить в сварных соединениях углеродистых и низколегированных конструкционных сталей с теплоустойчивыми и жаропрочными сталями к появлению обезуглеро-женных и науглероженных прослоек (рис, 129, а). В сварных соединениях теплоустойчивых сталей обычно структурно выяв- /1яется. лишь науглероженная прослойка (рис. 129, б).  [c.252]

Условия сварки, режим сварки, направление теплоотвода, скорость кристаллизации и охлаждения, объем сварочной ванны оказывают заметное влияние на структуру сварных швов. При сварке углеродистых и конструкционных сталей, как известно, условия сварки сказываются не столько на первичной, сколько на вторичной структуре шва. При сварке хромоникелевых аусте-нитных сталей и сплавов фазовые превращения, т. е. вторичная кристаллизация, сводятся, обычно только к выпадению избыточной фазы по границам зерен (кристаллов) аустенйта или по границам полигонизации. В то же время под влиянием изменений условий сварки первичная структура хромоникелевых сварных швов претерпевает весьма суш,ественные изменения. Большая скорость кристаллизации обусловливает развитие структурной микронеоднородности в сварном шве, а также межслойной ликвации и способствует подавлению зональной ликвации.  [c.118]


Стали типа 18 r8Ni широко используют в качестве слоя, нанесенного сваркой на обычные стали или в виде отливок. Для более жестких условий применяют высокохромистые стали 25 rl2Ni или 25 r20Ni и др. [51, с. 306]. Литая сталь 1,4 С 35,3 Сг показала высокую коррозионную кавитационную стойкость в воде и в растворе азотной кислоты [41, с. 140]. Титан является многообещающим конструкционным материалом.  [c.119]

В Европе было другое положение. Металлургическая индустрия была менее унифицированной, и хотя технологические процессы были хорошо освоены, отмечалось больше региональных различий. В Великобритании нормальный процесс для конструкционной стали был сбалансированного типа — полууспокоенный, но с большим соотношением марганца и кремния и меньшим, чем в стали США, содержанием углерода. На малоскоростных европейских прокатных станах окончательные температуры прокатки листов ниже, чем на высокоскоростных американских станах. В Европе выпускали бессемеровские кипящие стали для обычных конструкций и успокоенные, мелкозернистые, часто нормализованные стали для специальных конструкций. Многие европейские металлургические заводы имели оборудование для производства обоих типов сталей в отличие от заводов в США и Канаде. Поэтому они свободно выбирали технологические процессы производства стали и методы контроля свойств готовой продукции посредством испытаний при условии, если будет установлен экономически оправданный критерий. Они, так же как и их американские коллеги, были вынуждены проводить дополнительный контроль, И европейские, и британские металлурги разделяли мнение американских исследователей о том, что причинами аварий могут быть несовершенство конструкции и технологии сварки, а не качество стали.  [c.391]

Надежность многих деталей и узлов оборудования, аксгутуатируемого в сложных условиях, в значительной степени определяется восприимчивостью конструкционных сталей к коррозии под напряжением, водородному и радиационному охрупчиванию, межкристаллитному растрескиванию в условиях ползучести и при повторнь х нагрееах после сварки, охрупчиванию при усталостном нагружении.  [c.164]

Пятый уча1сток (5) аколошавиой зоны, получивший название участка рекристаллизации или старения, включает в себя металл, нагретый от температуры 500° С до температуры 720° С. На этом участке происходит сращивание раздробленных при пластических деформациях (прокатке, проковке и т. д.) зерен основного металла. В процессе рекристаллизации из обломков зерен зарождаются и растут новые, равновесные зерна. Если выдержка при температуре рекристаллизации будет излишне продолжительной, то произойдет не объединение раздробленных осколков, а значительный рост зерен. При сварке металлов, не подвергшихся пластическим деформациям (например, литые сплавы), процесс рекристаллизации не имеет места. На этом же участке околошовной зоны при некоторых условиях сварки углеродистых конструкционных сталей с содержанием углерода до 0,3% происходит снижение пластичности, и в первую очередь ударной вязкости, и повышение прочности металла. Снижение пластичности может явиться причиной снижения работоспособности сварного соединения при эксплуатации. За пятым участком околошовной зоны расположены участки, нагретые в пределах 100—500° С. Эти участки в процессе сварки не претерпевают видимых структурных изменений. Однако при сварке низкоуглеродистых сталей на узком участке (участок 6), подвергшемся иагреву в пределах 100—300° С, наблюдается резкое падение ударной вязкости. Так как участок расположен вне зоны концентрации напряжений, наличие его в большинстве случаев не представляет непосредственной опасности для работоспособности сварного соединения. При многослойной сварке строение околошовной зоны несколько меняется. Изменение строения околошовной зоны при сварке длинными участками, когда ко времени наложения последующего прохода металл успел остыть до температуры окружающей среды, проявляется в менее четком строении околошовной зоны всех проходов, кроме последнего. Менее четкое строение околошовной зоны обусловливается повторным термическим воздействием, являющимся своего рсда отпуском. При сварке короткими про-  [c.93]

Качество сварных соединений в значительной степени определяется надежностью защиты сварочной ванны и максимально разогретой зоны от воздействия окружающей среды, а также отсутствием в шве нор, шлаковых включений и других дефектов. Обеспечение указанных условий получения качественных соединений также связано с выбором способа сваркп. Наиболее эффективны в этом отношении сварка в атмосфере защитных газов и вакууме. Особенно важно правильно выбрать способ сварки при применении материалов, свойства которых ухудшаются при незначительном насыщении газами из окружающего воздуха. Например, для таких тугоплавких металлов, как титан, ниобий, а также для алюминия, магния и высоколегированных сталей предпочтительна дуговая сварка в атмосфере аргона высокой чистоты, а для молибдена и его сплавов — электронным лучом в вакууме. В то же время углеродистые и легированные конструкционные стали успешно сваривают всеми способами дуговой и электрошлаковой сварки. При соответствующем выборе режима и сварочных материалов получают сварные соединения, равнопрочные основному металлу при статических и динамических нагрузках.  [c.377]

Балки мостов п других сооружений, работающих при переменных нагрузках, редко подвергаются в эксплуатации усталостному нагружению, настолько неблагоприятному, как при испытаниях, результаты которых приведены в табл. 10.4. Ввиду этого не<"бходимо располагать методо.м экстраполирования ил еющихся экспериментальных данных для определения предела выносливости при других условиях нагружения. Один из таких методов заключается В использовании диаграммы предельных напряжений (рис. 10.12). На этой диаграмме нанесены также основные расчетные напряжения, рекомендованные в 1963 г. техническими условиями на конструкции мостов Американского общества сварки [12], а также допускаемые напряжения для балок с накладками на часги длины пояса из углеродистых конструкционных сталей А 373 или А 36. Из приведенных данных видно, что многие балки могли бы удовлетворительно работать при переменной нагрузке, соответствующей рекомендуемым расчетным напряжениям. Однако те же данные показывают, что 1при некоторых условиях нагружения балки со стыками, накладками на части длины поясов и другими неблагопр иятными деталями конструкции необходимо принимать пониженные расчетные напряжения. Возможно, что специальные ограничения необходимы также при . использовании тонкой стенки, испытывающей поперечные деформации при рабочих нагрузках.  [c.266]

Металлургические особенности сварки титана и его сп.тавов. Титан и его сплавы среди конструкционных ме-таллов занимают особое положение благодаря малой плотности (4,5 г/см ), тугоплавкое и. высокой прочности при нормальной и повышенной температурах, отличной коррозионной стойкости в атмосферных условиях и во многих агрессивных средах. Некоторые титановые сплавы по прочности более чем в 3 раза превосходят углероди-с ую сталь, а по коррозионным свойствам не уступают высоколегированной коррозиоиио-стойкон стали. Титан и особенно его сплавы обладают значительно большей удельной прочностью, чем конструкционные стали, алюминиевые и магниевые сплавы. Поэтому титан и его сплавы являются ценнепшнм конструкционным материалом в судостроении, энергетике, ракетно-реактивной технике, химическом машнностроенни и других отраслях промышленности.  [c.405]

Сварка под флюсом легированных конструкционных сталей. Автоматическая сварка под флюсом конструкционных легированных сталей принципиально осуществляется при следующих условиях дополнительное легирование металла шва элементами, сообщающими ему требуемые свойства обязательное применение низкоуглеродистой электродной проволоки ограничение глубины проплавления основного металла предварительный и сопутствующий подогрев применение основных флюсов последующая термообработка. При сварке низколегированных конструкционных сталей в большинстве случаев применяют флюсы АН-348А, ОСЦ-45 и АН-60 и сварочные проволоки Св-08ГА, Св-10Г2. Если стали имеют повышенное содержание кремния, то применяют флюс АН-10 в сочетании с высокомарганцовистой проволокой.  [c.175]

Ограниченно сваривающиеся стали склонны к образованию трещин при сварке в обычных нормальных условиях. Такие стали свариваются с предварительным подогревом до температуры 250— 350°С. К этой группе относятся среднеуглеродистые стали с содержанием углерода до 0,57о, низколегированные стали с повышенным содержанием легирующих элементов, некоторые легированные стали. После сварки таких сталей рекомендуется отжиг или высокий отпуск, а при сварке ответственных конструкций отжиг и отпуск обязательны. Примеры таких сталей углеродистые обыкновенного качества (Ст бис) углеродистые качественные конструкционные (40, 45, 50) низколегированные и легированные конструкционные (30 ХМ А, 30 ХГС, 35 ХгП, 35 ХГСА),  [c.90]


При сварке легированных конструкционных сталей происходит легирование шва элементами, содержащимися в основном металле (кремнием, никелем и др.). Чем больше в металле шва углерода и чем он больше легирован, тем больше возможность образования трещин. Одним из условий равнопрочности сварного-соединения является одинаковый химический состав основного и наплавленного металла. Однако для легированных конструкционных сталей легирование шва элементами, входящими в основной металл, не всегда приемлемо, так как это часто влечет за собой образование трещин. Поэтому на практике приходится принимать специальные меры, чтобы предотвратить сильное обогащение шва элементами основного металла и обеспечить легирование примесями, устраняюпщми образование трещин. В этом 82  [c.82]


Смотреть страницы где упоминается термин Условия сварки конструкционных сталей : [c.178]    [c.195]    [c.195]    [c.261]   
Смотреть главы в:

Справочник сварщика  -> Условия сварки конструкционных сталей



ПОИСК



СТАЛЬ 280 СТАЛЬ КОНСТРУКЦИОННАЯ

Сталь Сварка

Сталь конструкционная



© 2025 Mash-xxl.info Реклама на сайте