Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромистые Сварка

Сталь хромистая (сварка) 6—40 20—40 480 <0,001 <0.001  [c.46]

Сталь хромистая (сварка) Сталь хромистая 490 0,11 0,120 16  [c.112]

Сталь хромистая (сварка) 15 45 20— кипения 690— 490 0—0,001 0—0,001 16  [c.284]

Сварка Си металлическим электродом производится электродами марок Комсомолец-100, МН-5 и др. Сварка ведется на постоянном токе обратной полярности, короткой дугой, электродами диаметром 3—6 мм, без колебаний. Сила тока подбирается по диаметру электрода = 50d. При сварке стыковых соединений металл толщ,иной до 4 мм сваривается без разделки кромок, а при больших толщинах — с разделкой. Сварка Си вольфрамовым электродом в среде Аг ведется постоянным током. прямой полярности. Для сварки применяют Аг марки В ГОСТ 10157—62, Режимы сварки приведены в табл. 9. В качестве присадки применяют электродную проволоку из хромистой бронзы Бр.Х08 или Бр.КМц 3-1.  [c.115]


Однако при термической резке и сварке небольшая скорость хромистого аустенита, вызывающая склонность к закалке, и фазовые превращения мартенситного характера су-  [c.76]

Однако небольшая скорость распада хромистого аусте-нита при термической резке и сварке существенно усложняют технологический процесс изготовления сварных изделий. Неблагоприятная реакция на термодеформационный цикл сварки, выражающаяся в образовании закалочных структур и соответственно возникновении твердых хрупких прослоек в зонах сварки, оказывают отрицательное влияние на свариваемость и эксплуатационную надежность сварных конст )укций.  [c.96]

Для сварки хромистых сталей с содержанием не более 0,15 %С необходимо разрабатывать специальные режимы.  [c.33]

Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва.  [c.28]

Присадка Ti и Nb устраняет способность 5%-ных хромистых сталей к самозакаливанию, но только при охлаждении с относительно невысоких температур [15, 34]. При сварке, когда разогрев металла происходит до очень высоких температур, карбиды этих элементов растворяются в аустените и сталь вновь приобретает способность закаливаться при охлаждении.  [c.128]

Хром вводят в низколегированные стали для повышения устойчивости карбидов и для улучшения окалиностойкости. Содержание хрома в перлитных сталях возможно от 0.5 до 2,5 %. Хром способствует повышению прокаливаемо-сти. В процессе сварки толстостенных труб из перлитных хромистых сталей из-за повышенной их склонности к образованию мартенсита приходится применять предварительный и сопутствующий подогрев, чтобы избежать образования треш,ин. Хром недорог и недефицитен.  [c.102]

Анализ большого количества испытаний образцов сварных соединений на длительную прочность показывает, что, как правило, ее уровень зависит прежде всего от степени легирования стали и ее термического состояния перед сваркой. Для относительно слабо легированных перлитных сталей (углеродистых и хромомолибденовых), а также большинства аустенитных сталей на железной основе длительная прочность сварных соединений относительно мало отличается от соответствующих показателей для основного металла. Для хромомолибденованадиевых и 12-процентных хромистых жаропрочных сталей, являющихся термически нестабильными, уровень длительной прочности сварных соединений, и прежде всего их деформационная 22  [c.22]


При сварке 12-процентных хромистых сталей в зоне термического влияния образуются хрупкие закаленные структуры, подобные структурам зоны термического влияния сварных соединений высоколегированных перлитных сталей.  [c.30]

Наиболее удовлетворительной свариваемостью обладают 12-процентные хромистые стали с содержанием углерода в пределах 0,10- 0,20%. В зависимости от соотношения легирующих элементов они могут иметь либо однородную сорбитную структуру, либо содержать до 10—15% свободного феррита. Обладая замедленной кинетикой структурных превращений, указанные стали даже при наличии высокого подогрева при сварке имеют в околошовной зоне закаленные мартенситные прослойки, для устранения которых необходим отпуск конструкции. Поэтому обязательным условием их сварки является высокий подогрев при температурах 300—450° с медленным охлаждением и последующим отпуском. Легирование 12-процентных хромистых сталей такими карбидообразующими элементами как вольфрам, ванадий,  [c.31]

Фиг. 11. Механические свойства хромистого наплавленного металла типа X11 ВМФ (электроды марки КТИ-10) в зависимости от режима отпуска после сварки Фиг. 11. <a href="/info/58866">Механические свойства хромистого</a> наплавленного металла типа X11 ВМФ (электроды марки КТИ-10) в зависимости от режима отпуска после сварки
По уровню механических свойств хромистый металл шва либо превосходит основной металл, либо близок к нему. Его свойства в суш,ественной степени зависят от режима отпуска после сварки (фиг. 11). Исходя из условия получения допустимых значений пластичности и ударной вязкости металла хромистого шва, минимальными температурами отпуска являются 680° при длительности 10 час. или 700° при длительности 5 час. При повышении температур отпуска сверх указанных пластичность и ударная вязкость металла шва повышаются при некотором снижении прочностных свойств.  [c.32]

Для оценки свариваемости аустенитных сталей в отдельных случаях необходимо учитывать существенное влияние, оказываемое процессом сварки на структуру околошовной зоны основного металла. Вследствие отсутствия закалочных превращений в аустенитных сталях при воздействии на них сварочного цикла околошовная зона имеет менее сложное строение, чем зона при сварке перлитных и хромистых сталей. В участке, непосредственно примыкающем к зоне сплавления, может проявляться ряд процессов, связанных с нагревом до температур выше 1000° — рост зерна, рекристаллизация, если металл до сварки был наклепан фазовые превращения, связанные с переходом второй фазы в твердый раствор изменение структуры и свойств  [c.39]

Для сварных соединений перлитных сталей с хромистыми использование как перлитных, так и хромистых электродов неизбежно приводит к появлению в слоях шва, прилегающих к отличному по составу основному металлу, в исходном состоянии после сварки мартенситной структуры. Как показало исследование механических свойств переходных составов шва [42 ], наилучшие показатели достигаются для швов с содержанием хрома в пределах 1—5% (возможные составы при использовании перлитных электродов). Поэтому для сварки перлитных сталей с хромистыми используются в основном электроды перлитного класса.  [c.45]

J Электроды для сварки высоколегированных сталей с особыми свойствами должны удовлетворять требованиям ГОСТ 10052—75. Большое разнообразие служебного назначения этих сталей определяет и большой типаж электродов для их сварки. Стандартом предусмотрено 49 типов электродов для сварки хромистых и хромоникелевых сталей, коррозионно-стоЙ1шх, жаропрочных и жаростойких высоколегированных сталей мартепситно-ферритного, ферритного, аустенитно-ферритного и аустенитпого классов.  [c.110]

Высокологпровпниые хромистые стали, находящиеся в феррит-иом состоянии, при температурах выше И50° С обладают склонностью к быстрому росту зерна. Так как в таких сталях обычно присутствует и карбидная фаза, то при быстром нагреве и охлаждении, характерном для условий сварки, растворяющиеся карбиды обогащают углеродом только микрообъемы металла, прилегающие к ним, без общей гомогенизации, в результате чего в этих участках создаются условия протекания в них превращении а у, а при охлаждении — у а. Наиболее вероятны эти процессы вблизи границ зерен. В результате таких процессов  [c.261]


Радикальная мера предотвращения трещин — применение предварительного и сопутствующего сварке подогрева. Обычно для хромистых сталей мартеиситпого и мартеиситпо-ферритных классов рекомендуется общий (или иногда местный) подогрев до температуры 200—4Г)0° С. Температуру подогрева повышают с увеличением склонности к закалке (в основном с увеличением концентрации углерода в стали) и жесткости изделия. Однако возможно и даже предпочтительней не нагревать металл до температур, вызывающих повышение хрупкости, например в связи с сн-иеломкостью, и ограничивать температуру сопутствующего сварке подогрева.  [c.267]

Рис. 135. Термический цикл основного металла в зоне термического влияния при сварке и последующей термообработки закаливающихся хромистых сталей сплошные лппип — сопутствующий подогрев 380° С Рис. 135. <a href="/info/7448">Термический цикл</a> <a href="/info/384895">основного металла</a> в <a href="/info/7204">зоне термического влияния</a> при сварке и последующей термообработки закаливающихся <a href="/info/36274">хромистых сталей</a> сплошные лппип — сопутствующий подогрев 380° С
Таблица 05. Сварочные материалы для сварки мартенсвтиых и мартенситно-ферритных хромистых сталей Таблица 05. Сварочные материалы для сварки мартенсвтиых и мартенситно-ферритных хромистых сталей
Механизированные процессы сварки ферритных хромистых сталей (сварка в углекислом газе, а также под флюсом) при использовании сварочных материалов, дающих ферритные швы, не обеспечивают улучшения вязкости швов даже после высокого отпуска, хотя отпуск несколько улучшает коррозионные характеристики сварных соединений сталей типа 08Х17Т. Более распространены  [c.275]

Шкивы плоскоременных передач изготовляют литыми, сварными или сборными. В массовом производстве чаще применяют литые шкивы, в индивидуальном — сварные, а в крупносерийном и массовом — сборные из штампованных элементов. Для изготовления шкивов всех видов передач применяют чугуиы, стали, легкие сплавы, пластмассы. При этом допустимые скорости fmax шкивов зависят от материала шкива и способа его изготовления чу-гуны (литье) СЧ 15-32, СЧ 18-36 — до 30 м/с сталь 25 Л (литье) — до 45 сталь 3 (сварка или сборный) —до 60 легкие сплавы АЛ-3 и МЛ (литье)—до 80 легированная хромистая сталь или дюралюминий—свыше 100 текстолит — до 25 м/с. Диаметр ведущего шкива Di плоскоременной передачи округляют по рекомендациям, приведенным выше. Если заранее известна скорость ремня, диаметр шкива можно определить по формуле >i=60 и1(пП[).  [c.50]

По-видимому, с целью придания металлу корпуса крана в зоне уплотнения и расположения винтов (концентраторов напряжений) антикоррозионных свойств 1аплавка производилась хромистыми электродами ферритного класса. В процессе сварки наплавленного металла с основным металлом корпуса крана вследствие перемешивания содержание хрома в наплавленном слое уменьшилось до 8,5%. Такого содержания хрома недостаточно для получения коррозионностойкой ферритной структуры. В результате в наплавленном слое образовалась мартенситная структура, не обладающая стойкостью против сероводородного растрескивания, что привело в итоге к возникновению трещин в корпусе 6" кранов и к нарушению их герметичности.  [c.47]

При изготовлении оболочковых конструкций в зависимости от их размеров и геометрических форм приходится выполнять прямолинейные, кольцевые, круговые, спиральные стыковые швы В зависимости от толщины стенки оболочки приемы выполнения каждого из них имеют свои специфические особенности, разнообразна и применяемая при сварке оснастка /5, 16/. Стыковые швы тонкостенных конструкций, как правило, выполняются в средс защитных газов. В качестве материала оболочек наибольшее применение получили низкоуглеродистые и низколегированные стали низкой и средней прочности, а также высокопрочные стали, титановые и алюминиевые сплавы и т.п. Сварные оболочковые конструкции средней толщины (до 40 мм) из низколегированных и низкоуглеродистых сталей изготовляются преимущественно с помощью автоматической сварки под флюсом. Конструкции, работающие в афессивных средах, выполняют из хромоникелевых и хромистых сталей и сплавов с помощью автоматической сварки под слоем флюса. Сварк> продольных и кольцевых швов выполняют, как правипо, с дв х сторон.  [c.71]

Исследования показали, что хромированное покрытие толщиной 100—200 мкм не оказывает заметного влияния на процесс контактной сварки труб. Микроструктура основного металла в зоне термического влияния и линии сплавления состоит из сорбитообразного перлита и феррита. В процессе сварки в результате вьщавливания металла происходит нарушение сплошности хромистого покрытия и после удаления наружного грата  [c.245]

Ввиду способности 5—10%-ных хромистых сталей к самозакаливанию в воздухе технология изготовления деталей из этих сталей имеет ряд особенностей. После каждой операции горячей обработки давлением или сварки их следует очень медлепио охлаждать или подвергать отжигу при 860° С. В некоторых случаях для отжига достаточен нагрев на несколько пониженную температуру (около 750—770° С), однако полное смягчение происходит только после отжига при 860° С и охлаждении с печью.  [c.128]


Во избежание растрескивания как после сварки, так и после закалки очень важно детали немедленно подвергать отпуску или отжигу. Отжиг при низких температурах обеспечивает весьма высокие механические свойства, но в случае работы в агрессивных средах (морской воздух и др.) в деталях может наблюдаться коррозионное растрескивание под напряжением. Полностью нержавеющи.ми свойства.ми сложнолегированные стали не обладают, но их коррозионная стойкость значительно выше, чем стойкость низколегированных конструкционных сталей, и несколько уступает простым 13%-иым хромистым нержавеющим сталям типа 1X13.  [c.131]

Изучение стойкости хромистых и хромоникелевых сталей против науглерох<л-вания, что имеет место при цементации в восстановительных средах с углеводородами, позволило установить полезное действие более высоких содержаний никеля и кремния, Поэтому в оборудовании, используемом для проведения цементации при помощи углерода, итироко применяют хромоникелевые стали с 25% Сг, 20% Ni и 2% Si, или с 15% Сг и 35% Ni, или ферронихромы с 15% Сг и 65% Ni. Эти стали используют как в виде отливок, так и проката (листы, прутки, поковки), соединяемого сваркой. Литые цементационные ящики чаще всего изготовляют из сплавов с 15% Сг и 35 или 65% Ni.  [c.225]

Сварка инфракрасным излучением (ИК-сварка). Принцип сварки состоит в использовании в качестве источника тепла инфракрасного излучения, получаемого при накаливании силитовых стержней, спиралей из хромистой стали, стержневых кварцевых ламп и др. Для интенсификации процесса сварка осуществляется на подложке из поролона, микропористой резины и толстых прорезиненных тканей черного цвета. Упругость подложек, плотно прижатых к пленкам, обеспечивает необходимое давление при сварке.  [c.213]

Ферритные хромистые стали подвержены межкристаллитной коррозии. Появление последней связано с выпадением карбидов. Вследствие малой растворимости углерода в феррите карбиды, имеющиеся встали, переходятв твердый раствор при более высоких, температурах, чем в случае аустенитных сталей. При охлаждении карбиды выделяются по границам зерен. При этом, по мнению Э. Гудремона [111,62], происходит обеднение хромом границ зерен и понижение их устойчивости. И. А. Левин и С. А.Гинцберг[П1,154] используя методику микроэлектрохимических исследований, показали, что границы зерен в хромистых сталях поляризуются слабее, чем основное зерно. Диффузия хрома вобъемноцентрированной решетке феррита происходит более интенсивно, чем в аустените. В связи с этим при медленном охлаждении с высоких температур или при длительном отжиге в интервале температур 550—700° С наблюдается коагуляция карбидов и выравнивание концентрации хрома. Ферритные хромистые стали при этом нечувствительны к межкристаллитной коррозии. В полуферритных сталях межкристаллитная коррозия проявляется в более слабой степени. В двухфазной стали границы зерен феррита и аустенита по разному чувствительны к межкристаллитной коррозии после различных видов термообработки. Для феррита опасно быстрое охлаждение, для аустенита — отпуск при температурах 550—700° С. Устраняется межкристаллитная коррозия нагревом при 500—700° С в случае феррита и закалкой при температуре 1050° С в случае аустенита. Поскольку мартенситные хромистые стали (для снятия закалочных напряжений) после сварки всегда подвергаются отжигу, межкристаллитной коррозий они фактически  [c.176]

В практике изготовления конструкций могут встречаться сварные соединения различных 12-процентных хромистых сталей между собой. В этих случаях целесообразно применять сварочные материалы, предназначенные для менее легированной стали. Так, например, в сварном соединении сталей 1X13 и 15Х12ВМФ между собой могут использоваться электроды типа ЭФ-13, предназначенные для сварки стали 1X13. Режим термической обработки после сварки обычно выбирается по более легированной составляющей.  [c.32]


Смотреть страницы где упоминается термин Хромистые Сварка : [c.46]    [c.112]    [c.284]    [c.331]    [c.190]    [c.272]    [c.275]    [c.275]    [c.313]    [c.314]    [c.317]    [c.317]    [c.346]    [c.17]    [c.242]    [c.153]    [c.33]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.22 ]



ПОИСК



СВАРКА ВЫСОКОЛЕГИРОВАННЫХ НЕРЖАВЕЮЩИХ ХРОМИСТЫХ ------f И КИСЛОТОСТОЙКИХ АУСТЕНИТНЫХ СТАЛЕЙ (доц. панд. техв. наук А. И. АКУЛОВ) Газовая сварка

Сборка и сварка конструкций из хромистых сталей

Сварка 13-ных хромистых нержавеющих стаСварка высокохромистых ферритных сталей

Сварка высоколегированных нержавеющих хромистых и кислотостойких аустенитных сталей (проф. д-р техн. наук А. И. Акулов) Газовая сварка

Сварка мартенситных хромистых сталей

Сварка ферритных хромистых сталей

Сварка хромистых сталей

Электроды для сварки высоколегированных хромистых ферритных и феррито-мартенситных жаропрочных и нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте