Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые Сварка

Сталь хромоникелевая (сварка) То же 180—190 1008 0 0 51  [c.96]

Образцы из хромоникелевой стали, испытанные на межкристаллитную коррозию, на которые имеются все данные по материалам, режиму и технологии сварки.  [c.86]

Межкристаллитная коррозия аустенитных хромоникелевых сталей связана с малой устойчивостью границ зерен после замедленного охлаждения или нагрева стали при 450—850° С, что имеет место главным образом при сварке.  [c.421]


Разновидностью межкристаллитной коррозии металлов является ножевая коррозия (рис. 3. 2з) — коррозия местного вида, возникающая в сварных конструкциях в очень узкой зоне на границе сварной шов — основной металл при сварке хромоникелевых сталей с повышенным содержанием углерода, даже легированных титаном или ниобием. В узкой околошовной зоне перегретого почти до расплавления металла (порядка 1300° С и выше) растворяются карбиды титана или хрома. При последующем быстром охлаждении (при контакте с ненагретым металлом) этой зоны карбиды титана или ниобия не успевают выделиться вновь и углерод остается в твердом растворе. Последующее достаточно длительное пребывание этой зоны при температурах 600—750° С, например, при сварке двухсторонним швом, приводит  [c.424]

Можно производить наплавку в инертных газах и плавящимся электродом. Однако применение той же технологии, что и для сварки, ведет к повышенному содержанию основного металла в наплавке. Поэтому используют дополнительную присадочную проволоку. Этот способ широко используют при наплавке высоколегированных хромоникелевых сталей и сплавов.  [c.91]

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой - применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]

Разновидностью электродуговой сварки в среде защитного газа является атомно-водородная сварка, применяемая при сварке алюминия, низколегированных конструкционных и хромоникелевых нержавеющих сталей. В процессе сварки водород сгорает и факел его пламени надежно защищает сварочную ванну от воздействия кислорода воздуха.  [c.400]

Существенным недостатком при защите от МКК с помощью легирования титаном является увеличение растворимости карбида титана с ростом температуры закалки, что приводит к повышению содержания свободного углерода и титана в твердом растворе. В этом случае при последующем отпуске в зоне опасных температур вследствие более быстрой доставки к границам зерен углерода образуются карбиды хрома, а не карбиды титана) что приводит к появлению склонности к МКК даже при некотором избытке титана в стали. Чем выше температура закалки, тем большее количество карбидов титана диссоциирует и тем выше содержание несвязанного углерода в твердом растворе, тем больше вероятность появления склонности к МКК- Таким образом, если материал подвергается высокой закалке или технологическим нагревам до высоких температур, например при сварке, легирование титаном не всегда может гарантировать полную устойчивость аустенитных хромоникелевых сталей к МКК.  [c.54]


Недостатком стабилизированных ниобием аустенитных хромоникелевых коррозионно-стойких сталей является возможность возникновения в них горячих трещин при сварке [15].  [c.55]

Технологические операции.В процессе изготовления деталей аустенитные хромоникелевые коррозионно-стойкие стали подвергаются различным технологическим операциям нагреву, сварке, деформации, поверхностной обработке и т. д. Все эти воздействия могут вызвать в металле изменения, влияющие на его восприимчивость к МКК-  [c.57]

Хромоникелевые аустенитные стали с очень низким содержанием углерода ( 0,03 или 0,02%) имеют более высокое сопротивление межкристаллитной и ножевой коррозии после сварки. В связи с отсутствием карбидных и карбонитридных включений сталь с очень низким содержанием углерода имеет повышенные пластические свойства, высокую способность к полированию и хорошую свариваемость.  [c.33]

Медовар Б. И. Сварка хромоникелевых аустенитных сталей. М, Машгиз,  [c.82]

ЭА-ЗМ6, ЭА-ЗМ9 — для сварки малоуглеродистых и низколегированных конструкционных сталей с хромоникелевыми сталями аустенитного класса, работающих при повышенной температуре  [c.43]

Свариваемые металлы. Стыковой сваркой (в том числе и ударной) свариваются между собой почти все металлы и сплавы, а именно а) конструкционные, углеродистые и специальные стали во всех возможных сочетаниях, как, например, углеродистая с быстрорежущей, быстрорежущая с нержавеющей, хромоникелевая с малоуглеродистой б) углеродистые и специальные стали с ковким чугуном, всеми сортами латуней и бронз, монель-металлом, медью, никелем, сплавами высокого электрического сопротивления, немагнитными сплавами, вольфрамом, молибденом, оловом, свинцом, сурьмой и всеми благородными металлами в) алюминий с алюминиевыми сплавами, медью и большинством сортов латуней и бронз г) вольфрам с медью и медными сплавами, а также сплавами высокого электрического сопротивления д) никель с медью, латунями и бронзами.  [c.356]

Сварка хромоникелевых сталей  [c.428]

При температуре воды 268 С, скорости ее движения 9 м сек и в присутствии 50 мл л водорода коррозия хромоникелевой стали, дополнительно легированной титаном или ниобием, незначительна и ею можно пренебречь. При повышении температуры воды до 317° С, в присутствии 100 мл л водорода и при скорости ее движения 6 лг/се/с скорость коррозии этой стали увеличивается примерно в пять раз, а в продуктах коррозии ее содержится 90% железа, 1% хрома и 5% никеля. Состояние поверхности стали на скорость коррозии не влияет. В сварных конструкциях из стали 18-9, легированной титаном, возможно появление усиленной местной коррозии в переходной зоне (между основным металлом и сварным швом). Склонность к коррозии в этом случае не зависит от закалки шва, сильно уменьшается при температуре отпуска сваренной конструкции 650° С, длившегося в течение 2 час, резко увеличивается при закалке перед отпуском и уменьшается при стабилизирующем отжиге сварного шва. Наилучшие результаты получаются при закалке этой стали перед сваркой и отжиге после сварки при температуре 800° С в течение 4 час (испытания проводились в азотной кислоте). Холоднодеформированные образцы из стали 18-9 усиленной коррозии подвергаются в серной кислоте. Стойкость их становится высокой после стабилизирующего отжига при температуре 850° С в течение 2 — 3 час.  [c.299]

J Электроды для сварки высоколегированных сталей с особыми свойствами должны удовлетворять требованиям ГОСТ 10052—75. Большое разнообразие служебного назначения этих сталей определяет и большой типаж электродов для их сварки. Стандартом предусмотрено 49 типов электродов для сварки хромистых и хромоникелевых сталей, коррозионно-стоЙ1шх, жаропрочных и жаростойких высоколегированных сталей мартепситно-ферритного, ферритного, аустенитно-ферритного и аустенитпого классов.  [c.110]

Удовлетворяющую этому требованию Хромоникелевую сталь марки Х18Н9Т применяют для сварных конструкций. Легирование стали ниобием (сталь 0Х17Н12Б) в ряде случаев дает больший эффект, чем легирование титаном. Кроме того, ниобий меньше, чем титан, подвержен выгоранию, поэтому в качестве присадочного материала при сварке применяют электродную проволоку из стали, легированной ниобием.  [c.424]


Сварные изделия, работающие в агрессивных средах аппараты для химической промышленности Нержавеющие детали, изготовляемые глубокой вытяжкой сварная проволока при сварке хромоникелевых сталей типа Х18Н9 трубы, детали печной арматуры, теплообменники, роторы, патрубки и коллекторы выхлопных систем электроды искровых зажигательных свечей  [c.222]

Рекомендуется для изделий, работающих в средах более высокой агрессивности, в которых сталь Х18Н9Т не обладает достаточно высокой сопротивляемостью к межкрнсталлитнон и ножевой коррозии. Присадочный материал для сварки хромоникелевой стали  [c.223]

Наиболее широкое применение находят коррозионно-стойкие хромоникелевые стали (12Х18НЮТ, 10Х23Н18 и др.). Главными трудностями при сварке этих сталей являются склонность к горячим трещинам при сварке и к межкристаллитной коррозии при эксплуатации.  [c.126]

Так, при сварке хромоникелевой стали 12Х18Н10Т, содержащей 0,2—0,3% Ti, в металле шва можно сохранить до 0,10% титана, несмотря на его огромное сродство к кислороду. Найдем условия равновесия процесса (AGgo и AGVo известны)  [c.327]

Полуторный оксид хрома СГ2О3, присутствовавший в шлаках при сварке хромоникелевых сталей, изоморфен корунду и образует с ним твердые растворы, окрашивая их в розовый цвет.  [c.353]

При изготовлении оболочковых конструкций в зависимости от их размеров и геометрических форм приходится выполнять прямолинейные, кольцевые, круговые, спиральные стыковые швы В зависимости от толщины стенки оболочки приемы выполнения каждого из них имеют свои специфические особенности, разнообразна и применяемая при сварке оснастка /5, 16/. Стыковые швы тонкостенных конструкций, как правило, выполняются в средс защитных газов. В качестве материала оболочек наибольшее применение получили низкоуглеродистые и низколегированные стали низкой и средней прочности, а также высокопрочные стали, титановые и алюминиевые сплавы и т.п. Сварные оболочковые конструкции средней толщины (до 40 мм) из низколегированных и низкоуглеродистых сталей изготовляются преимущественно с помощью автоматической сварки под флюсом. Конструкции, работающие в афессивных средах, выполняют из хромоникелевых и хромистых сталей и сплавов с помощью автоматической сварки под слоем флюса. Сварк> продольных и кольцевых швов выполняют, как правипо, с дв х сторон.  [c.71]

К материалам, которые могут быть сварены на указанных установках, относятся сталь Х18Н10Т и другие марки хромоникелевых сталей нейзильбер, титан, никель, монель-металл, нихром, берил-лиевая бронза, латуни некоторых марок и др. Наилучшие результаты получаются при сварке одноименных материалов.  [c.154]

Для сварки хромоникелевых коррозионностойкнх сталей, содержащих молибден (Х17Н13М2Т), применяют электроды ЭА-1МБ, которые легируют шов молибденом и ниобием. К электродам этого вида могут быть отнесены также электроды  [c.59]

Изучение стойкости хромистых и хромоникелевых сталей против науглерох<л-вания, что имеет место при цементации в восстановительных средах с углеводородами, позволило установить полезное действие более высоких содержаний никеля и кремния, Поэтому в оборудовании, используемом для проведения цементации при помощи углерода, итироко применяют хромоникелевые стали с 25% Сг, 20% Ni и 2% Si, или с 15% Сг и 35% Ni, или ферронихромы с 15% Сг и 65% Ni. Эти стали используют как в виде отливок, так и проката (листы, прутки, поковки), соединяемого сваркой. Литые цементационные ящики чаще всего изготовляют из сплавов с 15% Сг и 35 или 65% Ni.  [c.225]

ЭА-1 Гб — конструкционных низколегированных специальных сталей, а также для сварки этих сталей с хромоникелевыми и хромоникельмарганцовистыыи сталями аустенитного класса. Для сварки стали марки Г-13Л со стороны поверхностей, не работающих на износ  [c.43]

Деформация возрастает при сварке стали с пониженной величиной коэфициента теплопроводности (например хромоникелевой ау-стенитового класса). Деформации при обратно-  [c.860]

Аустенитная хромоникелевая сталь также чувствительна к сильному росту зерна в зонах термического влияния, но в несколько меньшей степени, чем ферритная. Особенно сильный рост зерна наблюдается при сварке хо-лоднодеформированиой хромоникелевой смли вследствие рекристаллизации. В хромоникелевой аустенитной стали (типа 18% Сг и  [c.354]

В СССР получила применение в судостроении марганцовистая сталь повышенной прочности марок 20Г (для сварки) и ЗОГ (для клёпаных конструкций). С 1938 г. для строительства Дворца Советов была применена высокопрочная хромомарганцовомедистая сталь марки ДС. Помимо этого с 1939 г. разработаны и ныне внедрены в производство марки типа СХЛ, выплавляемые на базе природнолегированных хромоникелевых руд Орско-Хали-ловского района. При выплавке этих марок используется также легированный лом, медь вводится в виде отходов биметалла. Химический состав стали высокой прочности для строительных конструкций, изготовляемой в СССР, приведён в табл. 20.  [c.375]

При сварке хромоникелевых нержавеющих и жароупорных сталей необходимо учесть следующие их особенности а) хром интенсивно соединяется с кислородом, образуя тугоплавкий окисел Сг20 , б) хром образует устойчивые карбиды СГ3С2 и СгцС. сильно снижающие антикоррозийные свойства металла выделение карбидов из аустенита проходит в интервале температур 600—800° С, и чем больше содержание углерода в металле, тем благоприятнее условия их выделения. Наличие в металле титана и ниобия предохраняет его от выпадения карбидов хрома в) теплопроводность нержавеющих и жароупорных сталей в 3—4 раза меньше, чем малоуглеродистых, а коэфициент линейного расширения значительно выше, что вызывает местные перегревы и повышает внутренние напряжения.  [c.428]

Самый быстрый и надежный способ ремонта треснувших или лопнувших деталей — сварка. Но если деталь сделана из плохо сваривающегося материала, ее приходится заменять. И дело не только в ее цене. На изготовление нового многотонного маховика или корпуса паровой турбины, на монтаж и демонтаж уходит иногда по полгода, а то и целый год. Убытки от простоя машины за это время многократно перекрывают стоимость самой заменяемой детали. Американская ремонтная фирма из Питсбурга разработала способ механической сшивки треснувших деталей, удовлетворяющий самым строгим прочностным требованиям. Деталь поперек трещины рассверливают так, чтобы отверстия частично наезжали друг на друга. Затем в образовавшуюся полость заклепочным молотком плотно запрессовывают гребенку из прочной хромоникелевой стали. Чтобы соединение хорошо работало и на сжатие, выдерживало знакопеременные нагрузки, трещину дополнительно засверливают вдоль оси и в образовавшиеся отверстия забивают стальные конические пробки, создающие сильный натяг. Если от шва требуется герметичность, оставшиеся щели замазывают герметиком . Этот же метод освоен недавно в ГДР, где организован даже специальный технический центр по новому виду работ. Немецкие инженеры считают механическую сшивку незаменимым способом так-  [c.46]



Смотреть страницы где упоминается термин Хромоникелевые Сварка : [c.250]    [c.254]    [c.274]    [c.276]    [c.460]    [c.40]    [c.128]    [c.14]    [c.5]    [c.48]    [c.55]    [c.228]    [c.437]    [c.859]    [c.132]    [c.142]    [c.415]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.156 ]



ПОИСК



Автоматическая сварка под флюсом жаропрочных хромоникелевых сталей

Общие технологические указания по сварке жаропрочных хромоникелевых аустенитных сталей

Основные особенности сварки аустенитных хромоникелевых сталей

Особенности сварки хромоникелевых жаропрочных сталей. . — Горячие трещины при сварке сталей аустенитного класса

Особенности сварки чугуна, нержавеющих хромоникелевых сталей и цветных металлов

Сварка аустенитных хромоникелевых сталей

Сварка кислотостойких, хромоникелевых и двухслойных стаI лей

Сварка коррозионностойких хромоникелевых сталей

Сварка хромоникелевых жаропрочных сталей

Сварка хромоникелевых сталей

Свойства наплавленного металла и сварных соединений при ручной сварке хромоникелевых жаропрочных сталей

Способы сварки, применяемые при изготовлении конструкций из жаропрочных хромоникелевых сталей

Указания по- сварке под флюсом наиболее распространенных хромоникелевых аустенитных сталей

Хромоникелевые

Хромоникелевые Сварка — Выбор электродов

Электроды для ручной сварки хромоникелевых жаропрочных сталей

Электроды для сварки высоколегированных хромоникелевых аустенитных жаропрочных и нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте