Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы длительных испытаний на растяжение

Методы длительных испытаний на растяжение 151  [c.151]

Б МЕТОДЫ ДЛИТЕЛЬНЫХ ИСПЫТАНИИ НА РАСТЯЖЕНИЕ  [c.151]

Несмотря на то, что за последние годы получили широкое распространение такие совершенные методы горячих испытаний на растяжение, как ползучесть и длительная прочность, все же кратковременное испытание на растяжение при высоких температурах не утратило своего значения.  [c.40]

Испытания на водородное охрупчивание обычно проводят с целью исследования какого-либо одного из двух типов поведения. Поведение I типа связано с кратковременными или мгновенными процессами, когда проникновение водорода в металл посредством диффузии невелико или отсутствует. Такие процессы исследуют с помощью испытаний на растяжение или методами механики разрушения при высоком или низком давлении газа. Поведение II типа характерно для тех случаев, когда водород попадает в решетку металла, что может произойти, например, при длительной эксплуатации конструкции в водородсодержащей среде. Такие условия моделируются путем проведения испытаний на образцах, предварительно наводороженных до перенасыщения в газовой фазе или электролитически. Используемые методики могут включать растяжение, разрушение, выращивание усталостных трещин или рост трещин при постоянной нагрузке.  [c.49]


Указанные испытания на растяжение производят по методам, изложенным в ГОСТе 1497—61, на цилиндрических и плоских образцах, согласно формам и размерам, установленным в том же стандарте. Испытания на растяжение при повышенных температурах (до 1200° С) установлены ГОСТом 9651—61, при пониженных (до 100° С)—ГОСТом 11150—65, на длительную прочность — ГОСТом 10145—62, тонких листов и лент (до 4 мм) — ГОСТом 11701—66, труб— ГОСТом 10006—62, проволоки — ГОСТом  [c.4]

Существуют различные методы определения ползучести, предусматривающие испытания на кручение, изгиб, сжатие или растяжение. Последний вид испытаний является наиболее распространенным. Испытания на ползучесть отличаются от обычных испытаний на растяжение тем, что они предполагают длительное воздействие нагрузки при постоянной температуре и измерение в процессе испытания очень малых деформаций в зависимости от времени. Часто встречается также и другая характеристика оценки жаропрочности материала предел длительной прочности, представляющий собой напряжение, вызывающее разрушение образца при определенной температуре за соответствующий интервал времени.  [c.227]

Третий участок се продолжительностью тз соответствует так называемой стадии ускоренной ползучести, в течение которой скорость ползучести непрерывно возрастает вплоть до разрушения. Иногда третью стадию ползучести распределяют на два участка d и de, первый из которых относится к непрерывно возрастающей скорости ползучести, а второй — к процессу интенсивного развития разрушения. Обычно жаропрочность сталей характеризуется пределами ползучести и длительной прочности, которые определяют стандартными методами испытаний на растяжение.  [c.188]

При растяжении материала при постоянной температуре и с постоянной скоростью определяют соотношение напряжение — деформация, а также относительное удлинение при разрыве и относительное сужение. В общем эти прочностные свойства отличаются от свойств, определяемых при ползучести, однако начальная скорость деформации и результирующее напряжение находятся просто в обратном соотношении по сравнению с соотношением этих параметров при ползучести. В основном этот вид деформации характеризуется теми же явлениями направленной деформации и характеристиками разрушения, что и ползучесть. Но существуют различия в методах испытания, заключающиеся в том, что испытания на ползучесть осуществляют при сравнительно низких напряжениях, низкой скорости деформации в течение длительного времени. В отличие от этого кратковременные испытания на растяжение осуществляют при довольно высоких напряжениях, высокой скорости деформации.  [c.13]


Указанные испытания на растяжение производятся по методам, изложенным в ГОСТ 1497-61, на цилиндрических и плоских образцах, согласно форм и размеров, установленным в том же стандарте. Испытания на растяжение при повышенных температурах (до 1200°) установлены ГОСТ 9651-61 и на длительную прочность по ГОСТ 10145-62.  [c.5]

С помощью микромеханического метода могут быть изучены механические свойства при статических испытаниях на растяжение, сжатие, кручение, изгиб, срез, релаксацию, ползучесть и длительную прочность, а также свойства при усталостных испытаниях, для чего существует ряд испытательных установок и приборов.  [c.165]

В последние годы разрабатываются и находят практическое применение методы количественной оценки стойкости металла против образования холодных трещин, основанные на испытаниях сварных соединений путем замедленного разрушения. Сущность метода, предложенного Н. Н. Прохоровым, состоит в том, что с помощью специальных машин или устройств серия сварных образцов сравнительно небольших размеров подвергается испытанию на длительное растяжение или изгиб сразу же по окончании сварки. Сварка образцов обычно осуществляется в этих же устройствах. Испытания на растяжение, как и другие виды мягких нагружений, например кручение, заслуживают предпочтения, как более полно и точно выявляющие склонность металлов к замедленному разрушению.  [c.253]

Соединения паяные. Методы испытаний на растяжение и длительную прочность  [c.466]

Испытания с целью определения важнейших прочностных, упругих и пластических свойств металлов и сплавов проводят при статическом одноосном растяжении образца методами, приведенными в ГОСТ 1497—84. Испытания на растяжение при повышенных и пониженных температурах, на длительную прочность тонких листов и лент (до 4 мм) и другие испытания нормированы соответствующими ГОСТами.  [c.91]

Существует много стандартных методов определения механических свойств металлов. Это испытания на растяжение, испытания гладких образцов на статический изгиб и надрезанных образцов на ударный изгиб, определение твердости металла, испытание на длительную прочность и многие другие. Основное назначение этих испытаний состоит в получении количественных характеристик металла, необходимых для выполнения инженерных расчетов. Часть методов предназначена для получения характеристик металла, которые хотя и не участвуют как количественные в расчетах на прочность, но используются для качественной оценки работоспособности изготовляемых из него деталей или для установления соответствия металла техническим условиям на его поставку.  [c.88]

Основные выводы, следующие из лабораторных испытаний на растяжение, таковы. При использовании АЭ-метода контроля трубопроводов необходимо периодическое или непрерывное наблюдение за потенциально опасными участками газопроводов. Постановка диагноза на основании практикующихся кратковременных наблюдений за объектами при их кратковременном нагружении избыточными нагрузками (давлением) может привести к недопустимо большим вероятностям ошибок второго рода (пропуску сигналов опасности). Причиной этого может являться отмеченное уменьшение скорости счета АЭ на стадии значительного исчерпания ресурса материала. При непрерывном наблюдении и на основании сравнения данных, накопленных за длительный период, можно определить наличие и стадию пластической деформации, оценить остаточный ресурс трубопровода и вероятность аварии за определенный проме -жуток времени. Для этого могут быть использованы прогнозирующие модели, в частности, упомянутые в предыдущих разделах.  [c.248]

Образцы исследуемых сталей были подвергнуты холодной деформации различными способами. Для лучшего имитирования условий механического состояния при наклепе труб методом гибки исследована серия образцов, наклепанных изгибом. Для этой цели цилиндрические заготовки образцов изгибали, проводилась термическая обработка изогнутых заготовок для снятия наклепа и затем заготовки выпрямляли и получали образцы, пригодные для испытания на длительную прочность при одноосном растяжении, на которых предварительный наклеп осуществлен изгибом. Недостатком этой серии образцов явилась малая степень деформации (не выше 20%).  [c.31]


Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Метод, позволяющий одновременно испытывать несколько образцов в течение продолжительного времени, широко применяется при определении длительной прочности. Обычно при экспериментах по этому методу удлинение не измеряется (в Японском промышленном стандарте JIS Z 2272—1968 в Методике испытаний металлических материалов на длительную прочность при растяжении требования относительно измерения удлинения не содержится). Однако, по-видимому, при построении кривой ползучести каким-либо простым методом необходимо с определенной точностью измерять удлинение. В любом случае даже испытания с ручным приводом в течение длительного времени дают ценные результаты. Еще более эффективными являются испытания на ползучесть при постоянном напряжении и на длительную прочность с регулированием нагрузки.  [c.56]

К методам испытаний и исследований, связанных с разрушением сварных соединений, относятся кратковременные (на растяжение, статический и ударный изгиб, измерением твердости) и длительные (на растяжение) механические испытания образцов, металлографические исследования, химический и карбидный анализы металла образцов-шлифов, стендовые испытания под внутренним давлением натурных сварных трубных моделей и, кроме того, гидроиспытания на прочность и плотность сварных соединений паропроводов (без разрушения).  [c.159]

Машины для испытаний на ползучесть, длительную прочность, а также на релаксацию напряжений по методу одноосного растяжения различаются по характеру нагружающих механизмов  [c.353]

В настоящее время разработан и стандартизирован (ГОСТ 3248—60) специальный метод для испытания металлов на ползучесть при растяжении, который заключается в том, что испытуемый образец в течение длительного времени подвергается действию постоянного растягивающего усилия и определенной стабильной высокой температуры с регистрацией деформации образца во времени.  [c.347]

Для испытаний на выносливость при растяжении—сжатии до температуры 77° К могут быть применены криостаты (см. рис. 1) с внесением небольших конструктивных изменений. Успешно используется машина для знакопеременного изгиба образца без вращения (рис. 4). Цилиндрический, гладкий или с надрезом, образец, зажатый одним концом в станину машины, помещают в криостат и на втором свободном конце закрепляют коромысло с неуравновешенной массой, которая при вращении вызывает в образце переменный изгиб. Для изгиба листовых образцов в одной плоскости при той же схеме установки образца применяется кривошипно-шатунный механизм. При испытаниях на выносливость в жидком водороде или гелии используются электромагнитные методы возбуждения нагрузки. Большое значение приобретает теплоизоляция криостата в связи с длительностью усталостных испытаний.  [c.122]

Длительные высокотемпературные испытания служат для оценки характеристик жаропрочности (металлов и сплавов — их способности работать под напряжением в условиях повышенных температур без заметной остаточной деформация и разрушения. Эта группа испытаний включает несколько методов. Наиболее важные из них — испытания на ползучесть и длительную прочность, проводимые обычно по схеме одноосного растяжения.  [c.247]

Наибольшее внимание уделяется методике испытаний на ползучесть, релаксацию и длительную прочность. Однако в лабораторной практике получили распространение и другие методы горячих механических испытаний — как статические (растяжение, кручение, изгиб, твердость), так и динамические (изгиб, разрыв). Особое место занимают горячие испытания на усталость. Большинство этих методов имеет немаловажное значение для установления полной механической характеристики жаропрочных сплавов.  [c.3]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]


Исследования технологии сварки рассматриваемым методом касаются в первую очередь оптимизации ее параметров, установления их взаимосвязи и зависимости от свойств свариваемых ПМ. В качестве критерия оптимизации наряду с кратковременной прочностью при растяжении [121] или изгибе сварных образцов используют прочность на удар при изгибе [123], результаты оценки деформационных свойств сварных соединений при испытании сгибанием, длительную прочность образцов, в том числе при повышенной температуре, длительную прочность сварных труб [121, 123], трещиностойкость образцов или сварных труб при вдавливании штифта в отверстие диаметром меньше диаметра штифта, в том числе  [c.361]

Дилатометрический метод не получил существенного распространения в практике испытаний металлов на длительное растяжение при высоких температурах.  [c.160]

Указанные испытания на растяжение производятся по методам, излоя ен-ным в ГОСТ 1497—ТЗ, на цилиндрических и плоских образцах, согласно формам и размерам, установленным в том же стандарте. Испытания на растяжение при повышенных температурах (до 1200° С) установлены ГОСТ 9631—73, при пониженных (О-i—100 С) —ГОСТ 11150—75, на длительную прочность — ГОСТ 10145—62, тонких листов и лент (до 4 мм)—ГОСТ 11701—66, труб— ГОСТ 10006—73, проволоки — ГОСТ 10446—63, арматурной стали — ГОСТ 12004-66.  [c.6]

Статические маханические свойства порошковых сплавов, определяемые при испытаниях на растяжение, ползучесть и длительную прочность, напрямую связаны с составом сплава и его структурой. Сама же структура, как известно, суш,ес-твенно зависит от размера частиц порошка, метода их консолидации и режима термообработки. Для информации в табл. 17.3 приведены ссылки на литературные источники, содержащие данные по производимым в настоящее время сплавам [24].  [c.242]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

Для исследования характеристик кратковременной и длительной прочности композиционных и тугоплавких материалов методами растяжения — сжатия, микротвердости и тепловой микроскопии в широком интервале температур в Институте проблем прочности АН УССР создана установка Микрат-4 . Схема установки представлена на рис. 1. Она состоит из камеры 1, прибора 2 для исследования микротвердости материалов и устройства 3 нагружения образца растяжением — сжатием. Откачка воздуха и газов из камеры обеспечивается механическим насосом 4 и высоковакуумным насосом 5 с ловушкой 6. Давление измеряется манометрическими преобразователями в комплекте с вакуумметром 7. Имеется возможность заполнять испытательную камеру защитной газовой средой, а также проводить испытания на воздухе. Нагревательное устройство установки подключено к стабилизатору 8 через регулятор напряжений 9, трансформатор 10 и выпрямитель 11.  [c.26]

С целью проверки разработанного метода рассчитывались пределы выносливости жаропрочных никелевых сплавов ЭИ867, ЭП109, ЖС6К для различных условий нагружения — изгиба с вращением, растяжения — сжатия при симметричном и асимметричном циклах нагружения Предварительно па основе литературных дан-[1ЫХ либо материалов выполненных исследований структуры сплавов в исходном состоянии и после усталостных испытаний на органичен-пой базе строились кинетические зависимости размера частиц от длительности воздействия нагрузок и температур в соответствии с теорией диффузионного роста.  [c.380]

Ползучесть при растяжевви. Метод определения (ГОСТ 18197—72) заключается в испытании образца на растяжение при постоянной нагрузке в течение длительного времени. По результатам измерения вычисляют относительное удлинение (%) но формуле  [c.237]

Все известные виды кратковременных и длительных механических разрушающих испытаний, в том числе широко распространенные испытания на статическое растяжение, ударную вязкость, ползучесть, усталость, прямо или косвенно Дают меру сопротивления металлов разрушению в различных условиях эксплуатации. Однако только в течение двух последних десятилетий благодаря прогрессу в изучении механических и металловедческих аспектов проблемы разрушения были надлежащим образом осмыслены и приобрели самостоятельное значение специальные методы оценки сопротивления разрушению. Эти методы служат средством аттестации и ранжировки сплавов, а также диагностики разрушения. В последние годы получают также развитие основанные на различных характеристиках сопротивления разрушению расчеты несущей способности сплавов в изделиях.  [c.235]

Изготовление образцов должно быть стандартизовано. Следует контролировать содержание кислорода, температуру среды и скорость ее движения. Успешно применяются статистические методы,, но при условии глубокого понимания предмета исследования. Например, при исследованиях питтинга, если вероятность возникновения поражений низка, то с помощью малых образцов нельзя надежно установить наличие поражений. Если металл должен применяться в виде больших листов, то одно-единственное точечное поражение может стать причиной сквозной перфорации, тогда как предложенная выше методика испытаний указала бы на стойкость металла. При испытаниях на коррозионное растрескивание U-образных образцов часто получают результаты, отличающиеся от соответствующих результатов испытаний образцов, подвергавшихся однор( ному растяжению, так как в последних создавались возрастающие напряжения. Различия во времени до разрушения могут дата совершено искаженную информацию о склонности к коррозионному растрескиванию, если, например, толщина окисной пленки неодинакова на всех образцах, поскольку для разрушения окисной пленки может потребоваться значительно более длительное время, чем для развития трещины. Небольшие отличия pH в средах для испытаний могут вызвать ошибочные результаты, так как окисная пленка может удаляться с самыми различными скоростями при изменениях pH в узких пределах.  [c.206]


Для обоснования метода расчета длительной малоцикловой прочности компенсаторов выполнена программа исследований, включающая экспериментальное получение данных по долговечности сильфонных компенсаторов Z) -40 из нержавеющей аустенитной стали Х18Н10Т со следующими параметрами (рис. 4.3.1) dg = А см = 5,4 см = 0,129 R2 = 0,121 см Iq = 6,1 см п =11. Испытания выполнены с использованием специально спроектированной установки, позволяющей осуществлять требуемый режим циклического деформирования компенсаторов в условиях осевого растяжения — сжатия с заданными размаха-ми перемещений. Нагрев компенсаторов — печной, частота нагружений 10—56 циклов в минуту при постоянной температуре 600 С. Компенсаторы находились под давлением 1 атм, причем момент разрушения от циклического нагружения автоматически фиксировался по падению давления в результате утечки воздуха через образовавшуюся сквозную трепщну. Малый уровень давления практически не влиял на деформированное состояние конструкции и ее долговечность.  [c.203]

Для обоснования метода расчета длительной малоцикловой прочности экспериментально определяли долговечности сильфон-ных компенсаторов Ду-40 из стали 12Х18Н10Т (см. рис. 5.2) кв = = 40 мм н = 54 мм Ri = l29 мм / 2= 121 мм 1о = 61 мм п= . Для испытаний использовали специально спроектированный стенд, позволяющий осуществлять требуемый режим циклического деформирования компенсаторов в условиях осевого растяжения-сжатия с заданным размахом перемещения. Нагрев печной, частота нагружений 10. .. 56 циклов в минуту при постоянной температуре 600° С. Компенсаторы находились под избыточным внутренним давлением 0,1 МПа. Момент разрушения фиксировался автоматически по па-денню давления в результате утечки воздуха через образовав)пу-юся трещину. Небольшое давление практически не влияло на деформированное состояние конструкции и ее долговечность.  [c.222]

Для оценки склонности к замедленному разрушению сварных оединений часто используют заимствованный из практики коррозионных испытаний метод заневоли-вания плоской сварной пластины небольших размеров на заданную стрелу прогиба (см. стр. 154), при этом предполагается сохранение упругих соотношений как при первоначальном деформировании, так и при длительной выдержке. Этот метод не требует специальных нагружающих устройств и сложных образцов, может быть массовым, но растрескивание происходит только при деформациях, соответствующих высокому уровню напряжений (70—100% от предела текучести при растяжении основного материала). При этом уровне напряжений возможна их релаксация, особенно в зоне сварного шва, которой присуще пониженное относительно основного материала сопротивление деформации.  [c.212]

Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]

Наоборот, добавка кремния, заметно не отражаясь на составе или структуре, влияет иа длительность службы. Они предполагают, что кремний, кальций и другие добавки, которые не входят в основную часть окисла пленки вследствие их ионного размера или заряда, концентрируются у основания в виде SiOj, aO или силиката и значительно влияют на сопротивление скалыванию. Они ввели новый метод испытания, при котором окисление производится до определенной толщины пленки, затем сплав охлаждается, растягивается до увеличения длины на заданную величину в процентах и снова нагревается. При протяжке, конечно, возникает кратковременная опасность, но она устраняется во время повторного нагрева длительное воздействие может быть благоприятным или наоборот. Сплав с низким содержанием кремния улучшается после растяжения на 1 %, но разрушается после растяжения на 2, 3 или 4%. Высококремнистый сплав становится длительно более стойким даже после растяжения на 1, 2, 3 или 4%. Толщина пленки во время деформирования является решающим фактором даже малокремнистые сплавы улучшают свойства, когда пленка тонка. Для высококремнистых сплавов деформация, хотя и менее опасна, чем для низкокремнистых сплавов, но они имеют большую скорость окисления при высокой температуре. Это можно ожидать из правила валентности Xay jxjie. Замещение Сг " должно повысить число вакантных мест. Читателю рекомендуется изучить оригинальную литературу [27].  [c.71]


Смотреть страницы где упоминается термин Методы длительных испытаний на растяжение : [c.247]    [c.54]    [c.260]    [c.241]   
Смотреть главы в:

Методы горячих механических испытаний металлов  -> Методы длительных испытаний на растяжение



ПОИСК



Испытание длительное

Метод испытаний

Методы испытания на растяжение



© 2025 Mash-xxl.info Реклама на сайте