Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мгновенное движение твердого тела с одной неподвижной точкой

Мгновенное движение твердого тела с одной неподвижной точкой. Мгновенное движение твердого тела, у которого закреплена одна точка, представляет собой частный случай общего мгновенно-винтового движения твердого тела. Но в общем случае мгновенно-винтового движения все точки тела, расположенные на мгновенной винтовой оси, имеют наименьшую скорость. У твердого тела с одной закрепленной точкой наименьшую скорость, равную нулю, имеет сама закрепленная точка. Поэтому в рассматриваемом случае винтовая ось должна проходить через неподвижную точку О, а точки тела, расположенные на винтовой оси, будут иметь скорости, равные нулю. Тогда скорость произвольной точки тела будет определяться по формуле  [c.82]


При непрерывном движении твердого тела направления скоростей его точек все время остаются параллельными одной и той же неподвижной плоскости (л). В каждый момент движение представляет собой вращение мгновенной оси, ортогональной к плоскости (л), а аксоиды в плоскопараллельном движении представляют собой цилиндрические поверхности, образующие которых ортогональны к плоскости (я) (рис. 58). Аксоиды пересекаются с плоскостью (я) по двум кривым, называемым центроидами (полодия-ми), а точка пересечения мгновенной оси вращения с плоскостью (я) называется мгновенным центром вращения. Непрерывное движение твердого тела в плоскопараллельном движении можно представить как качение без скольжения подвижной центроиды по неподвижной. В самом деле, если выбрать неподвижную систему осей так, чтобы плоскость Оху совпадала бы с плоскостью (я), а ось г была бы ортогональна к плоскости (я), то, обозначив координаты мгновенного центра вращения через С(хо, г/о, 0) и координаты произвольной точки М твердого тела через (х, у, г) (рис. 59), из формулы Эйлера  [c.86]

При движении твердого тела с неподвижной точкой О вектор кинетического момента Ко, вектор мгновенной угловой скорости D и орт е одной из главных осей эллипсоида инерции, построенного для точки О, в некоторый момент времени лежат в одной плоскости, причем вектор ю в этот момент не коллинеарен ни одной из главных осей. Показать, что при любом движении тела векторы Ко, D и е будут лежать в одной плоскости в любой момент времени.  [c.108]

Примером движения твердого тела при аналитических особенностях на поверхностях аксоидов является движение тела с подвижным аксоидом, имеющим форму поверхности пирамиды, и неподвижным аксоидом — произвольной конической поверхностью, в частности плоскостью (рис. 42). При движении по конической поверхности подвижный аксоид в некоторых точках не имеет однозначно определенную касательную плоскость (ребра поверхности пирамиды). В частности, при движении по плоскости в определенные промежутки времени положение мгновенной оси становится неопределенным. Этим промежуткам времени соответствует контакт между одной из плоских граней поверхности пирамиды и неподвижной плоскостью ). Касание аксоидов может быть, конечно, как внешним, так и внутренним.  [c.119]

Рассмотрим движение твердого тела, закрепленного в одной точке. В этом случае тело не может совершать поступательного движения, так как скорость одной его точки всегда равна нулю, и движение можно представить как вращение вокруг мгновенной оси, которая изменяет свое положение и в теле, и в пространстве, но все время проходит через неподвижную точку тела. Мы могли бы выбрать три неподвижные оси, проходящие через эту точку, и написать уравнения моментов (13.25) относительно этих трех осей. Однако положение этих осей в теле, вообще говоря, будет изменяться, и связь между моментами импульса относительно трех осей и скоростями точек тела будет сложной. С другой стороны, если мы выберем оси, жестко связанные с телом, то связь между моментами импульса относительно этих осей и скоростями точек тела будет достаточно простой, но определение характера движения этих осей окажется сложной задачей. Поэтому мы не будем рассматривать в общем виде задачу о движении тела, имеющего одну закрепленную точку, а ограничимся только специальным, но важным случаем, когда тело быстро вращается вокруг мгновенной оси, а требуется определить, как будет двигаться эта ось под действием внешних моментов.  [c.446]


Движение твердого тела около неподвижной точки.—Если твердое тело закреплено в одной точке О, то скорость этой точки постоянно равна нулю, поэтому движение тела в каждый момент времени представляет собой мгновенное вращение вокруг оси OR, проходящей через точку О (п° 65). Если движение тела не есть непрерывное вращение вокруг неподвижной оси, мгновенная угловая скорость постоянно изменяется по направлению и по величине как в неподвижном пространстве, так и в движущемся теле. Геометрическое место мгновенных осей в пространстве есть коническая поверхность с вершиной в точке О (неподвижный аксоид), геометрическое место этих осей в теле есть другая коническая поверхность с вершиной в той же точке (подвижный аксоид). В каждый момент времени  [c.83]

Мгновенная ось описывает в этом случае в пространстве неподвижную поверхность в то же время она описывает в теле поверхность, увлекаемую движением последнего. Эти две линейчатые поверхности касаются в каждый момент времени одна другой вдоль мгновенной оси, представляющей собой их общую образующую в этот момент. Чтобы осуществить непрерывное движение твердого тела в общем случае, нужно заставить подвижную поверхность, связанную с телом, катиться по неподвижной поверхности и одновременно скользить вдоль образующей соприкосновения.  [c.85]

Аналогичных случаев может быть много и при движении летательных аппаратов, в особенности космических, когда движение должно подчиняться требованиям, выражаемым неголономными уравнениями спуск на поверхность планеты, подавление излишних периферических вращений создание, наоборот, вращений, необходимых для выполнения того или иного маневра, или выполнения тех или иных научных исследований и т. д. Уравнения связей могут быть и нелинейными и высших порядков. Совсем недавно был установлен замечательный факт в кинематике движений твердого тела вокруг неподвижной точки (в сферическом движении). Оказалось, что характер сферического движения тела тесно связан с поведением вектора угловой скорости тела. В частности, могут быть такие сферические движения, при которых вектор мгновенной угловой скорости остается в одной и той же плоскости тела, проходящей через неподвижную точку.  [c.12]

Твердое тело с неподвижной точкой движется по инерции. В начальный момент времени вектор кинетического момента Ко, мгновенная угловая скорость ю и орт е одной из главных осей эллипсоида инерции, построенного для неподвижной точки, лежат в одной плоскости. Каким будет дальнейшее движение тела  [c.108]

Вращение твердого тела вокруг неподвижной оси. Этот частный случай движения твердого тела очень часто встречается в технике и требует более подробного рассмотрения. Неподвижность мгновенной оси вращения означает неизменное ее положение в теле и в пространстве. В данном случае она называется просто осью вращения. Если совместить оси О г и Oz подвижной и неподвижной систем координат с осью вращения тела, то при движении будет изменяться только угол ф (рис. 2.7). При таком движении тело обладает одной вращательной степенью свободы. Кинематическое уравнение вращательного движения задает угол как функции времени ф = ф(/). Во время движения отдельные точки тела описывают окружности с центрами на оси вращения. Перемещения точек тела за один и тот же промежуток времени неодинаковы и пропорциональны расстояниям их до оси вращения. Также неодинаковы и скорости различных точек тела.  [c.51]

Точка А одновременно является центром сателлитов радиусов Гз и г , совершающих плоское движение. Мгновенный центр скоростей этих сателлитов, образующих одно твердое тело (так как они оба наглухо закреплены на валу), будет в точке Р касания сателлита радиуса r с неподвижным колесом радиуса Гц. Зная величину скорости точки тела, совершающего плоское движение, и положение мгновенного центра скоростей этого, тела, можно определить его угловую скорость  [c.463]


Имеем твердое тело, одна из точек которого закреплена. Движение тела рассматривается относительно некоторой системы координат Охуг (рис. 130), начало которой находится в закрепленной точке тела. Вращение тела вокруг неподвижной точки в каждый момент времени есть вращение вокруг мгновенной оси с угловой скоростью направленной по этой оси. Для кинетического момента Ко относительно неподвижной точки, согласно его определению, имеем  [c.472]

А К С О И Д Ы, линейчатые поверхности, представляющие собой геометрич. места осей мгновенного вращения и скольжения перемещающегося неизменяемого твердого тела или прямых, принадлежащих данному телу, последовательно совпадающих о этими осями. Как-известно из кинематики (см. Механика теоретическая), всякое перемещение неизменяемой системы точек за бесконечно малый промежуток времени всегда может быть произведено одним винтовым движением, состоящим из вращательного движения около нек-рой вполне определенной неподвижной оси и поступательного движения вдоль этой оси. Эта ось носит название оси мгновенного вращения и скольжения или мгновенной винтовой оси. При непрерывном движении неизменяемого твердого тела относительно некоторой системы координат, принятой нами за неподвижную, оси мгновенного вращения и скольжения образуют линейчатую поверхность, называемую неподвижным А.  [c.251]

Основные динамические характеристики. Будем рассматривать твердое тело, у которого закреплена неподвижно одна точка. Определим сначала живую силу и момент количества движения такого тела. Для этого выберем неподвижную систему координат O XiUiZi с началом Oi в неподвижной точке. Мгновенное движение твердого тела, имеющего одну неподвижную точку, определяется вектором мгновенной угловой скорости Q, линия действия которого проходит через неподвижную точку Оь Свяжем с твердым телом систему подвижных осей 0 xyz (рис. 225), движущуюся вместе с телом. Проекции вектора U на подвижные оси xyz обозначим через р, q, г. Скорость  [c.391]

Наиболее существенными здесь являются представления о сложном движении твердого тела в рассматриваемый мо.мепт времени и о мгновенных состояниях движения твердого тела (расс.матривается лишь состояние скоростей точек твердого тела в данный момент времени). Как частные случаи рассматриваются плоскопаралл елыюе движение твердого тела и случай движения твердого тела с одной неподвижной точкой.  [c.6]

При изучении движения твердого тела, у которого закреплена одна точка, положение такого тела удобно определять специальными углами, называемыми углами Эйлера. Тогда проекции вектора мгновенной угловой скорости вращения твердого тела на оси координат могут быть представлены в зависимости от скоростей изменения углов Эйлера, Рассмотрим движение твердого тела с одной неподвил ной точкой. За начало неподвижной системы координат выберем неподвижную точку твердого тела О. Подвижную систему координат Ох1У121 неизменно свяжем с твердым телом, а начало подвижной системы координат также поместим в неподвижную точку О (рис. 82). Прямую линию, образованную пересе-  [c.112]

Так как движение тела, имеющего одну неподвижную точку, в каждый момент времени можно считать вращением вокруг мгновенной осп, то в качестве величин, характеризующих это движение, можно ввести Х гиовеииую угловую скорость и мгновенное угловое ускорение враще-JH H твердого тела вокруг неподвижной точки. Очевидно, вводимая угловая скорость является векторной величиной, направленной в каждый момент времени по соответствующей мгновенной оси, и при использовании правой системы координат вектор угловой скорости w направлен по мгновенной оси так, что с направления этого вектора видно вращение тела вокруг мгновенной оси, проис.ходящим против движения часовой стрелки. Величину вектора угловой скорости можно вырази гь через элементарный угол поворота Аф вокруг мгновенной оси за время ДЕ  [c.168]

Если мгновенное движение твердого тела не является ио-стуиательиым, то мгновенный винт сводится в этом случае к одному мгновенному вращению с угловой скоростью, ортогональной к неподвижной плоскости Р. Аксоиды, как неподвижный Е, так и подвижный Е, представляют в этом случае цилиндрические поверхности с образующими, ортогональными к пеподвижпот плоскости (рис.. 32).  [c.45]

Веноминая формулу (8.17), заметим, что второе слагаемое в формуле (9.10) есть та скорость, которую имела бы точка Ж, если бы тело вращалось вокруг некоторой неподвижной оси, проходя-n eй через точку О, с вектором угловой скорости, равным (о. Таким образом, движение твердого тела можно рассматривать кат сложение двух движений такого, в котором все точки тела и.меют в данный момент одну и ту же скорость о- (что соответству( г мгновенному поступательному движению), и другого — мгновен-  [c.186]

Если в твердом теле только одна точка неподвижна и тело произвольно вращается около этой точки, то такое движение называется сферическим. Оно состоит из вращения вокруг произвольных осей вращения, которые, однако, всегда проходят через неподвижную точку О. Представим себе в точке О, как в начальной точке координат, систему координат X, у, 2 и выразим вектор угловой скорости ш через его прямоугольные составляющие ш,, (03 мы увидим таким образом, что имеются ОО различных сферических движений. Вращению твердого тела вокруг неподвижной точки соответствуют таким образом три степени свободы. Ось меняет свое положение по отношению к твердому телу и по отношению к неподвижному пространству. Если представить себе, что следующие одно за другим положения осей вращения зафиксированы в коордт натнач системах одна из которых связана с твердым телом, а другая — с пространством, то получим два полюсных конуса с общей вершиной, причем конус, связанный с телом, будет катиться по полюсному конусу, находящемуся, по отношению к пространству, в неподвижности. Общая образующая обоих конусов в какой-нибудь момент времени называется мгновенной осью вращения.  [c.286]


Направления векторов угловой скорости о и I2 в подвижном и неподвижном пространстве задают конические поверхности, названные Пуансо подвижным и неподвижным аксоидами. Само движение твердого тела в этом случае представляется как качение без скольжения подвижного аксоида по неподвижному, которые в каждый момент соприкасаются по мгновенной оси вращения. Если рассмотреть свободное движение тела (без неподвижной точки), то в соответствующей интерпретации движение будет представлять собой качение одного аксоида по другому с проскальзыванием вдоль некоторой оси, которая определяет мгновенное винтовое (пространственно-вращательное) движение. Если на образующих аксоидов отложить мгновенные значения угловьк скоростей, то получим соответственно подвижные и неподвижные годографы, представляющие в общем случае сложные пространственные кривые.  [c.41]

Вторая публикация О движении одной линии по другой и о трех его разновидностях — скольжении, качении и сложном движении (A ta eruditorum) предвосхищает работы Л. Пуансо, сводящие плоское движение твердого тела к движению подвижной центроиды по неподвижной. Лейбниц показывает, что при качении одной кривой (тела) по другой без проскальзывания подвижная кривая поворачивается около точки контакта (через 100 лет названной Пуансо мгновенным центром скоростей). Кроме этого, при некоторых условиях, у подвижной фигуры существует точка, траектория которой совпадает с неподвижной кривой.  [c.130]

Итак, для Гюйгенса свет представляет собой движение. Но какое и чего Скорость света очень велика, но не бесконечна Гюйгенс довольно подробно анализирует совсем недавние для него измерения и выводы О. Ремера. Материя, участвующая в оптических явлениях, гораздо тоньше, чем воздух свет проходит через плотные тела и через торичеллиеву пустоту . Гюйгенс переходит к анализу распространения движения благодаря свойству твердых тел передавать движение одно другому. Это явно навеяно наблюдениями и опытами, которые он проводил, исследуя явление удара. Если взять несколько одинаковых по величине шаров, сделанных из какого-нибудь твердого вещества, и если расположить их по прямой линии так, чтобы они касались друг друга, то при ударе таким же шаром по первому из них окажется, что движение как бы в одно мгновение передается до последнего шара, причем незаметно, чтобы при этом сдвигались остальные шары. Вместе с ними остается неподвижным даже шар, которым ударили. Здесь наблюдается передача движения с чрезвычайно большой скоростью, которая тем больше, чем тверже вещество, из которого сделаны шары... Кроме того, существуют опыты, показывающие, что все те тела, которые мы считаем самыми твердыми, как  [c.256]

В широком смысле слова гиро скоп представляет однородное твердое тело, имеющее ось симметрии и способное вращаться с большой угловой скоростью около мгновенной оси вращения, проходящей через закрепленную точку, лежащую на оси симметрии гироскопа. В технике гироскопом называют массивный маховик, смонтированный таким образом, что при быстром вращении маховика его ось может перемеи аться в пространстве около одной из неподвижных точек оси симметрии маховика (фиг. 209), ГТримером гироскопа является игрушечный волчок, у которого острие оси вращения помещено в небольшое углубление на плоскости. Неподвижной точкой волчка и будет точ-ка соприкосновения его оси с плоскостью (фиг. 210). Впервые задача о движении симме- Фиг. 210  [c.461]

Перейдем теперь к рассмотрению движения гироскопа. Пусть мы имеем однородное симметричное твердое тело, на которое действует только сила тяжести. Пусть одна из точек оси симметрии, например точка О, закреплена неподвижно (фиг. 217), Ось симметрии тела будем называть осью гироскопа, или осью фигуры. Если ось гироскопа неподвижна, то при вращении тела вокруг этой оси вектор мгновенной угловой скорости направлен по оси фигуры вектор кинетического момента также направлен по (этой оси. Следователь1ю, для осесимметричного тела при неподвижной осн вращения совпадают по направлению три прямые 1) ось симметрии, или ось фигуры 2) ось мгновенного вращения и 3) линия действия вектора кинетического момента /С,  [c.472]

Прямые, принадлежащие перемещающемуся телу, совпадающие последовательно с осями мгновенного вращения и скольжения, образуют вторую линейчатую поверхность, называемую подвижным А. Так. обр. всякое движение неизменяемого твердого тела относительно неподвижной системы координат м.б. представлено как качение со скольжением подвижного А. по неподвижному. Если перемещающееся тело имеет одну неподви кную точку, т. е. при сферич. движении тела (см.  [c.251]


Смотреть страницы где упоминается термин Мгновенное движение твердого тела с одной неподвижной точкой : [c.475]    [c.181]    [c.330]    [c.381]    [c.83]    [c.16]    [c.94]   
Смотреть главы в:

Курс теоретической механики Издание 2  -> Мгновенное движение твердого тела с одной неподвижной точкой



ПОИСК



Движение в мгновенное

Движение твердого тела

Движение твердого тела с неподвижной точкой

Движение твердых тел

Движение тела с одной неподвижной точко

Мгновенные движения твердого тела

Неподвижная точка

Твердое тело с неподвижной точко

Твердое тело с неподвижной точкой

Тело с неподвижной точкой

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте