Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий Технологические свойства

По составу нержавеющие стали делятся на хромистые и хромоникелевые. Кроме основных элементов (углерода, хрома, никеля) нержавеющие стали могут быть дополнительно легированы молибденом, титаном, ниобием, медью, кремнием, которые вводят для повышения коррозионной стойкости, механических и технологических свойств стали. Нержавеющие стали бывают нескольких структурных классов ферритного, ферритно-мартенситного, мартенситного, аустенит-  [c.31]


Среди металлов с высокой температурой плавления ниобий привлекает особое внимание. Это обусловлено комплексом присущих ему механических и технологических свойств. Однако скорость окисления ниобия уже при низких температурах не позволяет использовать его в кислородных средах [1 ].  [c.69]

Общим недостатком тугоплавких металлов является низкая жаростойкость, исключающая возможность использования их в качестве жаропрочных материалов без специальных защитных покрытий. Успешно в качестве жаропрочных материалов тугоплавкие металлы могут работать в вакууме и в атмосфере инертных газов. При легировании тугоплавких металлов жаропрочность ниобия и тантала повышается, а технологические свойства молибдена и вольфрама улучшаются.  [c.439]

Избыток ниобия, не связанного в карбиды или нитриды, в хромоникелевых сталях типа 18-8 нежелателен, так как он оказывает вредное влияние на механические и технологические свойства сталей [243]. Например, стали 18-12 с ниобием при отношении Nb С, равном 12, очень плохо штампуются вследствие образования феррита. Наличие феррита также вредно сказывается на прошивке трубной заготовки.  [c.347]

По технологическим свойствам металлов этой группы надо отметить следующие. Тантал, ниобий — пластичные металлы, хорошо прокатываются и свариваются, что позволяет использовать их в качестве облицовочного и плакирующего материала. Молибден, вольфрам и ванадий — малопластичные металлы, что затрудняет (но не исключает) их практическое применение как коррозионностойких материалов.  [c.298]

Ниобий обладает высокой прочностью и пластичностью при комнатной температуре, достаточно высокой, увеличивающейся с повышением температуры теплопроводностью, относительно небольшим удельным весом (8,57), хорошими технологическими свойствами, а также высокой химической стойкостью во многих агрессивных средах [1, 2].  [c.178]

Развитие производства реактивной сверхзвуковой авиации, управляемых снарядов и ракет, космических кораблей потребовало применения в качестве конструкционных высокотемпературных материалов ряда тугоплавких металлов (вольфрам, молибден, хром, ниобий, тантал и др.), ранее не применявшихся из-за присутствия в них примесей, катастрофически снижающих способность этих металлов к пластической деформации. С повышением чистоты увеличивается пластичность этих металлов и улучшаются их физико-химические и технологические свойства. Отсюда следует, что проблема использования указанных тугоплавких металлов и многих редких (бериллий, цирконий и др.) в качестве конструкционных материалов заключается в получении этих металлов высокой чистоты. Из перечисленных металлов даже хром после освобождения его от примесей становится пластичным.  [c.175]


Металлы широко распространены в природе из более чем 100 известных в настоящее время химических элементов периодической системы элементов Менделеева 71 являются металлами. Наиболее распространенными в технике металлами являются железо, медь, алюминий, цинк, никель, хром, марганец, вольфрам, магний, свинец, олово и др. В последнее время все большее распространение получают титан, бериллий, ниобий, цирконий, германий, тантал и др. Металлы обладают определенным сочетанием химических, физико-механических и технологических свойств, отличающих их от других твердых тел — неметаллов или металлоидов.  [c.95]

Если наплавляемый металл содержит легко окисляемые в сварочной ванне элементы, такие, как титан, алюминий, ниобий и др., для наплавки необходимо использовать флюсы с минимальной химической активностью во избежание потерь на окисление указанных элементов. Однако такие флюсы, как отмечалось в н. 4.3, обладают пониженными сварочно-технологическими свойствами и тем в большей степени, чем ниже их химическая активность.  [c.431]

В отожженном состоянии малоуглеродистые аустенитные стали представляют однородные растворы, но кратковременный нагрев при температурах 42,—815° вызывает выделение карбидов по границам зерен. Как известно, выделение карбидов заметно снижает коррозионную стойкость при обычных температурах (см. стр. 57), а также жаростойкость. Потеря коррозионной стойкости малоуглеродистой стали 18-8 может быть сильно уменьшена добавкой малых количеств титана или ниобия (стабилизированные стали 18-8) или путем высокого нагрева стали для растворения карбидов, с последующим быстрым охлаждением. В стабилизированных сталях 18-8 выделения карбидов не происходит ни при сварке, ни при отжиге, снимающем напряжения поэтому их технологические свойства значительно лучше.  [c.671]

Термовакуумная обработка материалов производится как отдельная операция или совместно с ведением процесса диффузионной сварки в вакууме. По сравнению с термической обработкой в контролируемых атмосферах термовакуумная обработка имеет ряд преимуществ высокая чистота и однородность атмосферы улучшаются физические и технологические свойства обрабатываемых материалов нежелательные примеси, например компоненты с высоким давлением паров (магний, марганец), возгоняются и удаляются вакуум ускоряет химические реакции, зависящие от температуры и давления исключается науглероживание и обезуглероживание. Многие материалы (титан, ниобий и др.), на основе которых создаются современные сплавы, обрабатываются только в вакууме.  [c.215]

К сплавам группы ОЖЕНИТ относятся многокомпонентные композиции, легированные оловом, железом, никелем и ниобием, при суммарной концентрации их 0,5—1,5%. Для нейтрализации действия вредных примесей и обеспечения высоких коррозионных свойств в воде и паре при температурах 350—400° С достаточно иметь суммарную концентрацию указанных легирующих компонентов в сплаве, равной 0,5%. По своему коррозионному поведению такие сплавы близки к плавленому цирконию высокой чистоты. При изменении содержания легирующих компонентов от 0,1 до 0,3% стойкость многокомпонентных сплавов мало изменяется в интервале температур 350—400° С. При суммарной же концентрации легирующих компонентов равной 1 %, скорость роста пленки увеличивается, особенно при температуре 400° С. Сплавы ОЖЕНИТ, содержащие 0,1—0,3% олова, железа, никеля и ниобия, имеют удовлетворительную стойкость при температурах 350—440° С. По прошествии 5000—6000 час испытаний отслаивания и растрескивания окисной пленки не наблюдалось. При температуре 450° С микротрещины на поверхности пленки появляются через 2000—3000 час. После этого образцы (без отслаивания пленки) выдержали дополнительные испытания в течение 2000—3000 час. У некоторых образцов окисная пленка растрескивалась и отслаивалась при температуре 500° С в течение 1000 час испытаний. ОЖЕНИТ — 0,5 (0,2% олова, 0,1% железа, 0,1% ниобия, 0,1% никеля) имеет высокую коррозионную стойкость и хорощие технологические качества при температурах 350—450° С.  [c.225]

Рассмотрены основные свойства ионообменных материалов, приведены краткие основы теории ионного обмена (равновесие и кинетика). Дается методика технологических исследований с ионитами. Основное внимание уделено применению ионообменных смол в производстве редкоземельных элементов иттрия, скандия, в металлургии легких редких металлов, рассеянных элемен тов, в металлургии благородных металлов и металлов платиновой.группы в металлургии циркония, гафния, ниобия, тантала, вольфрама, молибдена, ре ния, в металлургии тяжелых цветных металлов, в очистке сточных вод и газов. Описаны аппараты ионообменной технологии.  [c.2]


Широкое использование указанных металлов в различных отраслях потребовало резкого увеличения их производства путем использования различных сырьевых источников, разработки новых способов выделения элементов из растворов, очистки от примесей и разделения близких по свойствам циркония и гафния, ниобия и тантала. Одним из таких новых способов является способ ионного обмена, с помощью которого решается ряд очень сложных технологических задач. К числу последних относятся получение циркония, свободного от примеси гафния, очистка выделенных циркония и гафния от примесей, разделение ниобия и тантала, переработка различных отходов циркониевого и нио-бий-танталового производства.  [c.176]

Легирование стали имеет назначение повысить ее прочность и сопротивляемость окалинообразованию при высокой температуре. В качестве легирующих присадок применяют хром, молибден, никель, ванадий, титан, вольфрам, ниобий, марганец и бор, которые добавляются в сталь в различных комбинациях. Хром вводят в сталь для повышения ее жаростойкости, т. е. способности противостоять кислородной коррозии при высокой температуре наличие в стали 12— 14 % хрома делает ее нержавеющей. Молибден добавляют для повышения жаропрочности — повышения предела прочности и текучести стали при высоких температурах, а также для улучшения других ее свойств. Никель повышает вязкость стали, ее жаропрочность и сопротивляемость старению. Для повышения сопротивляемости ползучести к низколегированной хромомолибденовой стали добавляют ванадий и ниобий. Содерл ание марганца в стали в пределах 0,3—0,8 % определяется технологическими требованиями процесса ее выплавки, а содержание марганца в стали в количестве 0,9—1,5 % повышает ее прочность. Легирующие элементы в марках стали обозначают следующими буквами Б — ниобий, В — вольфрам, Г — марганец, М — молибден, Н — никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром.  [c.435]

Широкое применение получили стали системы Fe — Сг — Ni без присадок и с присадками меди, молибдена, титана и ниобия. Эти стали характеризуются хорошими механическими и технологическими свойствами и обладают хорошей коррозионной стойкостью. Никель повышает пластичность стали, способствует формированию мелкозернистой структуры. Холодная деформация ведет к повышению прочности данных сталей. Однако эти стали Склонны к межкристаллитной и точе шой коррозии. Следует отметить, что хромоникелевые стали обладают более высокой коррозионной стойкостью, чем хромистые стали, поскольку йведение никеля способствует обр- зованию мелкозернистой однофазной структуры сплава, для которой характерна повышенная коррозионная стойкость.  [c.39]

Перспектива использования тугоплавких металлов и сплавой на их основе в качестве оболочечных материалов ограничена их технологическими свойствами. Для оболочек твэлов необходимы тонкостенные трубки, которые трудно изготовить из нержавеющих сталей и тем более из высокопрочных тугоплавких материалов. Проводятся исследования распухания молибдена [3, 62], вольфрама [145, 146], ванадия [147, 212], тантала [107] и сплавов на основе молибдена [213], ванадия [212], ниобия [212]. В работе [147] показано, что распухание сплава Мо — 0,5% Ti после облучения при температурах 585 и 790° С флюенсом 2,5 10 н/см ( > 0,1 МэБ) больше, чем молибдена [147].  [c.178]

Алюминий имеет гранецентрированную кубическую решетку, которая не претерпевает полиморфных преврашений при нагреве. Температура плавления алюминия 660 °С. Этот металл иМеет низкие плотность (2,7 г/см ) и прочность (а = 100 МПа), высокие электро- и теплопроводность, пластичность (5 = 30 %) и коррозионную стойкость. Высокая коррозионная стойкость алюминия обусловлена образованием на его поверхности плотной пленки оксида AljOj. Легирование медью, магнием, цинком, кремнием и реже лантаном, ниобием, никелем резко улучшает его механические и технологические свойства.  [c.100]

Ниобий и тантал имеют одинаковые параметры решетки, весьма близкие ионные и атомные радиусы, не подвержены полиморфным превращениям и при сплавлении друг с другом образуют непрерывный ряд гомогенных твердых растворов [55—58]. С увеличением содержаияя тантала коррозионная стойкость сплавов ниобий — тантал повышается, приближаясь к стойкости чистого тантала [49]. Сплавы этой системы с успехом могут заменить чистый тантал во многих химических производствах и в значительной мере снизить его расход. Использованию этих сплавов способствуют и их хорошие механические и технологические свойства, а также отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением. Они хорошо свариваются аргоно-дуговой сваркой. Экспериментально также установлено, что сплавы ниобий—тантал могут применяться в нагартованном состоянии, так как скорость коррозии их в зависимости от степени деформации изменяется незначительно, а именно на 0,01—0,02 мм год [59]. Указанное свидетельствует о том, что увеличение плотности дислокаций в решетке, повышающее уровень внутренних напряжений в результате деформации [60], сопровождающееся изменением структуры от полиэдрической до волокнистой, не оказывает существенного влияния на изменение химической стойкости сплавов ниобий — тантал. Результаты исследования микроструктур указывают, что ни коррозионная  [c.85]

За рубежом весьма большое развитие получили стали, легированные небольшим количеством ниобия (обычно не более 0,05%), стали с нитридным упрочнением, а также стали с повышенным содержанием фосфора (стали типа кортен). При изготовлении первых двух типов стали важное значение придается регулированию температуры конца прокатки. Ниже освещаются механические и технологические свойства низколегированных строительных сталей основных отечественных марок по результатам исследований, значительная часть которых проведена авторами.  [c.38]


В условиях получения левулиновой кислоты были испытаны также следующие сплавы на основе ниобия ЫЬ + 5% Та (НТ5Э), ЫЬ + 30% Та (НТЗОЭ), ЫЬ + 40% Т1 + 4% А1 и N5 + 40% Т1 + -)-4% А1 + 4% Ш. Они обладают сравнительно высокой прочностью и пластичностью (табл. 18.1), хорошими технологическими свойствами и высокой коррозионной стойкостью во многих агрессивных средах, в частности в соляной и серной кислоте высоких концентраций [18, 22, 26, 28, 29]. Однако известно, что при значительных скоростях коррозии они могут охрупчиваться вследствие поглощения водорода, выделяющегося в процессе коррозии [22, 40].  [c.426]

В качестве дополнительных легирующих элементов в коррозионностойких сталях и сплавах используют кремний, алюминий, молибден, вольфрам, ванадий, титан, ниобий (ферритообразующие элементы), а также азот, марганец, медь, кобальт (аустенитооб-разующие) в различных сочетаниях и количествах, обусловленных требованиями к коррозионной стойкости, механическим и технологическим свойствам.  [c.8]

Увеличение содержания углерода в хромоникелевой аустенитной стали, хотя и повышает пределы текучести н прочности, но оказывает отрицательное влияние на коррозионную стойкость, пластичность и ударную вязкость после отпуска при 600—800° С. Только при содержании углерода 0,02% закаленная сталь после отпуска при 500—800° С практически не изменяет указанных свойств. Отрицательное влияние углерода в известной мере устраняется присадкой стабилизирующих элементов (титана, ниобия). Хролюникелевая аустенитная сталь с очень низким содержанием углерода по стойкости к общей н межкристаллитной коррозии и всем технологическим свойствам лучше, чем стабилизированная сталь.  [c.120]

При отливке в условиях завода в чугунную изложницу слитков из бронзы Бр.ОФ 7-02 днам. 90 мм, пряыоугольного сечения 40 X 250 мм воспроизводился эффект юмелычаняя зерна. Бели основываться иа общепринятых взглядах о том, что эффект измельчения зерна сплавов типа твердого раствора, какими можно считать сплавы бронзы Бр.ОЦ 4-3 и Бр.ОФ 7-0,2 (если пренебречь незначительными выделениями фосфидной эвтектики), должен сопровождаться повышением прочности, пластических и технологических свойств сплавов, то эффект улучшения пластичности при повышенной температуре бронз, содержащих цирконий, титан и ниобий, можно в первом приближении объяснить измельчением зерна при введении этих добавок.  [c.86]

Преимущества сварки в защитных газах обусловили области ее применения. Аргонодуговую сварку применяют при производстве конструкций из. легких (алюминия и магния) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и сплавов, а также конструкщюнных легированных и высоколегированных сталей. В последнем случае широко используют смеси аргона марки В с 3—5%0о и углекислого газа. Дуга в смесях газов обладает лучшими технологическими свойствами по сравнению с чистым аргоном повышается стабильность горения дуги, улучшается формирование шва и т. и. Для легких сплавов применяют аргон марки Б, а для тугоплавких — аргон высокой чистоты марки А.  [c.296]

Сварочно-технологические свойства. Устойчивость дуги — электрошлаковый бездуговой процесс плавления электродов формирование шва хорошее, без особенностей склонность металла шва к образованию пор и трещин низкая отделимость шлаковой корки хорошая, особенно при наплавке электродными лентами, содержащими ниобий.  [c.470]

При ручной сварке ЦНИИТМаш рекомендует электроды ЦЛ-11 с ниобием, имек>щие хорошие технологические свойства и не дающие горячих трещин при сварке.  [c.132]

Подгруппа VA. Азот. Является вредной примесью. Его содержание в кристаллически анизотропных сплавах не должно превышать 0,002 7о- Азот сильно измельчает зерно в литом состоянии. Отрицательное влияние на механические и технологические свойства проявляется в том, что нитриды и карбонитриды алюминия, титана и ниобия сосредоточиваются по границам зерна, усиливают их охрупчивание и препятствуют росту.  [c.143]

Сплавы на основе ниобия и молибдена имеют наиболее удовлетворительные технологические свойства. Кроме того, они охруп-чиваются при сравнительно низких температурах (+100)— (—100) °С. Вольфрам переходит в хрупкое состояние при температуре 600 °С. Благодаря сравнительно высокой пластичности сплавы ниобия и молибдена имеют более широкое распространение.  [c.216]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]

Донцов С.Н. и др. Влияние технологических факторов на коррозионную стойкость и механические свойства сплавов ниобий-тантал. Научн. тр. Гиредмета, 1972, т. 32, с. 152-157.  [c.117]

Наряду с газовой металлизацией и электрометаллизацией в промыщленности начинают применять плазменное напыление материалов со специальными свойствами на металлы, керамику, пластмассы, стекло, дерево и т. п. По технологическим возможностям этот способ превосходит применяемые способы нанесения покрытий. При этом способе расплавление и распыление тугоплавких материалов осуществляется с помощью высокотемпературной плазменной струи. При плазменном напылении в качестве материала покрытий используются окиси алюминия, вольфрам, молибден, ниобий, интерметаллоиды, силициды, всевозможные карбиды, бориды и др. В соответствии со свойствами наносимых покрытий может быть обеспечена требуемая жаропрочность, сопротивление олислению, износоустойчивость при высоких температурах и в различных средах.  [c.327]


Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Производство сталей с очень низким содержанием углерода и азота очень дорого и трудно осуществимо. Стаби-лизаЩ1я титаном или ниобием или совместная может быть использована для устранения склонности к МКК даже для сталей с недостаточно низким уровнем углерода и азота, полученным методом передела АКО. Разработана более экономичная стабилизированная сталь 26—1S, в которой при более высоком уровне углерода и азота (г 0,05%) удалось устранить склонность к МКК, а все другие свойства — технологические, механические, коррозионные — были близки к свойствам сталей типа 26—1 [126, с. 231].  [c.166]

Важность проблемы создания и применения Н0 вых химически стойких металлических материалов в различных отраслях. нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевьгм ресурсам и возможностям металлургической иромышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах.  [c.65]

Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]


Смотреть страницы где упоминается термин Ниобий Технологические свойства : [c.193]    [c.78]    [c.129]    [c.522]    [c.45]    [c.482]    [c.128]    [c.535]    [c.50]    [c.29]    [c.39]    [c.355]    [c.105]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.414 ]



ПОИСК



Ниобий

Ниобий — Свойства

Ниобит 558, XIV

Свойства технологические



© 2025 Mash-xxl.info Реклама на сайте