Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет подшипников скольжения с жидкостным трением

Расчет подшипников скольжения с жидкостным трением  [c.259]

Расчет подшипников скольжения с жидкостным трением на жидкостное трение является для данного типа подшипников основным. Но предварительно эти подшипники  [c.259]

Как уже отмечалось, при работе подшипника скольжения в режиме жидкостного трения цапфа и вкладыш практически не изнашиваются. Расчет подшипника скольжения с жидкостным трением проводят одновременно с тепловым расчетом, т. е. расчетом на недопустимость чрезмерного нагревания. При этом расчет подшипников скольжения на жидкостное трение является основным. Но предварительно эти подшипники, так же как и подшипники скольжения с полусухим или полужидкостным трением, рассчитывают по среднему давлению р в подшипнике по формуле (17.2) и произведению pv по формуле (17.3), где длину подшипника I определяют по формуле (17.1).  [c.298]


Если при расчете подшипников скольжения с жидкостным трением по формуле (17.7) окажется, что > [г ], то изменяют геометрические пар-аметры подшипника, выбирают для смазки масло с большей динамической вязкостью, назначают для рабочих поверхностей цапфы и вкладыша подшипника меньшие шероховатости. Можно одновременно использовать все указанные способы улучшения температурного режима.  [c.301]

Расчет подшипников скольжения с жидкостным трением производится по выбору толщины масляного слоя и на нагрев по гидродинамической теории смазки.  [c.233]

Опора или направляющая, трение вала в которой происходит при скольжении и определяющая положение вала по отношению к другой части механизма, называется подшипником скольжения. Критерии расчетов подшипников скольжения определяются характером внешнего трения в подшипнике в зависимости от наличия смазочного материала. Различают трение без смазывания, граничное и жидкостное трение. При трении без смазывания на трущихся поверхностях отсутствует смазочный материал при граничном — имеется тонкий (порядка 10 4 мм) слой смазочного материала с особыми свойствами. Действие такого смазочного материала называется граничной смазкой. Под жидкостным трением понимается явление сопротивления относительному перемещению, возникающее между двумя телами, разделенными смазочным материалом, в котором проявляются его объемные свойства. Соответствующее действие смазочного материала при этом называется жидкостной смазкой.  [c.307]

Основным расчетом подшипников скольжения является р а с -четна жидкостное трение, который основывается на том, что масляный слой должен воспринимать всю нагрузку, а его толщина должна быть больше сумм неровностей обработки поверхностей цапфы и вкладыша. Жидкостное трение в подшипнике обеспечивает его износостойкость и сопротивление схватыванию. Составной частью расчета на жидкостное трение является тепловой расчет, так как недопустимое повышение температуры может привести к недопустимому изменению свойств или даже к разложению смазки, к выплавлению заливки вкладыша, а также к недопустимым температурным деформациям и захватыванию вала в подшипнике. Кроме того, находят применение условные расчеты.  [c.466]


Использование вероятностных методов расчета. Основы теории вероятности изучают в специальных разделах математики. В курсе деталей машин вероятностные расчеты используют в двух видах принимают табличные значения физических величин, подсчитанные с заданной вероятностью (к таким величинам относятся, например, механические характеристики материалов ст , o i, твердость Ни др., ресурс наработки подшипников качения и пр.) учитывают заданную вероятность отклонения линейных размеров при определении расчетных значений зазоров и натягов, например в расчетах соединений с натягом и зазоров в подшипниках скольжения при режиме жидкостного трения.  [c.10]

Природа антифрикционного действия смазки зависит от того, установится ли в подшипнике режим полужидкостного или жидкостного трения, а это, в свою очередь, определяется сочетанием ряда факторов (нагрузки, скорости скольжения, вязкости смазки и т. п.). Если режим трения полужидкостный, все зависит от свойств тонкой масляной пленки. Для этого режима пока нет адекватной математической модели и все расчеты основываются на эмпирических данных. Если режим жидкостный, то расчеты становятся значительно более надежными. В одном и том же подшипнике с изменением частоты вращения полужидкостное трение сменяется жидкостным.  [c.326]

Методика расчета обычных подшипников скольжения, работающих в условиях жидкостного трения, приводится в литературе [7]. По этой методике определяются тепловыделение и расход масла для всего подшипника с учетом потерь на трение в ненагружен-ной зоне подшипника.  [c.87]

Расчет посадок с зазором. Для обеспечения долговечности подшипники скольжения должны работать в условиях жидкостного трения, когда смазка полностью отделяет цапфу вала от вкладыша подшипника. В этом случае зазор в подшипниках должен определяться на основе гидродинамической теории смазки.  [c.166]

Износ детали или сопряженной пары нередко характеризуется несколькими показателями. Важно выявить наиболее существенный из них по воздействию на работоспособность. На работу подшипника скольжения влияет не только увеличение зазора. Эллиптичность и другие искажения формы деталей в поперечных сечениях изменяют соотношение между кривизной соприкасающихся поверхностей, поэтому возможности реализации трения при жидкостной смазке становятся иными. Если с помощью гидродинамической теории смазки не представляет особого труда решить задачу о допустимом предельном зазоре в подшипнике при геометрически правильных поверхностях деталей, то расчет допустимых искажений формы представляет весьма сложную задачу. Надо прибегать к стендовым испытаниям, сочетая их с теоретической разработкой той или иной степени приближения.  [c.379]

Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного режима трения.  [c.159]

Расчет посадок с зазором чаще всего осуществляется для подшипников скольжения, работающих в условиях жидкостного трения. Расчет производится на основе гидродинамической теории трения. Для подшипников конечной длины задача решается приближенно с введением ряда ограничений и использованием опытных данных. Ниже рассмотрен упрощенный метод расчета зазоров для подшипников скольжения при стабильных эксплуатационных условиях их работы.  [c.195]

Любое изменение режима трения на участке 2—3 приводит к изменению коэффициента трения и, как следствие, температуры подшипникового узла. Если при увеличении Я температура увеличилась, вязкость масла падает, за счет чего уменьшается и Я. Если Я уменьшилась, уменьшается коэффициент трения и тепловыделение в подшипнике, что приведет к увеличению вязкости, за счет которой возрастет до прежнего значения и характеристика Я. Для того чтобы процесс восстановления равновесия при жидкостном трении в подшипнике происходил во всем диапазоне возможных колебаний режима, необходимо рассчитать его с достаточным коэффициентом запаса. Характеристика Я может служить только для ориентировочной оценки работы подшипника при жидкостном трении. Достаточно точный расчет при этом режиме основан на гидродинамической теории смазки, устанавливающей взаимосвязь ряда параметров размеров подшипника, зазора в нем, свойств смазочного материала, нагрузки, скорости скольжения, а также способов теплоотвода и др.  [c.308]


В машиностроении применяют упорные подшипники с плоскопараллельными плоскостями скольжения и сегментные подшипники. Режим жидкостного трения может быть осуществлен только в подшипниках второй категории. Здесь ограничимся ознакомлением с условным расчетом подшипников с плоской опорной поверхностью. Такие простейшие опоры имеет смысл использовать в тех  [c.391]

Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного трения. В других случаях зазоры могут рассчитываться по условию компенсации отклонений формы и расположения поверхностей для обеспечения беспрепятственной сборки деталей. Возможны также расчеты по условиям обеспечения необходимой точности перемещений деталей или фиксации их взаимного расположения, расчеты зазоров для компенсации температурных деформаций деталей и т. п.  [c.278]

Расчет и выбор посадок с зазором в подшипниках скольжения. Наиболее распространенным типом ответственных подвижных соединений яв-ляются.подшипники скольжения, работающие со смазкой. Для обеспечения наибольшей долговечности необходимо, чтобы при установившемся режиме подшипники работали с минимальным износом. Это достигается при жидкостном трении, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазки и трение между металлическими поверхностями заменяется внутренним трением в смазочной жидкости. Наибольшее распространение имеют гидродинамические подшипники. Жидкостное трение в них создается тогда, когда при определенных конструктивных и эксплуатационных факторах смазочное масло увлекается вращающейся цапфой в постепенно суживающийся (клиновой) зазор между  [c.162]

Правильное определение основных рабочих характеристик подшипников скольжения (грузоподъемности, потерь на трение и необходимого количества смазки с возможно более полным и точным соответствием физическому процессу течения смазки) во многом обеспечивает надежность и долговечность проектируемого опорного узла при его эксплуатации в режиме жидкостного гидродинамического трения. Область применения предлагаемой методики расчета представлена в табл. I. Также приведены материалы подшипников, средние значения удельных нагрузок Рт на подшипник, окружных скоростей и и геометрические характеристики относи-I , Д  [c.3]

Расчет. В жидкостных опорах, учитывая вероятность металлического контакта трущихся поверхностей опор, основные размеры (диаметр цапфы, длина подшипника) определяют расчетом, аналогичным расчету опор с трением скольжения (см. 142). В гидродинамических опорах, кроме этого, расчетом определяют минимальную толщину масляного слоя, зависящую от угловой скорости вращения вала, вязкости масла и удельного давления на опору, и необходимую величину зазора между цапфой и вкладышем. В гидростатических опорах задаются числом капиллярных отверстий и, исходя из нагрузки на опору, определяют необходимое давление д смазки, величину зазора между цапфой и подшипником и расход смазки, по которому подбирают насос.  [c.471]

Расчет подшипников скольжения с жидкостным трением на жидкостное трение является для данного типа подшипников основным. Но предварительно эти подшипники рассчитываются так же, как и подшипники скольжения с полусухим или полужидкостным трением по удельному давлению в подшипнике по формуле (514) и по произведению удельного давления в подшипнике на скорость скольжения цапфы по формуле (516м) или (516с), где длина подшипника  [c.242]

При обеспечении жидкостного трення расчет подшипников скольжения иа жидкостное трение является основным. Но предварительно эти подшипники рассчитывают, так же как и подшипники скольжения с полусухим или пол у жидкостным трением, по среднему давлению в подшипнике р по ( юрмуле (493) и по произведению давления в подшипнике на скорость скольжения цапфы о, т. е. по pv по формуле (496м) или (496с), где длину подшипника I определяют по с рмуле (492).  [c.395]

Если при расчете подшипников скольжения на жидкостное трение при пользовании формулой (523) получится к <С [к] или при пользовании формулой (524м) или (524с) окажется, что / > [/], то необходимо соответственно изменить геометрические параметры подшипника, приняв для него масло с большей динамической вязкостью и для рабочих поверхностей цапфы и вкладыша подшипника назначить более высокие классы шероховатости.  [c.247]

Пример расчета. Пример 16.1. Радиальный подшипник скольжения должен работать с жидкостным трением в период установившегося реасима нагрузки [c.347]

Почему вкладыш подшипника изготовляют из менее износостойкого материала, чем материал цапфы 5. Как производится условный расчет подшипников скольжения 6. При каких значениях ф = //й допустимо устанавливать подшипники скольжения с неподвижными вкладышами 7. В чем состоят особенности работы подшипников скольжения при режиме жидкостного трения 8. Дайте сравнительную характеристику подшипников скольжения и качения. 9. Как классифицируют подшипники качения 10. Могут ли радиальные шарикоподшипники воспринимать осевую нагрузку И. Могут ли упорные подшипники воспринимать радиальную нагрузку 12. Для чего применяют радиальные роликовые подшипники с безбор-товыми кольцами 13. От чего зависит выбор типа подшипников качения 14. Как по условному обозначению подшипника качения определить его тип, серию и диаметр 15. В каких случаях целесообразно применение самоустанавливающихся подшипников качения 16. Укажите основные способы крепления внутренних и наружных колец подшипников качения. 17. Каково назначение смазки подшипников качения и как она осуществляется 18. Укажите основные типы уплотнений подшипниковых узлов. 19. В каких случаях применяют мазеудерживающие кольца и в каких—маслосбрасывающие шайбы  [c.229]


Задача машиностроения — выпускать машины, не требующие капитального ремонта за весь период эксплуатации. Текущие ремонты должны быть простыми и нетрудоемкими. Одно из направлений развития машиностроения — разработка конструкций, в которых осуществляется так называемое жидкостное трение. При жидкостном трении поверхности деталей разделены тонким масляным слоем. Они непосредственно не соприкасаются, а следовательно, и не изнашиваются, коэффициент трения становится очень малым ( 0,005). Для образования режима жидкостного трения, например в подшипниках скольжения, необходимо соответствующее сочетание нагрузки, частоты вращения и вязкости масла (см. 16.4). Основоположником жидкостного трения является наш отечественный ученый Н. П. Петров, который опубликовал свои исследования в 1883 г. В дальнейшем эта теория получила развитие в трудах многих отечественных и зарубежных ученых. Теперь мы можем выполнять расчеты режима жидкостного трения. Однако жидкостное трение можно обеспечить далеко не во всех узлах трения. Кроме соблюдения определенных значений упомянутых выше факторов оно требует непрерывной подачи чистого масла, свободного от абразивных частиц. Обычно это достигается при хщркуляционной системе смазки с насосами и фильтрами. Там, где жидкостное трение обеспечить не удается, используют другое направление — применение для узлов трения таких материалов и таких систем смазки, при которых они будут износостойкими.  [c.7]

Выбор различных посадок для подвижных и неподвижных соединений можно производить на основании предварительных расчетов, экспериментальных исследований или ориентируясь на аналогичные соединения, условия работы которых хорошо известны. Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного трения. В других случаях зазоры могут рассчитываться по условию компенсации отклонений формы и расположения поверхностей для обеспечения беспрепятственной сборки деталей. Возможны также расчёты по условиям обеспечения необходимой точности перемещений деталей или фиксации их взаимного расположения, расчеты зазоров для компенсации температурных деформаций деталей и т. п. Расчеты, связанные с выбором посадок в неподвижных соединениях, сводятся к определению прочности соединения, напряжений и деформаций сопрягаемых деталей, а также к определению усилий запрессовки и распрессовки. В результате тех или иных расчетов необходимо получить допустимые наибольшие и наименьшие значения расчетных зазоров [5rnaxi, [Sm, 1 или расчегных натягов (Л/ шЕкЬ ЛТшт .  [c.299]

Коднир Д. С. и Байбородов Ю. И. Расчет неметаллических подшипников скольжения жидкостного трения на основе контактногидродинамической теории смазки. В сб. Применение полимерных материалов в машиностроении . Вып. I. Москва—Киев, НТО Машпром, 1966, 101 стр.  [c.228]

По виду трения различаются направляющие вращательного движения с трением скольжения, трением качения и с трением упругости (применение последних становится возможным, если относительное движение является качательным). В опорах с жидкостной или газовой смазкой поверхности цапфы и подшипника отделены друг от друга слоем смазки и в непосредственное сопри-косновение друг с другом не вступают. Опоры вращения в приборостроении отличаются большим разнообразием конструкций и применяемых материалов, что продиктовано различием требований к опора>1 и условиями их работы. Конструкции и расчету опор вращательного движения посвящены работы С. Т. Цуккермана [131 ], М. П. Ковалева [38], И. М. Сивоконенко и К. И. Явленского [38, ИЗ], Гильдебрандта [150] и др.  [c.503]

С увеличением скорости скольжения коэффициент трения быстро уменьшается (участок 1—2), при этом трение переходит в полужид-костное, характеризующееся тем, что поверхности скольжения еще не полностью разде /ены слоем смазки, так что выступы неровностей соприкасаются. В точке 2 начинается участок 2—3 жидкостного трения толщина смазочного слоя возрастает от минимальной, достаточной лишь для покрытия всех выступов, до избыточной, перекрывающей все неровности с запасом. При жидкостном трении рабочие поверхности полностью отделены друг от друга, и сопротивление относительному движению их обусловлено не внешним трением контактирующих элементов, а внутренними силами вязкой жидкости. Теоретически наилучшие условия работы подшипника обеспечиваются в точке 2 — здесь сопротивление движению и соответствующее тепловьще-ление наименьшие, но нет запаса толщины слоя поэтому практически оптимальные условия будут в зоне справа от точки 2. Расчет подшипника, работающего в режиме жидкостного трения, выполняется на основе гидродинамической теории смазки. Однако такой режим может быть осуществлен лишь при достаточно большом значении характеристики режима к > Якр, где — значение характеристики режима в точке 2. Для опор тихоходных валов это условие в большинстве случаев не выполняется, а для быстроходных оно нарушается в периоды пуска и останова, когда частота вращения вала мала.  [c.244]

К середине XX века было установлено, что во многих смазанных тяжело нагруженных или неприработанных узлах трения при контакте неконформных или легкодеформируемых тел (в зубчатых или цепных передачах, в подшипниках качения, в полимерных или тяжело нагруженных подшипниках скольжения, при обработке металлов давлением) при определенных условиях наблюдается жидкостная смазка, хотя толщина смазочного слоя, рассчитанная по уравнению Рейнольдса, не превышала суммарной высоты неровностей контактирующих тел. Это препятствовало корректному расчету таких узлов трения. Эластогидродинамическая (ЭГД) теория смазки позволила распространить классическую гидродинамическую теорию смазки на условия контакта, при которых реализуются высокие давления, вызывающие упругие деформации контактирующих тел и увеличивающие вязкость смазочного материала в пленке жидкости, разделяющей эти тела. ЭГД-теория смазки учитывает эти явления и адекватно описывает процесс смазки тяжело нагруженных узлов трения либо узлов трения с легко деформируемыми деталями [30,  [c.210]


Смотреть страницы где упоминается термин Расчет подшипников скольжения с жидкостным трением : [c.400]    [c.561]    [c.335]    [c.68]   
Смотреть главы в:

Краткий справочник к расчетам деталей машин Изд4  -> Расчет подшипников скольжения с жидкостным трением

Детали машин Издание 4  -> Расчет подшипников скольжения с жидкостным трением

Краткий справочник к расчетам деталей машин Издание 5  -> Расчет подшипников скольжения с жидкостным трением



ПОИСК



660 — Расчет скольжения

Подшипник скольжения жидкостного трения

Подшипники Расчет

Подшипники Трение

Подшипники Трение в подшипниках

Подшипники жидкостного трения

Подшипники жидкостного трения, расчет

Подшипники расчета 264 — Расчет

Подшипники скольжения

Работа подшипников скольжения в условиях жидкостного трения и понятие об их расчете

Расчет жидкостный

Расчет подшипников скольжения

Расчет смазываемых пластмассовых подшипников скольжения, работающих в режиме жидкостного трения

ТРЕНИЕ Трение скольжения

Трение в подшипниках скольжения

Трение жидкостное

Трение скольжения

Трение скольжения Расчет



© 2025 Mash-xxl.info Реклама на сайте