Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия меди и ее сплавов в атмосферных условиях

Сплав олово — никель. Покрытие сплавом олово — никель, содержащее 65% 5п, обладает высокой химической стойкостью по отношению ко многим агрессивным средам разбавленным серной и соляной, концентрированной азотной кислотам, растворам хлористого натрия и в условиях 100%-ной влажности [167, 185]. Коррозионные испытания в условиях промышленной атмосферы [185] показали, что сплав, осажденный с подслоем меди, обладает значительно большей коррозионной стойкостью, чем никелевое покрытие. Следует отметить, что оловянно-никелевое покрытие, нанесенное без подслоя меди, в атмосферных условиях не предохраняет сталь от коррозии.  [c.51]


Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные метал.пы, является легирование последних медью, хромом, никелем, алюминием и лр.  [c.182]

Медь и ее сплавы [87]. Металлические системы ма основе меди (латуни, бронзы, медь — никель и медь — серебро) обладают умеренной стойкостью в атмосферных условиях средняя глубина проникновения -коррозии в сельской атмосфере составляет от 0,1 до  [c.92]

При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний II — алюминий, цинк, кадмий III — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 н 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото.  [c.74]

Коррозия меди и ее сплавов в атмосферных условиях  [c.220]

По мнению Павлова [51], контакт дюралюминия с нержавеющей сталью менее опасен, чем с медью, но более опасен, чем с обычной сталью. Этот контакт, хотя и несколько усиливает коррозию алюминиевого сплава, но в атмосферных условиях его допустить можно.  [c.135]

На коррозионную стойкость железоуглеродистых сплавов перечисленные компоненты влияют по-разному. Из всех примесей, по-видимому, лишь сера увеличивает скорость коррозии сталей в атмосфере, поскольку участки защитной пленки вблизи сернистых включений оказываются более слабыми и проницаемыми для электролита, который, взаимодействуя с сульфидами, обусловливает появление сероводорода — весьма агрессивного компонента среды. Фосфор, медь и хром повышают коррозионную стойкость сталей в атмосферных условиях кремний, марганец и никель в небольших количествах практически не влияют на коррозионное поведение сталей.  [c.28]

Как следует из представленных данных, коррозионно-стойкие стали в пассивном состоянии относятся к материалам с более положительным электродным потенциалом по отношению ко многим другим металлам, исключая благородные металлы, а также медь и ее сплавы для службы в атмосферных условиях. В контакте с материалами, имеющими более низкий электродный потенциал, коррозионностойкие стали будут играть роль катода и способствовать их коррозии.  [c.29]


Контактная коррозия в атмосферных условиях в сильной степени зависит от состава атмосферы. Так, например, коррозия магниевого сплава МЛ5 в контакте с алюминиевым сплавов В95 при переходе от промышленной атмосферы к морской увеличивается в несколько раз. Аналогичное явление наблюдается для многих пар. В атмосферных условиях не возникает контактной коррозии между медью, серебром и золотом, между железом, углеродистыми сталями, свинцом и оловом, между алюминием цинком и кадмием.  [c.107]

Примерами легирования с целью образования совершенного защитного слоя продуктов коррозии на поверхности сплава являются легирование меди алюминием или цинком для повышения коррозионной стойкости в атмосферных условиях легирование молибденом нержавеющих хромоникелевых сталей для повышения их коррозионной стойкости в р астворах, содержащих хлор-ионы.  [c.79]

Чем чище металлы, тем больше их сопротивление коррозии. Например, алюминий с 0,01 % примесей более стоек против коррозии в атмосферных условиях, чем технический алюминий с 0,05 о примесей. Чистые металлы корродируют в меньшей степени, чем их сплавы. Посторонние включения в значительной степени понижают коррозионную устойчивость металлов и сплавов. Степень влияния легирующих примесей на сопротивление металлических сплавов коррозии зависит не только от характера этих примесей, но и от их количества. Например, введение меди и хрома повышает коррозионную устойчивость стали в атмосфере однако если медь вводится в незначительном количестве, то только большое содержание хрома ( 12%) делает сталь нержавеющей в атмосфере и других промышленных средах. Значительное влияние на коррозионную устойчивость оказывает структура. Наибольшей коррозионной устойчивостью обладают однофазные сплавы (чистые металлы, твердые растворы, химические соединения). Многофазные сплавы (механические смеси) корродируют быстрее. Однако известны случаи, когда многофазные сплавы обладают высокими антикоррозионными свойствами (например, силумины). Чем чище поверхность металлов и сплавов, тем их сопротивление коррозии больше. Напряженность поверхности металла повышает его коррозию металл, подвергнутый деформации, корродирует больше. Влияние внутренних факторов усиливается или уменьшается в зависимости от корродирующей среды. Например, изменение содержания углерода в стали незначительно влияет на ее стойкость против коррозии в атмосфере и слабых электролитах в кислых же средах повышение содержания углерода заметно снижает коррозионную стойкость стали.  [c.247]

Медь вследствие очень низкого предела упругости не чувствительна к коррозии под напряжением в атмосферных условиях (т. е. не подвергается коррозионному растрескиванию). В контакте с медными сплавами, никелем, оловом и свинцом во влажной атмосфере, в пресной воде и слабых соляных растворах коррозия меди практически не наблюдается. Однако в этих условиях следует избегать контакта меди с алюминием, магнием и цинком вследствие их быстрого разрушения.  [c.25]

В атмосферных условиях, особенно в присутствии влаги, магний довольно быстро корродирует. Примеси железа, никеля, кобальта и меди резко снижают коррозионную стойкость магния и его сплавов. Магний значительно корродирует в морской воде и в 3%-ном растворе хлористого натрия, причем скорость коррозии сильно возрастает с повышением температуры и концентрации.  [c.431]

Лужение — покрытие оловом — применяют для защиты от коррозии стали, чугуна, меди и ее сплавов, для обеспечения процессов пайки электрических контактов в радиоэлектронной аппаратуре, для создания герметичности резьбовых соединений и др. Оловянные покрытия отличаются высокой коррозионной стойкостью во многих органических кислотах и в атмосферных условиях, а также высокой механической прочностью и пластичностью. Применяемая толщина слоя покрытия стали и жил медного провода 4—6 мкм, деталей электрических контактов 1—2 мкм.  [c.318]


Малоуглеродистая сталь, цинк, медь, алюминий, сплав МА2-1. Скорость коррозии в атмосферных условиях.  [c.70]

Сплавы алюминия, легированные медью, могут в некоторых случаях при эксплуатации в атмосфере подвергаться межкристаллитной коррозии. Закалка с 490—500°С в холодную воду и естественное старение обеспечивают стойкость дюралюминия к межкристаллитной коррозии в атмосферных условиях  [c.59]

Примером такого уменьшения скорости коррозии в атмосферных условиях при введении в металлический сплав катодной структурной составляющей может служить замедленная коррозия медистых сталей. Известно чго медистые стали, содержащие 0,3—0,8% меди, в условиях атмосферы корродируют значительно медленнее, чем подобные же стали, не содержащие меди.  [c.350]

Первое направление — создание путем подходящего легирования более совершенного экранирующего слоя продуктов коррозии, дающего общее повышение коррозионной устойчивости сплава,— имеет сравнительно ограниченные возможности для повышения устойчивости против электрохимической коррозии. Причина этого, по-видимому, заключается в том, что достаточно полного экранирования при электрохимической коррозии в электролитах продукты коррозии, как правило, дать не могут, так как образование этих продуктов (при гетерогенно-электрохимическом механизме коррозии) будет происходить не непосредственно на анодных поверхностях, а в растворе между анодными и катодными участками. Можно ожидать заметно большей зашиты в результате уплотнения вторичных продуктов коррозии и образования защитных слоев в условиях протекания коррозионного процесса в атмосферных условиях. В качестве конкретного примера можно указать на повышение коррозионной устой чивости меди при ее легировании цинком или алюминием, т. е. на повышенную коррозионную устойчивость латуней и алюминиевых бронз по сравнению с чистой медью. Повышенная устойчивость медистых сталей по сравнению с обычными конструкционными сталями должна в некоторой мере объясняться также уплотнением продуктов коррозии, хотя в данном случае, помимо этого фактора, как будет разобрано ниже, значительную роль играет анодное торможение. Однако для повышения устойчивости сплава по отношению к химической коррозии и, в частности, к имеющей такое большое значение в технике газовой высокотемпературной коррозии этот путь будет являться основным.  [c.438]

Медь и медные сплавы имеют очень высокие защитные свойства против атмосферной коррозии благодаря наличию темной поверхностной пленки, которая состоит в основном из окиси меди и солей, образуемых другими компонентами сплава. Коррозия равномерно распространяется по всей площади поверхности. Скорость проникновения коррозии составляет 0,2—0,6 мкм в год в сельской местности и 0,9—2,2 мкм в год в атмосфере промышленных объектов. По прошествии шести-семи лет в условиях морской среды и промышленной атмосферы на поверхности многих медных сплавов появляется патина зеленого цвета вследствие образования хлоридов и сульфатов меди. Патина — обычное явление, допустимое в декоративной отделке. Распространившись полностью, она обеспечивает стабильное состояние изделия с очень долгим сроком службы.  [c.114]

Для защиты от атмосферной коррозии при хранении, транспортировании и консервации изделий в нормальных условиях, повышенных влажности до 100 %) и температуре (до 50 °С) внутренних полостей механизмов, работающих в углеводородных средах. Может быть использован в виде присадок к минеральным маслам в концентрации 1. .. 3 % в виде присадки к бензинам в концентрации не более 0,05 %. Защищает сталь, чугун, цинк и его сплавы, медь и ее сплавы, алюминий и его сплавы. Срок защиты — от 1 года до 10 лет Для защиты от атмосферной коррозии при хранении, транспортировке и консервации. Срок защиты — от 1 года до 5 лет. Может быть использован в виде присадок к минеральным маслам в концентрации I. .. 2 %  [c.590]

Хромат циклогексиламина, или ХЦА (МРТУ 6-04-144—63), — порошок ярко-желтого цвета. Растворяется в воде, этиловом и метиловом спиртах. 1% водный раствор имеет рН = = 7,5- 8,5. ХЦА предназначен для защиты от коррозии стали, чугуна, меди и ее сплавов, никеля, олова, алюминия и его сплавов. Используется в виде порошка или ингибированной бумаги. Порошок распыляют на поверхности металла из расчета 10—12 г/м . Содержание ингибитора в бумаге составляет 18—20 г/м . Как и в других случаях применения летучих ингибиторов атмосферной коррозии, после распыления порошка или обертывания в ингибированную бумагу изделия помещают в герметичные чехлы. В таких условиях ингибитор может защищать металлы до 5 лет.  [c.152]

Медь и медные сплавы широко применяют в качестве конструкционного материала для изготовления изделий различного назначения сосудов, трубопроводов, электрораспределительных устройств, электрооборудования, химической аппаратуры и т. д. Многообразие в использовании меди и медных сплавов связано с их особыми физико-механическими свойствами. Медь обладает наиболее высокой (после серебра) электропроводностью и теплопроводностью, полной устойчивостью в отношении атмосферной коррозии,,сохраняет высокие пластические свойства в условиях высокого холода.  [c.200]

Оксидные пленки, получаемые на меди и ее сплавах, имеют толщину около 1—5 мк, окрашены в глубокий черный или синевато-черный цвет и сообщают изделиям защитные свойства в условиях атмосферной коррозии, при повышенной температуре, влажности и в слабоагрессивных средах.  [c.72]


Исследование влияния изменения температуры на процесс коррозии металлов в атмосферных условиях проводили по следующей методике. Образцы размером 50x40x1 мм из железа (Ст. 3), цинка (Ц-0), меди (М-1), кадмия (КД-0) и магниевого сплава (МА-8) шлифовали тонкой наждачной бумагой, обезжиривали, сушили, взвешивали на аналитических весах и устанавливали на стенд (между фарфоровыми роликами) в горизонтальном положении для испытания в субтропической атмосфере (Батумская коррозионная станция Института физической химии АН СССР). Одновременно с образцами на стенд выставляли коррозионную модель железо—медь [1 ], при помош,и которой на ленте самопишущего гальванометра фиксировалось время прибывания пленки влаги на поверхности образцов. Пленка влаги на поверхности образцов (как и на модели) образовывалась как естественным путем (дождь, снег, роса и т. д.), так и дополнительным обрызгиванием образцов дождевой водой (последнее применялось для сокращения времени испытания). После того  [c.80]

Этот вид коррозии наблюдается чгще всего у сплавов, богатых медью. Однако, чувствительным к межкристаллитной коррозиии в атмосферных условиях оказался и алюминий-магний-кремниевый сплав АВ (6051-Т4) [188].  [c.291]

Коррозию дюралюминия (Д16) в контакте с другими металлами в естественных атмосферных условиях изучали Павлов и Маслова [50]. Испытания проводили в деревянных будках, обеспечивающих беспрепятственный доступ атмосферного воздуха извне к металлу, но исключающих непосредственное попадание атмосферных осадков на образцы. Результаты, полученные после годичного срока испытаний в промышленной атмосфере, представлены на рис. 52. Коррозию определяли по изменению механических свойств аь и 6) металла. Опыты выявили вполне определенное влияние природы контактирующего металла. Наиболее сильное уменьшение относительного удлинения вызвали медь, латунь и нержавеющая сталь 1Х18Н10. Контакт с цинком и кадмием оказался полезным потеря механических свойств была ниже, чем у контрольных образцов. Имела место некоторая защита. По мнению авторов, имеется принципиальное различие в характере влияния анодного контакта на анодированные и неанодированные сплавы. При наличии на поверхности металла оксидной пленки влияние контакта не ограничивается лишь участком, прилегающим непосредственно к месту контакта, а распространяется на значительное расстояние (около 100 мм).  [c.132]

Оловянно-никелевые покрытия с содержанием олова 65% обладают высокой стойкостью к корро зии в атмосферных условиях, в том числе и при наличии в атмосфере сернистокислых соединений. В водных растворах они пассивны и устойчивы к уксусу, щелочам, фруктовым сокам и др. Способность этих покрытий усиливать коррозию металла лодложки можно предотвратить путем тщательного яанесения сплава в два слоя с промежуточным осаждением тонкого слоя меди. Оловянно-никелевые покрытия широко применяются для металлоизделий, используемых в закрытых помещениях.  [c.153]

Магний. Магний — металл, обладающий характерным сереб-ристо-белым цветом, плотностью 1740 кг/м и температурой плавления 651° С. Кристаллическая решетка магния — гексагональная с параметрами а = 3,2 А и с = 5,2 А. Технический магний в отожженном состоянии после деформации обладает сравнительно низкими механическими свойствами 3 =180 (18 кГ/мм ), 8=15ч-4-17%, ЯВ40. Магний малоустойчив против коррозии в атмосферных условиях, особенно во влажной атмосфере, а также сильно корродирует в морской воде и растворах кислот. Однако он устойчив против коррозии в разбавленных щелочах при повышенных температурах. Примеси железа, никеля, кобальта и меди резко снижают коррозионную стойкость магния и его сплавов. Магний хорошо обрабатывается резанием и поддается ковке. При температуре, несколько превышающей температуру плавления, магний загорается и горит на воздухе ярким белым пламенем.  [c.216]

Для защиты от коррозии стали и цинковых сплавов в атмосферных условиях медные покрытия небольшой толщины (10— 20 мкм) не пригодны, так как в порах покрытия разрушение основного металла ускоряется в результате действия гальванических элементов. Кроме того, медь легко окисляется на воздухе, особенно прн нагревании. При действии сернистого газа поверхность ее окрашивается в темный (от коричневого до черного) цвет. Под действием угольной кислоты или хлористых соединений, находящихся в атмосфере или в жидких средах, поверхность меди покрывается основными или хлористыми солями меди. Таким образом, медное покрытие без последующей обработки (оксидирования, сульфидировання и др.) и нанесения других более коррозионностойких покрытий непригодно даже и для декоративной обработки изделий.  [c.236]

Магний—очень электроотрицательный металл (V °=—2,37в) и потому из конструкционных материалов наиболее коррозионно активен. Склонность к пассивированию позволяет ему быть стойким в растворах хромовой кислоты. Однако он не стоек в других кислотах, за исключением плавиковой, в которой на поверхности металла образуется нерастворимая в этих условиях защитная пленка, состоящая из Mgp2. Магний стоек в растворах аммиака и щелочей (до 50—60°С). Фосфаты образуют защитную пленку на магнии и его сплавах, повышая стойкость от разрушения в воде и водных растворах солей. Магний не стоек в органйческих кислотах, в нейтральных солевых растворах и даже в воде, особенно, если она содержит углекислоту. Хлорсодержащие флюсы при попадании в сплав сильно повышают скорость коррозии отливки. Контакт с электроположительными металлами, а также загрязнение магния железом, никелем, медью и другими металлами с низким перенапряжением водорода повышают скорость коррозии. Цинк, свинец, кадмий, марганец и алюминий менее опасны в этом отношении. В атмосферных условиях в отличие от растворов электролитов магний корродирует с кислородной деполяризацией. Легко окисляется на воздухе при повышенных температурах.  [c.57]

Лучшим пигментом для грунта по стали является свинцовый сурик, применяемый при грунтовке подводных частей судов и портовых сооружений, железнодорожных мостов и т. п. Не-дефицитным и недорогим пигментом для грунтовки стали является железный сурик. В грунтовочном материале для алюминиевых и магниевых сплавов пигментом является цинковый крон при грунтовке цинка и оцинкованного железа применяют окись цинка. Алюминиевый порошок, затертый на масляном лаке, относится к хорошим грунтовочным материалам для меди. При покрытии нитролаками (нитроэмалями) грунтом служит масляный лак и смесь пигментов. В последнее время широко применяют цинковые — протекторные грунты, надежно предохраняюшие сталь от коррозии в атмосферных условиях, пресной воде и в закрытых помещениях. Эти грунты создают катодную защиту стали в морской воде. Такой грунт состоит из эмульсионного полистирола, растворенного в ксилоле и скипидаре, и цинкового порошка.  [c.265]

Алюминий и его сплавы применяются во многих отраслях промышленности и особенно в авиастроении и радиотехнике. Широкое распространение алюминий и его сплавы имеют также и в оптико-механяческом производстве. Отличительной особенностью алюминия является низкий удельный вес (2,7), который примерно в три раза меньше удельного веса железа и меди. Алюминий стоек против коррозии в атмосферных условиях, в воде и других средах, обладает высокими электропроводностью и теплопроводностью, пластичен.  [c.34]


В атмосферных условиях никелевое и хромовое покрытим защищают алюминиевые сплавы лучше, чем анодирозаяие. Так, при толщине покрытия 50 мк никель и хром удовлетворительно защищают алюминий от атмосферной коррозии в течение 16 месяцев. Еще лучшими защитными характеристиками обладает двухслойное покрытие никель—хром. Подслой меди не улучшает защитные свойства хромового покрытия. Кадмиевое покрытие используют для защиты алюминия и его сплавов от контактной коррозии. Серебряное, медное, оловянное покрытия применяют для защиты от окисления алюминиевых электрических контактов. Серебряное и родиевое покрыт11Я используют для защиты от коррозии алюминиевых волноводов [210].  [c.106]

Необходимо отметить, что коррозия сплайа, содержащего 4% меди, была равномерной и проникала на меньшую глубину, чем межкристаллитная коррозия на сплаве, содержавшем 0,Г% меди, однако вряд ли целесообразно применять, на транспорте сплав с 4% меди, особенно в тех конструкциях, где необходима сварка. Согласно взглядам, изложенным на стр. 202, вблизи сварного шва могут возникать опасные в коррозионном отношении зоны. Приведенные факты требуют внимательного изучения инженерами. По данному вопросу см. литературу [82]. Более новые данные о коррозионном поведении алюминия в атмосферных условиях см. в литературе [83].  [c.482]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

В атмосферном павильоне с жалюзими испытывали сплавы системы Al-Mg- u Al-Mg Zn-Al-Mg, а также цинк (99,8%), электролитическую медь (99,9%), алюминий (99,5%) и электролитические и химические покрытия. Результаты испытаний металлов представлены в табл. V. 6. Для сравнения приведены данные о коррозии этих же металлов на воздухе в Батуми. В течение первых 3 месяцев с начала эксперимента метеорологические условия были следующими средняя месячная температура воздуха колебалась от -1-21,1 до +24,2 °С, относительная влажность — от 78 до 80%, количество осадков — от 81,1 до 335,5 мм, продолжительность смачивания — от 115 до 192 ч. Как видно из данных, скорость коррозии стали в открытой субтропической атмосфере намного выше, чем в павильоне ( в 20 раз). То же характерно и для цинка и меди. С алюминием происходит следующее вначале испытаний скорость коррозии алюминия в открытой атмосфере несколько меньше, чем в павильоне жалюзийном со временем она увеличивается и далее вновь падает. В конечном счете скорость коррозий алюминия в павильоне больше, чем в открытой атмосфере. Таким образом, в сильно агрессивных атмосферах коррозия металлов и сплавов на воздухе выше, чем в павильоне жалюзийном. Отсюда следует, что в тропических и субтропических районах изделия и оборудование следует хранить под навесом, брезентами или в складах.  [c.77]

В условиях возможности пассивирования металлов или сплавов коррозионная стойкость их может быть повышена дополнительным катодным легированием. Так, стали, содержащие от 0,2 до 1 % меди, в ряде случаев более коррозионносгойкп, чем безмедистые стали. Относительно большей устойчивостью медистые стали обладают только в условиях, когда коррозноииый процесс протекает при достаточно интенсивной аэрации (атмосферная коррозия) и отсутствии хлор-иона или других разрушающих пленку ионов.  [c.44]

Уменьшения анодной активности сплава достигают а) введением компонентов, повышающих термодинамическую устойчивость анодной фазы (легированием меди золотом, легированием никеля медью и пр.) б) введением более легкопассивирующихся компонентов (легированием стали хромом или кремнием, легированием никеля хромом) в) введением компонентов (активных катодов) в условиях возможного установления пассивного состояния, облегчающих наступление пассивности (введением меди в низколегированную сталь при атмосферной коррозии, легированием коррозионностойких хромистых и хромоникелевых сталей небольшими добавками меди, серебра, палладия или платины).  [c.312]


Смотреть страницы где упоминается термин Коррозия меди и ее сплавов в атмосферных условиях : [c.281]    [c.567]    [c.529]    [c.428]    [c.350]    [c.241]    [c.163]    [c.568]    [c.458]   
Смотреть главы в:

Структура коррозия металлов и сплавов  -> Коррозия меди и ее сплавов в атмосферных условиях



ПОИСК



Атмосферная коррозия

Коррозия и сплавы

Медиана

Медь атмосферная

Медь и сплавы

Медь и сплавы меди

Условия атмосферные



© 2025 Mash-xxl.info Реклама на сайте