Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность соединений при высоких температурах

Прочность соединений при высоких температурах  [c.165]

Прочность болтов при высоких температурах. При высоких температурах в болтовом соединении могут возникать дополнительные температурные нагрузки. Эти нагрузки возникают в том случае, когда температурные коэффициенты линейного расширения материалов болта и соединяемых деталей неодинаковы. Температурные нагрузки подсчитывают по условию совместности деформаций, которые рассматривают в курсе сопротивления материалов. Температурные напряжения в болтах понижают путем применения материалов с близкими температурными коэффициентами линейного расширения пли постановки упругих прокладок, упругих болтов и шайб.  [c.36]


Допустимые рабочие температуры ограничиваются в основном двумя факторами свойствами материала сильфона и прочностью мест соединения сильфона в сильфонном узле изделия (пайка, сварка, механическое соединение). При высоких температурах, естественно, должны быть уменьшены действующие напряжения и допустимые деформации, т. е. уменьшены рабочее давление и рабочий ход.  [c.140]

Для повышения прочности сталей при высоких температурах и для улучшения жаростойкости стали легируют. Для придания жаропрочности в состав металла труб вводят молибден в количестве 0,2—0,6 %. Он сравнительно дорог и дефицитен, растворяется в железе и образует включения карбидов последние относительно нестойки. В процессе длительной эксплуатации при высокой температуре они распадаются и в структуре стали появляются включения графита. Процесс графитизации молибденовой стали протекает быстрее в наклепанном металле. Так, в околошовной зоне сварных соединений могут образовываться чешуйки графита, приводящие к хрупкому разрушению. Процесс графитизации наблюдается при температуре выше 475 С. Вследствие склонности стали 15М к графитизации ее перестали применять.  [c.161]

В связи с рассмотренными особенностями деформирования и разрушения резьбовых соединений, работающих в широком диапазоне температур, важное значение может иметь температурный фактор, способствующий возникновению дополнительных деформаций ползучести, снижению усилий предварительного затяга п накоплению длительных статических и циклических повреждений. Оценка сопротивления малоцикловому разрушению резьбовых соединений при высоких температурах может быть осуществлена по критериям длительной циклической прочности (см. гл. 2, 4 и 11). Понижение температур эксплуатации приводит к возможности возникновения хрупких разрушений резьбовых соединений на ранних стадиях развития трещин малоциклового нагружения. Это требует изучения трещиностойкости конструкционных материалов (предназначенных для изготовления резьбовых соединений) с применением соответствующих критериев линейной и нелинейной механики разрушения [19, 12].  [c.211]


При анализе факторов, определяющих работоспособность сварного соединения при высоких температурах, необходимо прежде всего рассмотреть условия образования последнего. Это рассмотрение особенно важно потому, что обусловленное сваркой изменение структуры и свойств отдельных зон сварного соединения, во время эксплуатации при высоких температурах сказывается значительно сильнее, чем при комнатной температуре. Вследствие нестабильности структурного состояния различных зон сварного соединения интенсивность развития в них диффузионных процессов, определяющая степень разупрочнения при высоких температурах будет выше по сравнению с основным металлом, что приводит в зависимости от уровня температуры и длительности нагружения, к повышению или снижению прочности. Следует также отметить, что в высокотемпературных установках используются преимущественно легированные стали, обладающие повышенной реакцией на термический цикл сварки и поэтому в наибольшей степени изменяющие свои свойства.  [c.34]

При сварке малоуглеродистых и низколегированных термически неупрочняемых сталей степень неоднородности сварного соединения минимальна. Наблюдаемое в исходном после сварки состоянии повышение твердости в околошовной зоне и шве близкого легирования к основному металлу, как правило, снижается последующим отпуском. Опыт эксплуатации таких соединений при высоких температурах показал отсутствие заметного влияния неоднородности на работоспособность конструкции. В то же время в отдельных случаях и для таких соединений наблюдается резкое снижение прочности конструкции, например, при развитии в условиях эксплуатации процесса графитизации на участке неполной перекристаллизации.  [c.56]

ПРОЧНОСТЬ РЕЗЬБОВЫХ СОЕДИНЕНИЙ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ  [c.150]

К плавням относят такие материалы, которые при обжиге изделий вступают во взаимодействие с сырьевыми материалами шихты, образуя легкоплавкие соединения. Жидкая фаза способствует спеканию материала, сближению частиц твердой фазы и срастанию их. Кроме того, жидкая фаза заполняет поры между частицами твердой фазы. При введении плавней в состав керамической массы понижается температура ее спекания и огнеупорность, благодаря чему повышается плотность обожженного черепка и, как следствие, увеличивается предел прочности на разрыв, сжатие и излом, а также уменьшается водопоглощение. С повыщением содержания плавней механическая прочность материалов при высоких температурах снижается.  [c.249]

Длительные свойства соединений при высоких температурах закономерно следуют аналогичным свойствам исходного металла (фиг. 94). Старение приводит к некоторому повышению пределов прочности и текучести и понижению пластических свойств. Длительная выдержка при высоких температурах приближает микроструктуру к исходной (см. фиг. 89). При этом выравнивании образуется мелкозернистая микроструктура.  [c.144]

Низколегированные и углеродистые стали имеют хорошую свариваемость при СС. Повышенное содержание углерода уменьшает окисление металла и облегчает получение соединений, свободных от оксидов. Пластичность соединений повышают подогревом или последующей термической обработкой. В связи с большой прочностью металла при высоких температурах, а также для предот-  [c.25]

Аустенитные стали хорошо свариваются контактной сваркой. Сварку ведут на пониженных плотностях тока. Эти стали имеют высокое удельное электросопротивление и низкую теплопроводность, что обусловливает выделение большого количества теплоты при сварке и ограниченный его отвод из зоны сварного соединения. При этом применяют повышенное давление, поскольку аустенитные стали имеют значительную прочность при высоких температурах.  [c.233]

При температурах свыше 150°С для легких сплавов и 300°С для конструкционных сталей в затянутых соединениях становятся существенными явления релаксации и заедания. Релаксация связана с ползучестью материала при высоких температурах. Она проявляется в постепенном ослаблении затяжки соединения. При этом нарушается одно из главных условий прочности и герметичности соединения. Для уменьшения релаксации необходимо повышать упругую податливость деталей соединения, применять материалы с высоким пределом ползучести (например, хромистые и хромоникелевые стали (181), снижать допускаемые напряжения для болтов.  [c.36]


В промышленности получают полиэтилен со сшитой структурой молекул, когда создаются поперечные химические связи между линейными цепями макромолекул. Сшитый полиэтилен можно получить при облучении полиэтилена частицами высоких энергий или при действии специальных перекисных соединений, вызывающих сшивку макромолекул при высокой температуре. Такой полимер становится резиноподобным при ПО—П5°С и сохраняет прочность при температуре до 200 °С.  [c.206]

При сравнительно низких температурах для измерения твердости тугоплавких материалов используется алмаз. Высокая твердость алмаза связана с локализацией валентных электронов у остовов атомов с образованием весьма устойчивых конфигураций, определяющих в свою очередь жесткость и направленность химических связей. Эти положительные свойства позволяют применять кристаллы алмаза в качестве материала инденторов при измерении твердости тугоплавких соединений и материалов на их основе до температуры 1100 К. Алмазные наконечники, характеризующиеся высокой твердостью при низких температурах, обнаруживают быстрое притупление и уменьшение стойкости в условиях высоких температур. Установлено [112], что при температурах, начиная с 1200 К, измерение твердости вызывает быстрый износ алмазных пирамид, а при температуре 1370—1470 К в результате одного вдавливания наконечник выводится из строя. В процессе длительного пребывания при высоких температурах алмазный наконечник постепенно подвергается графитизации, резкой потере прочности и разупрочнению. При температурах свыше 1100—1150 К происходит превращение алмаза в графит.  [c.55]

Испытания на микротвердость получили в последние десятилетия широкое распространение и стали совершенно необходимыми в исследовательских работах по изучению механических свойств металлов и неметаллов в микрообъемах как при комнатных, так и при высоких температурах. Определение микротвердости применяется для оценки прочности и пластичности металлов, соединений, твердых абразивных материалов, полупроводников, ионных кристаллов, стекол, минералов и др. [11, 46, 50, 51, 64, 66,67,110,111, 116,124, 126, 128, 132, 133, 135, 170, 191-193, 2111.  [c.63]

Стали этого типа получили широкое применение в различных отраслях промышленности в качестве нержавеющего, коррозионностойкого и окалиностойкого материала. Сочетая умеренную прочность, высокую пластичность, немагнитность, повышенные механические свойства при высоких температурах, имея хорошую свариваемость, высокие прочность и пластичность в сварных соединениях, они в ряде отраслей промышленности являются основным, весьма ценным конструкционным материалом,  [c.22]

При повышении начальных параметров пара до 100 ат и 500° С работа фланцевых соединений, как и многих других элементов котлоагрегатов и турбин, изменяется коренным образом. Обычные мягкие прокладки ввиду их недостаточной механической прочности и стойкости при высоких температурах становятся ненадежными. Такие прокладки на высоком давлении будут выгорать и даже при незначительном пропуске выдуваться.  [c.257]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]

По данным ряда исследований [20], [21 ], надежность работы при высоких температурах сварных соединений разнородных сталей (аустенитной с перлитной или хромистой) наиболее полно выявляется в условиях их испытания на длительную прочность при циклических изменениях температуры. Указанные испытания являются необходимыми в первую очередь для оценки работоспособности узлов транспортных установок, имеющих большое число пусков.  [c.23]

Для сварных соединений углеродистых, хромомолибденовых и аустенит-ных сталей первой группы (глава И, п. 4), работающих при высоких температурах, нормами расчета элементов котлов на прочность [51 ] предусмотрено введение поправочного коэффициента ф, равного  [c.58]

Использование паяных бандажей при высоких температурах в газовых турбинах встречает существенные трудности в связи с относительно низкой жаропрочностью применяемых припоев и трудностями использования при пайке рабочих лопаток специальных жаропрочных припоев. На фиг. 102 приведен график изменения прочности паяных соединений в зависимости от типа припоев. Соединения, выполненные серебряным припоем марки ПРС-45, уже начиная с температуры 200°, существенно снижают свою прочность. Использование медно-цинкового припоя типа ЛОК-59-0,3 позволяет повысить область температур его возможного применения до 300—350°. Лишь введение специальных жаропрочных припоев на никелевой основе дает возможность использовать паяные соединения до 700—750°.  [c.152]


Процессам окисления при высоких температурах подвержены все металлы, но в разной степени, в зависимости от их химических свойств. Поэтому соединения различных металлов с кислородом, галогенами, серой обладают различной степенью устойчивости, прочностью и летучестью.  [c.18]

Трение большинства металлов при высоких тедшературах в вакууме сопровождается схватыванием, а применение существующих смазок ограничено из-за высокой скорости их испарения. Изыскание пригодных для работы с трением в этих условиях материалов проводилось среди различных жаропрочных сплавов и тугоплавких металлов и соединений, в которых сочетается высокая температура рекристаллизации, твердость и прочность при высоких температурах.  [c.44]

При проектировании резьбовых соединений, работающих при высокой температуре I 350 °С), необходимо учитывать ползучесть и длительную прочность материала.  [c.165]

Устранение повреждаемости границ зерен околошовной зоны, а также снижение прочности тела зерна могут достигаться выбором рационального режима термической обработки сварных соединений. Для высокожароирочных аустенитных сталей и сплавов заметное повышение надежности их сварных соединений при высоких температурах обеспечивается при переходе к более совершенной металлургической технологии выплавки стали или сплава. Одним из возможных путей повышения надежности при высоких температурах сварных соединений этих материалов является также переход к использованию методов сварки плавлением с минимальным тепловложением, а также к сварке методами давления [57]. Работы в этом напрлвлении находятся, однако, еще в начальной стадии, поэтому уверенного ответа о целесообразности использования тех или иных методов сварки получить пока нельзя.  [c.78]

С.ва[10чные материалы. При разработке покрытых электродов, сварочной проволоки и флюсов для сварки теплоустойчивых сталей стремятся, как правило, приблизить химический состав металла шва к основному металлу, так как в условиях длительной работы сварных соединений при высоких температурах существует опасность развития диффузионных процессов. Диффузионные процессы и, особенно, миграция углерода в зоне сплавления влекут за собой понижение длительной прочности и пластичности сварных соединений. Это явление наблюдается уже при небольшом отличии в легировании металла шва карбидообразующими элементами (например, сталь 12Х1МФ — шов 08Х2МФБ).  [c.87]

Посадки резьб образуют сочетанием полей допусков болтов и гаек. Возможны любые сочетания полей допусков, но в первую очередь необходимо применять поля допусков предпочтительного применения (6 , бЯ и т. д.). Эти поля допусков дают посадки с небольшими наименьшими зазорами, обеспечивают определенность характера соединений и облегчают свинчивание резьб или позволяют применять тонкие антикоррозийные покрытия резьб. Посадки с большими (образованные полями 6е, Ы и т. д.) применяют для резьбовых соединений, работающих при высокой температуре, для облегчения сборки и разборки или для повышения усталостной прочности резьбовых соединений. Посадки с 5тш=0 (с основными отклонениями Я и й) обеспечивают высокую определенность характера соединения и повышенную точность центрирования, но затрудняют свинчиваемость деталей, однако они не приемлемы при нанесении на резьбы антикоррозийных покрЕчтий. Посадки резьб обозначают дробью в числителе помещают поле допуска гайки, а в знаменателе — болта. Например, М12—6H/6g.  [c.163]

В монографиях М. X. Шоршорова и В. В. Кудинова большое внимание уделяется теоретическим и практическим вопросам тепло-переноса в плазменных и детонационных покрытиях, как при формировании последних, так и при тепловой захците ответственных деталей, работаюгцих при высоких температурах. Внедрение в промышленность теплоизоляционных покрытий потребовало поисков решения задачи уменьшения тенлопереноса без потери жаростойкости и прочности соединения с основным металлом. Поэтому важно иметь точные методы определения теплопроводности, без них невозможно разрешить известное противоречие между жаростойкостью и теплоизоляцией.  [c.18]

Известен ряд установок, разработанных в Институте проблем прочности АН УССР для исследования прочности соединения покрытий с основным металлом при высоких температурах [97, 98, 102, 103]. Несмотря на некоторые различия, эти установки имеют общий принцип действия, основанный на нагреве образца в вакууме до нужной температуры с последующим нагружением.  [c.62]

Желательно, чтобы металл матрицы в композитах имел малую плотность и высокую пластичность как правило, такие металлы очень склонны к образованию химических соединений с высокоэффективными упрочнителями (бор, карбид кремния и т. д.). Образующиеся при этом химические соединения, часто интерметалли-пеские по природе, отличаются хрупкостью и малой эффективной фочностью. По этой причине такие соединения, образующиеся, как правило, на поверхностях раздела в процессе изготовления композита при высоких температурах, могут понизить способность поверхности раздела распределять нагрузку и сопротивляться разрушению в условиях сложного напряженного состояния. На основе этого эффекта Меткалф [44] разработал модель для объяснения снижения прочности, к которому приводит химическое взаимодействие в композитах Ti—В и AI—В. По-видимому, наличия трещин в непрочном боридном слое на поверхности раздела достаточно, чтобы вызвать преждевременное разрушение волокон  [c.46]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

В настоящее время освоено промышленное производство усов карбида кремния. Цена на них снизилась более чем в 200 раз. В форме нитевидных кристаллов выращено свыше 30 элементов и 140 соединений. Нитевидные кристаллы сапфира и карбида кремния в будущем станут широко использоваться в качестве армирующих материалов. Они очень прочны, у них большой модуль упругости, низкая плотность и большое сопротивление деформации при высоких температурах. При растяжении при комнатной температуре их прочность равна соответственно 700 кг/мм и 1200 кг/М М , а модуль упругости находится в пределах 40 000—60 000 кг/мм2. С повышением температуры он снижается незначительно. Усовер-  [c.68]


В целом высокопрочные аустенитные нержавеющие стали обладают очень высокой стойкостью в морских атмосферах. Высокая прочность этих сплавов достигается путем холодной деформации, после чего обычно следует термообработка, частично восстанавливающая пластичность. После холодной деформации и термообработки аустенитные нержавеющие стали обладают очень хорошей стойкостью в агрессивных морских атмосферах. Однако в местах сварных соединений стойкость теряется. Наблюдается также коррозия этих сталей при высоких температурах, в частности при испытаниях в кипящем 42%-ном растворе Mg l2, а также в горячей морской воде [12]. О коррозии при комнатных температурах сообщалось очень редко. После термообработки на твердый раствор аустенитные нерл<авеющие стали не подверл<ены кор-  [c.66]

Развитие техники волочения было неразрывно связана с усовершенствованиями волочильного инструмента. В проволочном производстве стали широко применять вместо стальных волочильных досок волоки из алмаза, сапфиров и рубинов. Их использовали для протяжки проволоки тонких и очень тонких размеров (диаметром до 0,008 мм). Наиболее эффективными были алмазные волоки. Благодаря очень высокой твердости и износостойкости канал алмазной волоки практически не разрабатывается. Получаемая при этом проволока сохраняет на протяжении десятков и даже сотен километров одинаковый диаметр и профиль поперечного сечения. Качество такой проволоки имеет особо важное значение в электротехнике и некоторых других областях. Производство алмазных волок в последней трети XIX в. было монополизировано несколькими западноевропейскими (преимущественно французскими и итальянскими) фирмами, поставлявшими их во многие страны мира. В 1899 г. производство алмазного волочильного инструмента с полным циклом создается в России товариществом Московских соединенных золотоканительных фабрик Владимир Алексеев и П. Вишняков и А. Шамшин . Инициатором и одним из организаторов первого в России цеха алмазных волок был председатель правления и один из директоров этой фирмы К. С. Станиславский (Алексеев), обессмертивший свое имя как выдающийся актер и реформатор сценического искусства. Во втором десятилетии XX в. в волочении начали использовать высокоэффективные специальные твердые сплавы. Вначале для этой цели служили стеллиты и литые карбиды. Стеллиты — кобальтохромовольфрамовые сплавы, хорошо сохраняющие прочность при высоких температурах, применяли для изготовления волочильного инструмента до появления более твердых и стойких в эксплуатации литых карбидов. Литые карбиды были разработаны перед первой мировой войной Ломаном (Германия). Наиболее твердым из них оказался карбид вольфрама, на основе которого позже был получен сплав, названный воломитом. По стойкости воломитовые фильеры (волоки) превосходили стальные на 60—70%, но уступали алмазным. Несмотря на ряд положительных  [c.127]

Для повышения предела длительной прочности стали стремятся, чтобы твердый раствор содержал достаточное количество элементов, повышающих порог рекристаллизации. В процессе эксплуатации при высоких температурах происходит перемещение этих элементов из твердого раствора в карбиды и интерметлллические соединения. При рациональном легировании и соответствующих режимах термической обработки стремятся замедлить обеднение твердого раствора (феррита или аустенита).  [c.86]

Как показано рядом работ [18 ], [19 ], испытания при высокой температуре с постоянной скоростью деформации наиболее полно выявляют длительную пластичность материала, являющ,уюся одной из основных характеристик его склонности к хрупким разрушениям. Поэтому в качестве критерия для оценки чувствительности сварных соединений трубопроводов к хрупким разрушениям используется не прочность сварного соединения, а его предельная деформационная способность, выражаюш,аяся в величине относительного удлинения образца до разрушения.  [c.23]

В машиностроении повысилось также значение соседних с ним элементов— бора и углерода. Бор ( р ) является легцрующим компонентом жаропрочных сплавов и, образуя бориды с металлами (Ре Со N1 и др.), способствует увеличению их длительной прочности при высоких температурах. Соединения бора с азотом (нитриды бора) обладают твердостью, мало уступающей твердости алмаза. Углерод ранее из-  [c.10]

Сплав АК4 имеет более высокую жаропрочность, чем сплав АК2. Он содержит меньшее количество меди и большее количество магния. Же- лезо и никель в нем находятся в отношении 1 1 и образуют нерастворимое химическое соединение А1дРеМ1. Кремний в этом сплаве является вредной примесью, так как ухудшает длительную прочность. Марганца в сплаве АК4 нет. Пластичность сплава АК4 при высоких температурах пониженная. Обрабатываемость резанием удовлетворительная.  [c.103]


Смотреть страницы где упоминается термин Прочность соединений при высоких температурах : [c.24]    [c.434]    [c.36]    [c.290]    [c.33]    [c.294]    [c.57]    [c.293]   
Смотреть главы в:

Резьбовые и фланцевые соединения  -> Прочность соединений при высоких температурах



ПОИСК



Прочность соединений

Температура высокая

Температура соединений



© 2025 Mash-xxl.info Реклама на сайте