Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет на прочность материалов с трещинами

Расчет на прочность материалов с трещинами  [c.335]

При расчете на прочность материалов с трещинами в первую очередь учитываются размеры трещины и напряжения. Для определения размеров трещин в практике необходимо применять современные методы дефектоскопического контроля ультразвук, рентгеноскопию, акустическую эмиссию и др., что позволяет прогнозировать наступление критического состояния конструкции, обеспечивать своевременный ее ремонт и, следовательно, продление ресурса работы.  [c.336]


Технические критерии статического и усталостного разрушения при сложном напряженном состоянии, применяемые обычно в расчетах на прочность / — IV теории прочности и их обобщения [6]), имеют дело только с макроскопическими напряжениями и деформациями (I рода). Последние являются усредненными величинами, определяемыми для всего поликристаллического образца в целом, В частности, критерием разрушения по первой теории прочности служит равенство максимального главного напряжения его критическому значению Рр, равному сопротивлению разрушению при простом одноосном растяжении поликристаллического образца. Действительная картина разрушения сложнее. Задолго до полного разрушения всего образца, при напряжениях, значительно меньших разрушающего, в нем появляется множество микроскопических трещин, свидетельствующих о разрушении отдельных элементов структуры. Это явление легко понять, если учесть, что макроскопические напряжения являются средними по отношению к структурным или микроскопическим напряжениям (П рода), которые могут быть как меньше, так и значительно больше макроскопических напряжений в любом данном сечении тела. Максимальные из числа микроскопических растягивающих напряжений, достигая местной (локальной) прочности материала, приводят к образованию микротрещин. В связи с этим очевидно, что расчет по обычным техническим критериям прочности противоречив, поскольку в основу его положено предположение, по которому разрушение вызывается средними (макроскопическими), а не максимальными (из числа микроскопических) напряжениями. Дело обстоит точно так же, как если бы расчет на прочность пластинки с отверстием производился по номинальным напряжениям, без учета концентрации напряжений у отверстия и независимо от формы и размеров отверстия. В структуре технических материалов (сталей, чугунов, бетона и даже стекла) роль концентраторов напряжений принадлежит особенностям микроскопической структуры (кристаллитам, неметаллическим включе-50  [c.50]

Конечно, задачи и цели курса сопротивления материалов остаются прежними. Как в прошлом, так и ныне надо научить студента основам расчета на прочность и методам механики твердого деформируемого тела. Но сместились акценты. Появились новые идеи о вязкости материала, о развитии трещин, об их блокировании с помощью искусственно создаваемых структур. Те материалы, которые всегда и, казалось, навечно считались ни на что не пригодными, неожиданно стали рассматриваться как весьма перспективные. Наконец, изменилось и наше отношение к понятию сплошной непрерывной среды, в рамках которого рассматривается развитие деформаций и последующего разрушения.  [c.7]


Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]

Статические проблемы механики разрушения. Основоположником механики разрушения по праву можно считать А. Гриффитса. Основы механики хрупкого разрушения тела с треш,иной изложены им в работе [480], опубликованной в 1920 г. в трудах Лондонского королевского общества. Однако эта работа осталась незамеченной и долгое время идеи, высказанные в ней, не находили поддержки среди специалистов в области прочности материалов. Отчасти это было связано с тем, что его теория была разработана для идеально хрупкого разрушения материалов. Но как показывает опыт, при разрушении большинства конструкционных материалов, используемых в инженерной практике, наблюдаются пластические деформации в окрестности фронта трещины. При этом значительная часть энергии разрушения расходуется на пластическое деформирование материала. Только после работы Дж. Ирвина [492, 493] механика разрушения тел, содержащих трещины, стала интенсивно развиваться, а ее методы стали применять- Ся при расчетах на прочность различных инженерных конструкций. Ниже кратко изложены основные идеи А. Гриффитса и Дж. Ирвина, которые составляют предмет классической линейной механики разрушения.  [c.10]

Известный ученый в области численных методов расчета на прочность, прикладной механики разрушения и механики усталостного разрушения многослойных материалов и конструкций, автор более 100 печатных работ, посвященных исследованию прочности металлических и неметаллических материалов и конструкций с остаточными напряжениями и трещинами.  [c.270]

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]


В методиках расчета, разработанных Институтом машиноведения АН СССР, сделан ряд допущений и упрощений, позволяющих выполнить расчет прочности и долговечности в рамках инженерных возможностей — с использованием аналитических зависимостей для кривых малоциклового разрушения, базовых статических и циклических свойств материала и схематизированных режимов эксплуатационного нагружения. Расчет местных напряжений и упруго-пластических деформаций проводится на базе коэффициентов концентрации напряжений и деформаций в упругой области. Эти коэффициенты устанавливаются по теоретическим коэффициентам для заданных уровней номинальных нагружений с учетом сопротивления материалов неупругим деформациям при статическом и циклическом нагружении. Нестационарность режимов нагружения в инженерных расчетах учитывается по правилу линейного суммирования повреждений. Расчеты выполняются для стадии образования трещины в наиболее нагруженных зонах рассматриваемых элементов конструкций.  [c.371]

Наконец, следует сделать заключение о раскрытии в конце трещины. Ясно, что для реальных материалов в результате пластического течения раскрытие больше нуля и может считаться как постоянной материала, так и величиной, зависящей от внешней нагрузки. Причем рассчитанные примеры показали, что и в том, и в другом случае расхождение между критическими состояниями невелико (линии 2 ж 3 иа. рис. 18.1, 18.3, 18.4). Более того, начиная с некоторого значения размера трещины, предположение о нулевом раскрытии практически также не изменяет критическое состояние. Отсюда можно сделать вывод, что принятие той или иной гипотезы о степени постоянства раскрытия в конце трещины можно скорее обосновать удобством расчета, нежели соображениями его точности. К этому можно добавить, что детали деформации, отражающиеся на раскрытии в малой окрестности конца трещины, сильно зависят от размера зерна, его анизотропии и неоднородности (а также и от других причин), что вносит в экспериментальное измерение раскрытия некоторую долю неопределенности, позволяющую относиться к результатам непосредственного измерения малых значений раскрытия в конце трещины с известной осторожностью [51]. Поэтому при хрупком разрушении достаточно знать плотность работы разрушения 2 , измеренную на образцах с достаточно большой трещиной, и техническую прочность Оо гладкого образца (в отсутствие трещины). Этих параметров достаточно для построения области предельного состояния тела с трещиной и с ограниченной прочностью при  [c.149]

Развитие механики твердого тела на этих стадиях способствовало новой постановке вопросов сопротивления материалов, расчета прочности и долговечности элементов конструкций. Возникла вероятностная трактовка расчета на сопротивление усталости по признаку возникновения трещины, разработаны методы линейной механики разрушения для расчета на сопротивление хрупкому разрушению, методы расчета на сопротивление повторным пластическим деформациям в связи с явлениями усталости в пределах малого числа циклов. Эти методы все шире используются при проектировании высоконагруженных конструкций, они получают отражение в нормативных материалах промышленности.  [c.5]

Указанные выше характеристики механических свойств, определяемые на гладких образцах, образцах с концентрацией напряжений и с трещинами, позволяют сопоставлять материалы при обосновании их выбора для создаваемых конструкций и проводить по ним расчеты прочности и долговечности. Наряду с этими характеристиками существует большая группа пара-  [c.27]

МР 71-82. Расчеты и испытания на прочность. Методы механических испытаний материалов. Определение характеристик вязкости разрушения (трещиностойкости) на стадии остановки трещины. — М. ВНИИНМАШ, 1982. — 27 с.  [c.308]

МР 225—86. Методические рекомендации. Расчеты и испытания на прочность. Фрактографическое определение зоны стартового развития трещины и использование ее геометрических размеров для оценки трещиностойкости конструкционных материалов. М. ВНИИНМАШ, 1986. — 16 с.  [c.350]

Конечная цель анализа прочности конструкции при наличии трещин заключается в том, чтобы с помощью расчета показать, что требования прочности, предъявляемые к конструкции при наличии трещин, удовлетворены (аналогично тому, как с помощью расчета показывают согласованность требований, предъявляемых к конструкции при отсутствии трещин, с ее прочностью). Однако можно заметить, что даже расчеты конструкций без трещин, подкрепленные почти 50-летним опытом, должны подтверждаться испытаниями, если конструкция имеет специфические особенности. В настоящее время органы надзора настаивают на проведении испытаний содержащих трещины конструкций и, несомненно, будут продолжать настаивать в течение ряда лет. Это объясняется тем, что методов расчета сложных конструкций, представляющих собой жесткую оболочку с трещинами, либо совсем не существует, либо они находятся в стадии разработки. Только недавно методы расчета простых конструктивных элементов достигли удовлетворительной точности. Однако имеющиеся методы расчета фактически позволяют конструктору проводить рациональное сравнение материалов и решать простые, но жизненно необходимые проблемы, встречающиеся при создании сложных конструкций. Таким образом разумное применение имеющихся методов расчета в значительной степени увеличит вероятность успеха окончательных сдаточных испытаний, а положительный опыт таких испытаний проложит путь к их сокращению в будущем.  [c.426]

Однако во всех случаях в расчетах на усталостную прочность получаемые эквивалентные напряжения характеризуют только момент достижения в любом произвольном объеме материала предельного состояния, поскольку считается, что далее происходит полное разрушение рассматриваемого твердого тела. Вместе с тем наличие трещины в материале существенно  [c.146]


Прочностные расчеты комбинированных футеровок. Антикоррозионная защита в виде стенки из кислотоупорного кирпича на химически стойких мастиках является одной из разновидностей каменных конструкций. Поэтому все основные положения по расчету [38] на прочность, образование и раскрытие трещин, допустимые отношения высот стен и столбов к их толщинам выполняются с учетом физико-механических свойств антикоррозионных материалов по действующим в настоящее время  [c.87]

Создание новой техники невозможно без проектировочных и проверочных расчетов на прочность и долговечность, цель которых в конечном итоге - подтверждение правильности выбора материала, размеров элементов конструкций и машин, обеспечивающих их надежную работу в пределах заданных условий нагружения и срока службы. Обычно подобные расчеты выполняют на основании традиционных подходов сопротивления материалов с привлечением дополнительных методов, позволяющих уточнить напряженное состояние в рассчитываемых зонах деталей, и стандартных, как правило, экспериментов для получения нужных характеристик материалов. Однако увеличение мощности, производительности, КПД и других характеристик современной техники, большие габариты, сложные очертания конструкции, недоработанность технологии или случайные условия эксплуатации обусловливают возникновение дефектов, приводящих к нежелательным последствиям. Для учета в расчетах на прочность и долговечность существующих дефектов применяют методы линейной и нелинейной механики разрушения, основанные на анализе напряженно-деформированного состояния в окрестности фронта трещины.  [c.5]

В настоящее время для качественной оценки способности материала тормозить развитие магистральной трещины существует достаточно большой набор экспериментальных методов и соответствующих характеристик материала (точнее, образца из него). Здесь будут рассмотрены несколько таких характеристик, представляющих не только качественный (для сравнения и выбора материалов и технологий), но и расчетный интерес. Последнее означает, что по такой характеристике возможно, на основании соответствующих критериев разрушения, вести расчеты на прочность с определением требуемых коэффициентов запаса. Эти характеристики (называемые характеристиками трещиностой-кости) Z , /fi — критические коэффициенты интенсивности напряжений при плоском напряженном состоянии и объемном растяжении (в случае плоской деформации) бс — критическое раскрытие трещины в вершине (разрушающее смещение) Ло — уиругопластическая вязкость разрушения 1с — предел трещино-стойкости.  [c.129]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

Конечно же, в реальном материале напряжения могут расти до определенных пределов, и формулу (39) нельзя применять без тщательного дополнительного анализа. В зоне концентрации нанря5кений активизируются необратимые процессы, которые могут снижать эту концентрацию (например, в пластичных материалах). Зачастую в таких зонах происходит постепенное накопление повреждений, приводящее в последующем к появлению трещины. Ясно одно — концентрацию напряжений следует тщательно учитывать в расчетах на прочность. Необходим и обоснованный расчет конструкций с подкреплениями, вводимыми для предотвращения разрушения,— ведь они сами могут служить концентраторами напря-  [c.65]

Механика разрушения позволяет проводить количественные расчеты на прочность различного рода изделий, содержащих трещины. Традиционные подходы к оценке прочности крупногабаритных изделий не обеспечивали такой возмож ности. Повышение надежности изделий зависит от совместных усилий металлургов и конструкторов. Металлурги, разрабатывая сплавы с высокой вязкостью на основе изученных микромеханизмов разрушения, должны помнить, что вид разрушения металла обусловлен не только структурой металла, но и напряженным состоянием в процессе службы. Конструкторы при расчетах изделий должны иметь в виду, что свойства материалов различны и зачастую не могут быть представлены просто символами в алгебраических уравнениях. Понимание металлургами задач, стоящих перед конструкторами, а конструкторами — задач, стоящих перед металлургами, при решении совместных проблем обеспечения надежности конструкции, несомненно, будет способствовать успеху общего дела. В этой книге главным образом затронуты макроскопические аспекты механики разрушения особенности разрушения отдельных материалов в ней детально не рассматриваются. Однако дано описание некоторых моделей микромеханики процесса разрушения в простых материалах, чтобы показать адекватность принятых моделей распространения трещин или коалесценции пор при определенных напряжениях и деформациях в различаых условиях, когда масштаб явлений изменяется на несколько порядков — от микронов до метров.  [c.8]

Необходимость расчета на сопротивление хрупкому разрушению связана с тем, что в условиях работы элементы конструкций могут находиться в хрупких или квазихрупких состояниях (17, 28, 29). Основным фактором возникновения таких состояний для сплавов на основе железа в связи с присущими им свойствами хладноломкости является температура. На схеме (рис. 6) показаны области основных типов сопротивления разрушению в зависимости от температуры. В области температур, превышающих первую критическую Ткр1 для сплавов, обладающих хладноломкостью, а также для материалов, не обладающих хладноломкостью в диапазоне температур работы конструкций (сплавы на основе магния, алюминия, титана), имеют место вязкие состояния. В этом случае предельные состояния наступают после возникновения значительных пластических деформаций и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность при таких состояниях рассмотрены в гл. 2.  [c.246]


Материалы, обладающие низкой пяр бтичноетью 6бдд< 2 3%), при создании ответственных конструкций практически не применяют ввиду их малой надежности из-з склонности к хрупкому разрушению, чувствительности к надрезу и трещине, усугубляемой сложным напряженным состоянием. Для этих материалов наряду с традиционными методами расчета на прочность необходимо использовать методы линейной механики разрушения, позволяющие предсказать закономерности развития трещины.  [c.18]

Вместе с тем существует и другое направление в проблеме как кратковременной, так и длительной прочности. Это направление основано на анализе процесса образования и развития трещин и других дефектов в материале машин вплоть до его разрушения. По этому направлению имеется большое количество работ, опубликованных как й нашей стране, так- и за рубежом 129, 41, 50, 54, 55, 56, 75, 8.7]. Однако, как указывается обзЪр-ной статье, посвященной механике разрушения [55суиХествую-щие инженерные критерии разрушения (феноменологические модели) в настоящее время сохраняют основное практическое, значение при расчетах на прочность.  [c.4]

Е.М. Морозовым [24, 25] сформулирован энергетический критерий предельного равновесия тел с трещинами применительно к упругопластическим материалам и предложен инженерный метод расчета на прочность элементов конструкций при наличии в них трещин в случае квазихрупких разрушений, основанный на понятии предела трёщиностойкости материала.  [c.55]

В различных отраслях промышленности при проектировании осуществляют в основном детерминированные (не учитывающие фактор случайности) расчеты на прочность по допускаемым напряжениям с использованием условия (Тщах И- В предыдущих главах рассматривался именно этот наиболее используемый метод. Расчеты выполняют для деталей с постоянными размерами поперечных сечений. Принимают, что свойства материалов и прикладываемая нагрузка также постоянны. Получить достоверные результаты при выполнении детер 1инированных расчетов практически невозможно, так как нагрузка и прочность являются случайными параметрами, находящимися под воздействием различных случайных факторов. В результате при средних значениях всех параметров детали машин могут иметь запас прочности. При неблагоприятных же условиях напряжения в опасных точках могут превьшхать п едел прочности или истинное сопротивление разрыву материала л , что вызывает появление трещин или полное разрушение детали. Указанная особенность не учитывается при проведении обычных расчетов по допускаемым напряжениям.  [c.364]

Таким образом, при статическом нагружегии деталей из пластичных материалов концентрация напряжений практически не оказывает влияния на их прочность и не )Л1итывается при расчетах. Исключение составляют элементы с острыми надреза ш, тонкими пропилами и трещинами, в зоне располо Кения которых развитие пластических деформаций а следовательно, перераспределение и выравнива1ше напряжений невозможны такие элементы из пластичного материала разрушаются хрупко (без текучест i и образования шейки).  [c.72]

С помощью предела трещиностойкости можно оценить материал по его способности тормозить трещину и можно рассчитывать детали с трещинами на прочность, независимо от вида возможного разрушения (вязкое или хрупкое). Здесь, однако, следует повторить уже известное соображение, что для оценки материалов и проведения расчетов предел трещиностойкости следует определять па образцах, наиболее приближающихся но своим основным параметрам к рассчитываемой детали. Такими параметрами, прежде всего, являются размеры и форма пластической зоны у вершины трещины, но поскольку практически это не подлежит контролю, то приходится говорить о равенстве толщин и о схожести напряженпых состояний в расчетных сечениях.  [c.284]

В книге излагаются основные заиономерности механики замедленного циклического и быстропротекающего хрупкого разрушения материалов в зависимости от условий нагружения, вида напряженного состояния, механических свойств и структуры материала, рассматриваются соответствующие модели процессов деформирования я возникновения разрушения в вероятностной трактовке, а также кинетика развития трещин. Влияние нестационарной атружеяности на разрушение анализируется иа основе гипотез о накоплении повреждения. Предложен расчет а прочность по критерию сопротивления усталостному и хрупкому разрушению в связи с условиями подобия и учетом температурно-временных факторов, дается оценка вероятности. разрушекия.  [c.2]

Таким образом, вторичные кривые усталости, полученные экспериментально посредством предварительных циклических нагрузок, дают значения остаточной долговечности для последующих одноступенчатых нагрузок. Положение и форма вторичных кривых усталости в значительной степени определяются процессами развития усталости в материале, в частности упрочнением, разупрочнением и распространением трещины. Представленный здесь метод расчетов с помощью вторичных кривых усталости позволяет учитывать эти фазы развития усталости в расчете на долговечность. Так, расчетный метод в своей простейшей форме учитывает разупроч-няемость, влияние последовательности ступеней нагрузки, влияние объема периодических спектров нагрузок, а также снижение первоначальной усталостной прочности, если при заданной точке пересечения всех кривых о — /V вторичные кривые усталости во время нагружения поворачиваются по часовой стрелке. Если наряду с разупрочнением требуется произвести расчет возникающих в процессе развития усталости упрочнения или фазы распространения трещины, тогда на основе результатов определенных двухступенчатых опытов принимается несколько используемых последовательно точек поворота.  [c.324]

При участии автора книги в СССР были разработаны РД 50.344— 82 "Методические указания. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при циклическом нагружении", являющиеся первым межотраслевым нормативно-методическим документом по испытаниям металлов на трещиностойкость. Определяемые в соответствии с этими методическими указаниями характе 1стики могут быть использованы (наряду с другими характеристиками механических свойств) для суждения о сопротивлении материала развитию трещины и определения влияния на него различных металлургических, технологических и эксплуатационных факторов сопоставления материалов при обосновании их выбора для машин и конструкций контроля качества материалов оценки долговечности элементов конструкций на основании данных об их дефектности и напряженном состоянии установления Критерия неразрушающего контроля и анализа причин разрушения конструкций.  [c.49]

Характеристики сопротивления усталости, в первую очередь предел иыпосливости, существенно зависят от технологии изготовления образцов tt деталей машин, конструкции и условий их эксплуатации. Под воздействием коррозии, фреттинг-коррозии, при наличии остаточных напряжений растяжения, мелких поверхностных трещин и т. п. пределы выносливости деталей машин могут снижаться в пять и более раз по сравнению с пределами выносливости лабораторных образцов. Поэтому знание характе-рнстик сопротивления усталостному разрушению металлов и сплавов, полученных в лабораторных условиях при исключении влияния определя-1СИЦИХ факторов, является недостаточным как при разработке материалов, IIIK и при расчетах деталей машин и сооружений на прочность.  [c.13]

Методы второй группы (см. табл. 2.23, образцы типов 3, 4, 5, 6, 7, 8) позволяют моделировать напряженное состояние и условия разрушения деталей, близких по ( рме и конфигурации, изучать процессы распространения образовавшихся поверхностных трещин в условиях уменьшающихся по мере удаления от поверхности напряжений, а также изучать влияние на число циклов до образования трещин концентраторов напряжений различной формы, изготовленных по разной технологии. В этих методах термические напряжения изменяются с течением времени не только при нагреве, охлаждении и выдержке, но различны и по сечению образцов, причем в процессе термоциклирования эти напряжения в разных точках образца перераспределяются. Все это делает задачу о расчетном определении значений (г и с достаточно сложной величины <г и с оказываются в значительной степени связанными с точностью определения или расчета температурных полей и принятыми гипотезами пластичности и пoлзyчe ти Поэтому такие методы не могут быть использованы в качестве простейших - базовых для определения характеристик материалов, необходимых для проведения расчетов прочности деталей. С их помощью могут решаться задачи по определению термостойкости образцов с поверхностным слоем, имеющим механические свойства и химический состав, отличаю-пщеся от сердцевины, а также с различного рода неметаллическими включениями. Рассмотрим подробнее особенности методик испытаний образцов типов 1, 2 и 7.  [c.191]


На стадии изготовления существенное значение для обеспечения прочности и ресурса ВВЭР имеет контроль применяемых материалов, сварных соединений и наплавок по стандартным или унифицированным характеристикам механических свойств (статические стандартньве испытания на растяжение при комнатной и повышенной температуре, испытания на ударную вязкость, а также дополнительные механические и технологические испытания). Основной целью таких испытаний является определение соответствия фактических характеристик механических свойств техническим условиям (последние, как правило, входят в расчет прочности при проектировании). Вторым элементом, определяющим эксплуатационные прочность и ресурс ВВЭР, является дефектоскопический контроль исходных материалов, заготовок и готового обррудования. Этот контроль проводится с целью поддержания дефектов (трещин, пор, включений, расслоений, забоин и др.) на определенном уровне по размерам, скоплениям.  [c.7]


Смотреть страницы где упоминается термин Расчет на прочность материалов с трещинами : [c.228]    [c.278]    [c.4]    [c.8]    [c.58]    [c.121]    [c.106]    [c.66]    [c.211]    [c.491]    [c.358]    [c.239]   
Смотреть главы в:

Сопротивление материалов  -> Расчет на прочность материалов с трещинами



ПОИСК



Материалы Прочность

Расчет материалов



© 2025 Mash-xxl.info Реклама на сайте