Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиты Особенности разрушения

Каждая глава книги снабжена краткой аннотацией и подробным введением, поэтому нет необходимости останавливаться на их содержании. Хотелось бы выделить одну особенность, присущую книге. В большинстве публикаций прошедших лет по механике композитов явно или неявно используется прием замены композитов с разным законом укладки арматуры приведенной квазиоднородной средой. Этот подход оказался весьма плодотворным в задачах жесткости и устойчивости и недостаточным при оценке несущей способности конструкций из композитов, особенно с переменным по толщине законом укладки арматуры. Прочность и разрушение композитов существенно зависят от эффектов  [c.5]


На рис. 4.25 показаны особенности разрушения композита, армированного в одном направлении волокном. Рис. а соответствует распространению трещины в матрице, а рис. б — распространению трещины, которое сопровождается вытягиванием волокна и его разрушением за пределами поверхностей трещины. Трещина может возникать в матрице между волокнами. Поэтому необходимо провести соответствующую проверку коэффициента интенсивности напряжений Ж. Для этой цели можно воспользоваться зависимостью Си и др.  [c.101]

Значительное влияние могут оказывать и методы получения композитов, рассмотренные в гл. 1. От этих методов зависят размеры и распределение пустот и включений, образующихся в процессе изготовления композита, степень неравномерности распределения волокна, состояние адгезии на поверхностях раздела, остаточные напряжения и др. Таким образом, можно видеть, что на поведение композита при разрушении влияет большое число факторов. Поэтому важно при исследовании особенностей разрушения выбрать соответствующую модель композита, которую можно было бы исследовать, или же, используя микромеханику разрушений и вероятностные методы, получить требуемые характеристики.  [c.108]

Остановимся на построении модели. Как и в случае упругого поведения, поведение композита при разрушении зависит от того, армирован композит волокном или частицами. Особенности влияния частиц и волокна на армирование композитов показаны на рис. 5.2. Здесь же приведены коэффициенты упрочнения матрицы, представляющие собой отношение предела текучести композита к пределу текучести матрицы. Вид дисперсной фазы показан на оси абсцисс. Из приведен-  [c.108]

Из сопоставления данных результатов с расчетными для композиционной панели (см. рис. 31, 34) следует, что в двухслойной панели разрушение в начале процесса деформирования носит более локализованный характер, а затем распространяется, как и в многослойной панели, вдоль границы с низкомодульным материалом. При этом тыльный слой НМ остается неразрушенным, что объясняется главным образом следующим хотя локальный импульс давления был одинаковым как для многослойной панели из КМ и НМ, так и для двухслойной панели из алюминия и НМ, но ввиду существенной разницы в н есткости алюминия и КМ на сжатие в направлении оси z работа внешних сил локального давления в многослойной композиционной панели на порядок превосходит соответствующую работу в двухслойной. Поэтому энергетически воспринимаемое воздействие на композиционную панель более высокое, что приводит и к более значительным зонам разрушения, включая разрушение тыльного слоя НМ. В то же время характерной особенностью разрушения композиционной панели по сравнению с двухслойной изотропной является интенсивное формирование и распространение расслоения КМ в достаточно широкой области по толщине слоев композита за счет разрушения слабого компонента — материала связующего.  [c.171]


Особенности разрушения композитов, связанные с многообразием ситуаций, возникающих на структурном уровне армирующих элементов (дробление волокон, расслоение по границам компонентов, растрескивание матрицы), требуют создания специализированных структурных моделей материалов. В то же время имеющиеся математические модели микро-неоднородных сред пока не в состоянии достаточно полно учесть многообразие реальных микромеханизмов разрушения. При их применении значительная часть экспериментальной информации об отдельных актах микроразрушения и накоплении повреждений в композитах остается без эффективного использования.  [c.7]

Глава заканчивается прогнозированием прочностных свойств бороалюминия и углеалюминия при активном растяжении их вдоль волокон и исследованием особенностей разрушения этих композитов в зависимости от объемных долей компонентов, статистического распределения прочности волокон и неравномерности их укладки, а также от степени физико-химического взаимодействия компонентов. Исследуется влияние отдельных факторов и их совокупность на прочность и характер разрушения композитов. Рассматриваемые в этой главе подходы к исследованию процессов разрушения композитов и некоторые полученные результаты нашли отражение в публикациях [23,49,125, 126, 129-131,133, 135,140, 254],  [c.140]

Исследование динамики композитов с оборванным волокном в рамках одномерных моделей наиболее подробно проводилось В.В. Москвитиным и его учениками [3]. Было установлено, что динамическая прочность композита сильно зависит от прочности связи волокон с матрицей, что отслоение разрушившегося волокна, способствуя быстрому затуханию перегрузочных напряжений и локализации очага разрушения, в то же время при высоких объемных долях волокна приводит к резкому снижению его несущей способности. Поэтому представляет интерес детальное изучение перераспределения напряжений, происходящих при мгновенном обрыве волокна в двумерной постановке, это позволяет глубже понять особенности разрушения образца.  [c.118]

ОСОБЕННОСТИ РАЗРУШЕНИЯ КОМПОЗИТОВ  [c.165]

Важным преимуществом композиционного материала является его высокая прочность на единицу массы. При этом по своим прочностным и тепловым качествам многие композиционные материалы превосходят любой из своих компонентов или резко отличаются от него. Необходимо иметь в виду, однако, что наряду со многими технически важными преимуществами композиционные материалы обладают и существенным недостатком, который связан с тем, что физико-механические и химические свойства компонентов композита зачастую оказываются совершенно несогласованными, а это иногда приводит к специфическим видам разрушения (расслоение, местные разрывы, нарушение адгезии и т. п.). При создании математической теории эти особенности порождают большие трудности, которые остаются еще в значительной мере непреодоленными.  [c.5]

В отдельности. Поскольку эти составные части исследования, в особенности последняя, нуждаются в солидном обосновании, механистический подход к проблеме разрушения композита в настоящее время представляется труднореализуемым.  [c.403]

Главные особенности явления разрушения были объяснены в работе Цая и By [46] путем детального исследования таких вопросов, как определение технических параметров прочности, условия устойчивости, влияние преобразований системы координат, приложения к изучению трехмерных армированных композитов и вырожденных случаев симметрии материала. Дополнительную информацию из формулировки (5а) критерия можно получить путем анализа тех требований к поверхности прочности, которые вытекают из геометрических соображений. В соответствии с концепциями феноменологического описания ниже будут обоснованы общие математические модели, обеспечивающие достаточную гибкость и возможность упрощений на основании симметрии материала и имеющихся экспериментальных данных. Мы начнем с рассмотрения тех преимуществ, которые имеет формулировка критерия в виде (5а) по сравнению с другими формулировками, использующими уравнения вида (1) или  [c.412]

Среди возможных видов разрушения различают разрыв матрицы, разрыв на границе раздела между волокном и матрицей и разрыв волокон. Эти виды разрушения не являются независимыми, а могут взаимодействовать и стимулировать друг друга. Начало разрушения, очевидно, определяется внутренним напряженным состоянием, которое зависит от действующей нагрузки, геометрического строения композита и свойств его компонентов. Может оказаться, что напряженное состояние является очень сложным, и определить его аналитически чрезвычайно трудно поэтому экспериментальные исследования играют существенную роль, а иногда просто необходимы. Экспериментальные методы, применяемые для изучения механики композитов, включают метод фотоупругости, тензометрический метод, метод муара и голографию. Метод фотоупругости применим к разнообразным задачам и особенно эффективен при изучении микро-механики.  [c.493]


В этом случае хрупкая фаза представлена в достаточном количестве, и поэтому при разрушении сама матрица не может выдержать нагрузку. Прочность композита определяется прочностью хрупких частиц или поверхности раздела между частицами и матрицей, в особенности сопротивлением возникновению разрушения. Разрушение происходит при нагрузке, которая выше предельной нагрузки для композита, определяемой пределом текучести матрицы, но ниже предельной нагрузки, соответствуюш,ей пределу прочности матрицы. Эффективный предел текучести матрицы увеличивается вследствие пластического стеснения, налагаемого жесткими частицами на пластичную матрицу. Степень стеснения увеличивается с увеличением уровня напряжений до значения разрывной прочности частиц [20].  [c.92]

После описания некоторых временных свойств составляюш их материалов самое время исследовать временные свойства и самих композитов. В отличие от некоторых механических свойств волокнистых композитов, которые могут быть определены по правилу смесей , определение длительной прочности вообще гораздо сложнее. В особенности это проявляется, если рассматривать хрупкие волокна, которые в окружении вязкоупругой матрицы обладают различными значениями прочности. Такая комбинация волокно — матрица может привести к замедленному разрушению композита под напряжением, даже если он однонаправленный и нагрузка прикладывается в направлении волокна.  [c.285]

До сих пор мы обсуждали механическое поведение волокнистых композитов в условиях длительного нагружения. Мы видели, что как матрица, так и волокно дают вклад в процесс замедленного разрушения, каждый своим собственным путем и посредством различных механизмов. Не меньший интерес представляет реакция композита на внешние нагрузки, прикладываемые с разными скоростями деформации. В особенности интересно знать, как влияет повышение скорости деформации на разрушение композиционного материала.  [c.316]

Со времени появления в начале шестидесятых годов так называемых современных типов композитов связанные с этими материалами области науки и техники значительно расширились. Это объясняется в основном стремлением применить новые высокопрочные и высокомодульные, но легкие материалы в конструкциях летательных аппаратов. Надо сказать, что методы исследования и предсказания упругих свойств современных композитов достаточно хорошо изучены, однако при оценке неупругого поведения этих материалов инженеры столкнулись с некоторыми весьма сложными проблемами. При этом особенно трудным оказалось предсказание разрушения конструкций из композита.  [c.7]

Устойчивость — это другое условие надежности конструкции, которое в качественном смысле означает, что дополнительная деформация требует дополнительного нагружения [9, 10]. Рост нагрузки неизбежно вызовет расширение пластической области или увеличение скорости течения, или продолжит развитие процесса разрушения. Хотя необходимо всячески добиваться подобного устойчивого поведения материала или элемента конструкции, особенности свойств композитов не позволяют во всех случаях ожидать от этих материалов и конструкций на их основе устойчивого поведения. Поведение системы, состояш,ей из различных по свойствам компонентов, может быть, а может и не быть устойчивым, когда в ней на уровне компонентов начинаются процессы разрушения. Однако при проектировании и создании искусственного композиционного материала почти всегда есть возможность выбора таких компонентов, которые обеспечат необходимую степень устойчивости механического поведения.  [c.17]

После почти десятилетнего периода поисков и исследований современные композитные материалы получили широкое распространение во многих отраслях современной техники — от космической до производства изделий массового потребления. Высокие удельные характеристики жесткости и прочности и особенности технологии переработки, позволяющие создавать материалы с заданной ориентацией свойств, выдвинули композиты на первый план среди современных конструкционных материалов. Естественно, в связи с развитием и внедрением новых конструкционных материалов возникла необходимость научиться оценивать их прочностные свойства при различных видах нагружения. Не менее важно знать, как технологические (поверхностные дефекты, нарушения адгезионной связи между слоями) и конструкционные (болтовые, заклепочные, клеевые соединения, закладные детали из других материалов) несовершенства изменяют механизм разрушения композитов. В то же время многочисленные попытки анализа и интерпретации имеющихся экспериментальных данных пока еще не привели к исчерпывающему пониманию явления разрушения в композитах.  [c.34]

Дополнительные проблемы при оценке предельных свойств композитов появляются в связи с такими особенностями этих материалов, как неупругость поведения компонент, анизотропия армирующих волокон, разброс прочности компонент, наличие третьей фазы в виде пограничного слоя матрицы вблизи поверхности волокна. Следует учитывать также и специфику их применения — в авиационных конструкциях требуется нечувствительность к локальным разрушениям, в судостроении — стойкость к коррозии и кавитации, в возвращаемых космических кораблях—сопротивление абляции и уносу массы.  [c.38]

Особо следует подчеркнуть, что предложенные модификации метода не являются исчерпывающими. Например, замена слоистого композита квазиоднородным материалом позволяет учесть влияние слоев, стесняющих деформации, интегральным образом, но не дает возможности учесть эффекты, связанные с чередованием слоев по толщине. Во всех возможных вариантах предложенного подхода желательно сохранить простоту модели и вычислительных процедур. Особенно это существенно при одновременном учете многих факторов, таких, как неоднородность материала, неупругость матрицы, акты разрушения отдельных слоев.  [c.63]

Кроме того, начальные разрушения слоев (поперек направления армирования или сдвиговые) в композите приведут к появлению отдельных трещин между волокнами в этих слоях. Разрушиться может как поверхностный слой, так и слой, лежащий внутри пакета материала. Как только появилась трещина между волокнами, межслойные касательные напряжения вблизи нее обеспечивают действие механизма перераспределения напряжений. Усилия, воспринимаемые слоем, после его разрушения могут быть перенесены на прилегающие неповрежденные слои, допуская тем самым дальнейшее возрастание нагрузки на композит без его разрушения в целом. Ранее уже упоминалось, что понимание особенностей поведения слоистого композита после появления начальных разрушений в слоях при низких уровнях напряжений чрезвычайно важно в задаче оценки несущей способности изделий из слоистых композитов.  [c.80]


Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]

Основная цель данной главы состоит в освещении фундаментальных основ изменчивости и масштабного эффекта прочности хрупких и вязких однофазных материалов и особенно пластиков, состоящих из жестких, хрупких армирующих материалов, погруженных в растяжимые матрицы. Вследствие этого не будет возможности охватить во всех деталях многие интересные достижения в более традиционных аспектах разрушения композитов. Интересующемуся читателю можно рекомендовать некоторые другие главы данного тома и дополнительно следующие обзоры по прочности композитов Келли [15] — общее введение в теорию прочности волокнистых композитов Кортен [7, 8] — детальное обсуждение вопросов прочности пластиков, армированных стеклянными волокнами Розен и Дау [31] и Тетельман [35] — детальные обсуждения некоторых вопросов прочности композитов и подходов механики разрушения к разрушению композитов Тьени [34] — сборник статей различных исследователей, в которых представлено много примеров структуры и статистических особенностей разрушения отдельных композитов, таких, как бетоны, пенопласты, и неориентированных матов, таких, как бумага.  [c.167]

Исследованы механизмы разрушения материалов, армированных волокнами при статическом и циклическом нагружениях. Показана важность и Необходимость рассмотрения разрушения композитов на микроуровне. Причина этого заключается в первую очередь в присущей этим материалам неоднородности и анизотропии, приводящим к существованию многочисленных плоскостей слабого сопротивления (например, сдвигу и поперечному отрыву), по которым, как правило, распространяются трещины. В начале главы коротко рассмотрены виды разрушения однонаправленных слоистых композитов без надрезов при растяжении — сжатии в направлении армирования и перпендикулярном направлении, а также при сдвиге. Акцент сделан на особенностях разрушения этих композитов на уровне компонент. Макроповедение композитов оценивалось на основании анализа неустойчивого развития повреждений, возникших на микроуровне. При помощи модели, названной моделью сдвигового анализа, учитывающей неоднородность композита на микроуровне, теоретически обосновано аномальное влияние диаметра отверстия в слоистом композите на несущую способность. Этот метод анализа также использован для моделирования поведения слоистого композита со сквозным отверстием.  [c.33]

В каждом из слоев многонаправленного слоистого композита возникает сложное напряженное состояние, даже если композит в целом находится под действием одноосного напряжения. Следовательно, и в простейшем случае нагружения композита начало разрушения слоя должно определяться при помощи соответствующего критерия предельного состояния. Предложено много разновидностей критериев прочности однонаправленных композитов, рассматриваемых как однородные анизотропные материалы (см., например, [10] ), в форме, удобной для описания экспериментальных данных. В основу этих критериев положена гипотеза, согласно которой однонаправленный волокнистый композит считается однородным анизотропным материалом. Можно ожидать, однако, что для оценки предельного состояния композита потребуется рассмотрение таких деталей механизма разрушения, которые определяются неоднородностью материала на уровне армирующего элемента. Дело в том, что виды разрушения, вызванные разными по направлению действия напряжениями, имеют принципиально различающиеся особенности.  [c.44]

Одним из таких руководств является предлагаемая книга Т. Фудзии и М. Дзако — учебное пособие, содержащее изложение ряда современных проблем механики композиционных материалов. Основное внимание уделено механике разрушения композитов при различных видах нагружения, подробно обсуждаются особенности разрушения при ударных нагрузках. Содержание книги достаточно полно отражено в предисловии авторов, и нет необходимости останавливаться на нем еще раз. Отметим только, что подготовительная часть книги — первые три главы — сокращена до минимума, а основной материал книги посвящен разнообразным аспектам механики разрушения композитов. Завершается книга небольшой главой, в которой затрагиваются вопросы проектирования элементов конструкций из композитов.  [c.5]

Разрушение композитов, армированных волокнами, представляет собой очень сложный процесс, при рассмотрении которого приходится принимать во внимание множество факторов, например разрыв волокон, вытягивание их и т.д. Бомон выделил основные факторы и определил их связь с особенностями разрушения композита. Здесь предпринята попытка в общих чертах ознакомить читателя с наиболее интересными аспектами процесса разрушения, а также исследованиями возможностей использования положения линейной механики разрушения при проектировании композитов, армированных волокном.  [c.98]

Изложенный выше подход эффективен в тех случаях, когда поведение композита до разрушения является линейноупругим. Для металлических композитов, а также для материалов, у которых дисперсной фазой являются частицы, необходимо учитывать нелинейность характеристик и особенности механики разрушения.  [c.113]

При изучении бороалюминиевых композитов гораздо меньщее внимание было уделено вопросам прочности материала с дефектами типа трещин и экспериментального определения характеристик тре-щиностойкости. Результаты исследований бороалюминия [10, 11] позволили авторам сделать несколько важных выводов, характеризующих особенности разрушения данного класса материалов при наличии трещиноподобных дефектов, поперечных направлению армирования.  [c.226]

Метод построения на ЭВМ кривых ползучести, изложенный в предыдущем разделе, применен к прогнозированию деформационных и прочностных свойств направленно кристаллизованного эвтектического композиционного материала у/ -МеС, типа СоТаС-744, микроструктурные особенности разрушения которого были описаны ранее (гл, 1, разд, 2), Уравнения состояния матрицы и свойства нитевидных армирующих кристаллов. Матрицы эвтектических композитов типа СоТаС-741, СоТаС—744 представляют собой никелевые жаропрочные сплавы с модулем упругости Ет =9,5 Ю МПа, процессы ползучести которых подробно изучены как с физической, так и с инженерной точки зрения. Среди. физических механизмов ползучести жаропрочных сплавов выделяются  [c.216]


Результаты испытаний композита A1606I—25% В на растяжение показывают, что продолжительность отжига при 778 К не влияет на предел пропорциональности и модуль упругости. Можно отметить некоторые интересные особенности в поведении деформации разрушения (рис. 16), Для матрицы в состоянии О примерное постоянство прочности сопровождаемся небольшим, но заметным ростом деформации разрушения от 6,4-Ю-з до (7,0ч-- 7,4) 10" . Теоретический интерес представляет также существование более низкого плато деформации разрушения—при 3,3 10- оно еще более неожиданно, так как прочностные характеристики (рис. 15) не стремятся к минимуму. Второй композит, A1606I — 45% В, испытывали на растяжение после отжига при 778 К- Ха-  [c.173]

Можно ожидать, что прочность поверхности раздела особенно чувствительна к испытаниям при циклическом нагружении. Соответствующих данных мало, однако они, несомненно, свидетельствуют о высокой прочности связи. При усталостном разрушении пластинчатого композита А1 — AlaNi [72] одна или несколько трещин распространяются по зонам скольжения в матрице н значительного расслаивания не происходит. Аналогичным образом протекает усталостное разрушение пластинчатого композита Ni — NigNb, существенно отличающегося в других отношениях [37]. В обоих случаях время до разрушения при высоких напряжениях и малом числе циклов определяется сопротивлением разрушению армирующей фазы, а время до разрушения при малых напряжениях и большом числе циклов — распространением усталостной трещины в матрице. Ни в том, ни в другом случае расслаивание не является определяющим механизмом.  [c.259]

Вообще говоря, поле напряжений у вершины трещины в анизотропной пластине включает составляющие Ki п Ки- Однако в настоящее время испытания проводят, как правило, при ориентациях, исключающих одну из этих составляющих это прежде всего относится к ортотропным материалам, которые ориентируют таким образом, чтобы нагрузка была параллельна одной главной оси, а трещина—другой. В таких условиях значительная анизотропия, свойственная некоторым композитам, может привести к явлениям, не наблюдающимся у обычных металлов. Так, при растяжении образцов с направленным расположением упрочнителя часто наблюдают продольное расщепление (рис, 8). Его может и не быть, если поперечная и сдвиговая прочности достаточно высоки [5] тем не менее, этот возможный тип разрушения материалов необходимо учитывать. Кроме того, приложение одноосных растягивающих напряжений к образцу с поперечным расположением слоев приводит к появлению локальных межслоевых напряжений т,2у и нормальных напряжений Ozzt перпендикулярных плоскости образца [35], что показано на рис. 9. Ориентация и значения величин Он и Тгу зависят от порядка укладки слоев, упругих постоянных каждого слоя и величины продольной деформации. Значительные межслоевые растягивающие а г. и сдвиговые х у напряжения могут привести к расслаиванию [11, 35], которое опять-таки является особенностью анизотропных слоистых материалов. Последний пример относится к поведению материала с поверхностными трещинами. В изотропных материалах трещина распространяется, как правило, в своей исходной плоскости (рис. 10, а). У слоистых материалов прочность связи между слоями обычно мала, и они обнаруживают тенденцию к расслаиванию по глубинным плоскостям (рис. 10,6). Три этих простых примера приведены здесь, чтобы проиллюстрировать некоторые из различий между гомогенными изотропными материала-  [c.276]

Прочность поверхности раздела в углепластиках выше, чем в бор-эпоксидных композитах, что обусловливает две их особенности поведения. Во-первых, трещины в углепластике более извилисты (рис. 23, а) во-вторых, в углепластике наблюдается межслое-вое разрушение (рис. 24). Последнее является одним из специфических видов разрушения слоистых материалов и выражено наиболее ярко в случаях значительного межслоевого сдвига.  [c.296]

На рис. 35 показано влияние влаж1НОЙ среды на адгезионную прочность по поверхности раздела, измеряемую по энергии разрушения композита при сдвиге. Можно видеть, что влага разрушающе действует на адгезионное соединение, особенно при повышенной температуре. Результаты испытаний композитов во влажной среде приведены также в работах [26, 67, 34].  [c.76]

Подобными соображениями объясняется появление максимума, характерного для ряда композитов с дисперсными частицами наибольшего размера. Предполагалось, что энергия разрзчпения этих композитов зависела от двух конкурирующих особенностей первая вызывала увеличение энергии разрушения вследствие взаимодействия фронта трещины с дисперсной фазой, а вторая приводила к ее уменьшению вследствие ослабления матрицы дисперсными частицами. Поэтому было сделано заключение, что хрупкая дисперсная фаза может привести к увеличению энергии разрушения поликристаллической матрицы в том случае, когда размер дисперсных частиц существенно больше размера зерна матричной фазы.  [c.27]

В заключение отметим, что прочность связи может существенно влиять на прочность композитов с частицами. В композитных системах с > р, к которым относятся все системы полимер — неорганические частицы, последние испытывают сжатие при охлаждении ниже температуры их изготовления, что помогает нести приложенную силу при низком уровне напряжений независимо от степени связи по поверхностям раздела. При более высоких уровнях напряжений у каждой частицы со слабыми связями но поверхностям раздела образуются псевдопоры, которые существенно уменьшают модуль упругости композита. Таким образом, оптимальная прочность композита может быть получена при достаточно прочной связи между поверхностями раздела двух фаз. Подход механики разрушения также подтверждает, что в тех случаях, когда не представляется возможным получить прочные связи по поверхностям раздела и а , > р, более высокая температура изготовления будет увеличивать уровень напряжений, при котором образуются псевдопоры, повышая таким образом прочность этих композитов. Как будет показано ниже, остаточные напряжения, возникающие вследствие различных термических расширений, могут быть также и вредными, особенно для композитов с дисперсными частицами большого размера.  [c.52]

На практике не всегда так ясно определимы различные виды разрушения. Композиты могут разрушаться в результате комби- нации механизмов, особенно если матрица может стать хрупкой под влиянием локального напряженного состояния. В указанных моделях единственной функцией матрицы является создание барьера для распространения трещины, а статистические результаты применимы только к прочности хрупкой составляющей. В действительности матрица может нести часть нагрузки и может влиять на величину пика напряжений в композите вследствие ее способности к пластической деформации. Растрескивание частиц не может быть независимым, так как разрушенная частица может сильно влиять на изменение распределения напряжений в ее окрестности и, следовательно, трещины не могут распределяться случайно. Влияние концентрации локальной деформации вследствие разрыва волокна в волокнистом композите обсуждено в [3] в связи со статистическими моделями Гюсера — Гурланда и Розена, приведенными в [36, 37, 77]. Связанная с ними проблема образования больших критических трещин проанализирована статистическими методами в [56].  [c.102]

В работе [16] исследована длительная прочность двух материалов с никелевыми матрицами, армированных вольфрамовой проволокой, содержаш,ей менее 0,01 % включений (в основном, двуокиси кремния) и занимающей примерно 40% объема. Материалы матрицы — Нимокаст 258 и ЕРВ 16. В работе обнаружено, что добавка тонкой вольфрамовой прово.чоки (0,01 дюйм диаметром) оказывает малое или вообще не оказывает усиливающего действия на матрицу, исключение представляет случай, когда температура превьппала 900 °С. Интересно отметить, что модули Юнга волокна и матрицы при комнатной температуре в этом случае очень близки (55-10 фунт/дюйм для волокна и 30 X X 10 фунт/дюйм для матрицы). При высоких температурах испытания 1000 и 1100 С прочностные свойства вольфрамовой проволоки улучшаются, в особенности прочность при разрушении. На рис. 23 представлена зависимость 100-часовой прочности от температуры. В этой же работе [16] приведены и другие испытания, предпринятые для того, чтобы выяснить, как влияет степень армирования на длительную прочность, но полученные результаты, вероятно, недостаточны для каких-либо выводов. Другая часть работы [16] состоит в исследовании влияния диаметра волокна на прочность композитов. Здесь, кажется, существует противоречие между свойствами при кратковременном растяжении и длительных нагружениях при высоких температурах. Для кратковременного нагружения чем тоньше проволока, тем она прочнее, а при продолжительном нагружении и повышенных температурах тонкие вольфрамовые проволоки теряют свои качества быстрее, чем толстые, вероятно, из-за рекристаллизации в поверхностных слоях и реакции между волокном и матрицей.  [c.301]

При использовании полимерных композиционных материалов в ответственных конструкциях приходится сталкиваться с необходимостью учета неупругих свойств, особенно в задачах о прогнозировании разрушения. Сравнительно недавно на специальном заседании Американского общества инженеров-механиков (ASME), Хьюстон, США, ноябрь 1975 г., была предпринята попытка дать обзор полученных результатов, указать области дальнейших исследований неупругих свойств композитов и методы их учета при решении конкретных задач. Семь обзорных докладов известных американских специалистов по механике композитов и составили единый по тематике сборник, перевод которого предлагается советскому читателю.  [c.5]


Анизотропия композита является следствием особенностей геометрии и особенностей термомеханических, деформативных и прочностных свойств компонент. Поэтому композит может иметь ряд плоскостей, в которых его свойства весьма низки и определяются в значительной степени микроструктурой. Местное разрушение происходит, как правило, по этим плоскостям. В ряде случаев такое разрушение смягчает концентрацию и уменьшает вероятность распространения трещины ), ведущей к разрушению. С другой стороны, появление ограниченных областей разрушения при низких уровнях напряжений не позволяет дать строгое определение тому, что же считать разрушением композита в целом. Поэтому анализировать разрушение композитов необходимо параллельно с позиций макро- и микромеханики. При использовании феноменологического подхода разрушение определяется по изменению макроповедения конструкции, проявляющемуся в виде потерн устойчивости или исчерпания прочности. В микроподходе разрушением считают нарушение поверхности раздела волокно — матрица. Состояние разрушения наступает, когда около одного или группы микродефектов напряжения в волокне или матрице превышают соответствующие предельные значения.  [c.37]

Общий метод построения предельной поверхности для слоистого композита состоит в следующем предполагая совместность деформирования слоев композита при заданном илоском напряженном состоянии, рассчитывают напряжения в плоскости и деформации каждого отдельного слоя. Определенное таким образом наиряженно-деформированное состояние слоя сравнивается с критерием прочности каждого слоя предполагается, что первое разрущение слоя ) вызывает разрушение слоистого композита в целом. В действительности дело обстоит сложнее, поэтому необходимо углублять понимание особенностей поведения слоистого композита при таких уровнях напряжений, когда в соответствии с выбранным критерием в некоторых слоях уже достигнуто предельное состояние. В зависимости от вида напряженного состояния напряжения, соответствующие началу разрушения слоев, могут не совпадать с экспериментально определяемыми предельными напряжениями композита в целом. Как правило, совпадение наблюдается, если первое разрушение слоя происходит по волокну (по достижении предельных напряжений в направлении армирования). В остальных случаях, когда критерий предсказывает для слоя разрушение по связующему (от нормальных напряжений, перпендикулярных направлению армирования, от касательных — межслойных или в плоскости), экспериментально определенные предельные напряжения композита не соответствуют теоретически подсчитанным. Как теория, так и экспериментальные наблюдения указывают, что подобное поведение слоистых композитов объясняется взаимодействиями между различно ориентированными слоями. Меж-слойные эффекты могут наблюдаться как у свободных кромок, так и внутри материала, когда слои разрушаются от растяжения перпендикулярно направлению армирования или от сдвига в плоскости армирования.  [c.50]

Инженерный анализ новедения композитов в общем случае представляет собой исследование, основанное на построении упрощенных моделей, учитывающих лишь основные аспекты поведения материала. Таким образом, делается попытка избежать чрезмерно подробного анализа, например не рассматривается точное распределение напряжений в объеме. В то же время учитывается структурная неоднородность композита, поскольку замена этого материала однородным анизотропным с точки зрения проблем разрушения не является адекватной. Поэтому создается расчетная модель материала, не требующая проведения сложного расчета напряженного состояния, но учитывающая в то же время наиболее существенные с точки зрения исследуемого поведения структурные особенности материала.  [c.55]


Смотреть страницы где упоминается термин Композиты Особенности разрушения : [c.267]    [c.366]    [c.5]    [c.385]    [c.38]    [c.52]   
Композиционные материалы (1990) -- [ c.165 , c.166 ]



ПОИСК



Композит

Разрушение композитов



© 2025 Mash-xxl.info Реклама на сайте