Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие рентгеновского излучения с веществом

Будем рассматривать взаимодействие рентгеновского излучения с веществом как процесс столкновения рентгеновских фотонов со свободными электронами. Столкновение фотона со свободными  [c.347]

ВЗАИМОДЕЙСТВИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ  [c.966]

Взаимодействие рентгеновского излучения с веществом сопровождается вторичным излучением, возникающим в процессе прямого вырывания электронов из атома (фотоэффект) и последующего отрыва внешних электронов в ходе заполнения внутренних электронных оболочек. Перестройке электронных оболочек сопутствует излучение рентгеновских квантов с меньшей энергией (флуоресцентное излучение), или так называемого оже-электрона (вторичный фотоэффект). Прямое взаимодействие рентгеновского излучения с электронами внешних оболочек приводит к возникновению комптоновских  [c.966]


Возможности управления рентгеновскими лучами с помощью той же техники, что применяется в более длинноволновом диапазоне, долгое время ограничивались как особенностями взаимодействия рентгеновского излучения с веществом, так и нашими возможностями создать стабильные многослойные структуры удовлетворительного качества. В течение двух последних десятилетий достижения в целом ряде направлений, важных для рентгеновской оптики, привели к возрождению этой области науки. К таким достижениям относятся метрология на масштабах длины порядка  [c.414]

Метод двух (трех) энергий непосредственно базируется на современной теории и аналитическом описании взаимодействия рентгеновского излучения с веществом в диапазоне энергий. При контроле в области до 1,022 МэВ (метод двух энергий) отдельно учитывается вклад фотоэлектрического поглощения и комптоновского рассеяния.  [c.132]

В табл. П.1.1 значения атомных факторов рассеяния даны через регулярные интервалы энергий квантов. Величины и /а могут использоваться при описании взаимодействия мягкого рентгеновского излучения с веществом для вычисления поглощения, рассеяния, коэффициентов зеркального и брэгговского отражения. Значения сечений фотоионизации связаны с/а соотношением Е]х (Е) = kf2, где параметр к для каждого элемента приведен в конце соответствующей части таблицы для значений и /а-Если Ер, ( ) выражено в эВ-барн/атом, то к равно 6,987-10 для всех элементов.  [c.317]

Взаимодействие ионизирующих излучений с веществом. При взаимодействии с веществом рентгеновского и гамма-излучений наибольшее значение имеют три процесса фотоэлектрическое поглощение, комптоновское рассеяние излучения и образование пар электрон-позитрон. Фотоэлектрическое поглощение происходит при передаче энергии Y-кванта орбитальному электрону атома вещества. В результате этот электрон переходит на обо-  [c.96]

В последнее время для определения состава и идентификации сплавов находит применение метод рентгеновской флуоресцентной спектроскопии. Метод основан на взаимодействии испускаемого рентгеновского излучения с веществом, в результате чего в последнем возникает возбуждение и эмиссия характерных для каждого элемента вторичных рентгеновских лучей. Интенсивность вторичного излучения и его спектральное распределение пропорциональны элементному содержанию вещества. С помощью этого метода возмОг жен анализ порошковых, твердых и жидких проб металла всех элементов атомных номеров от 9 (фтора) до 92 (урана).  [c.189]


Возможность применения томографии в различных областях науки и техники привлекла к ней внимание широкого круга исследователей, что способствовало достаточно быстрому ее развитию как самостоятельной науки. Количество публикаций, посвященных решению различных задач как научного, так и методического характера, непрерывно растет. При этом помимо статей и обзоров и у нас в стране, и за рубежом появляются книги, посвященные различным направлениям томографии. Однако в них в основном рассмотрена томография рентгеновского диапазона, имеющая свою специфику как с точки зрения взаимодействия проникающего излучения с веществом, так и с точки зрения информационного анализа.  [c.3]

Прежде чем перейти к изложению сущности, укажем на различие трех выше указанных дифракционных методов. Оно обусловлено различной силой взаимодействия рентгеновского, электронного и нейтронного излучений с веществом. Рентгеновское электромагнитное излучение при прохождении через кристалл взаимодействует с электронными оболочками атомов (возникающие вынужденные колебания ядер вследствие их большой массы имеют пренебрежимо малую амплитуду), и дифракционная картина связана с распределением электронной плотности, которую можно характеризовать некоторой функцией координат р(л. у, z). В электронографии используют электроны таких энергий, что они взаимодействуют, главным образом, не с электронными оболочками атомов, а с электростатическими потенциальными полями ф(х, у, Z), создаваемыми ядрами исследуемого вещества. Взаимодействие между двумя заряженными частицами (электроном и ядром атома) значительно сильнее, чем между электромагнитным излучением и электронной оболочкой атома. Поэтому интенсивность дифракции электронного излучения примерно в 10 раз сильнее, чем рентгеновского. Отсюда понятно, почему получение рентгенограмм часто требует нескольких часов, электронограмм — нескольких секунд.  [c.36]

На характере изложения II части Кинематическая дифракция сказалось наличие ряда неясных проблем в физике рассеяния коротких волн. Поскольку кинематическое приближение отвечает относительно слабому взаимодействию излучения с веществом, а соотношение амплитуд атомного рассеяния рентгеновских лучей /х, электронов /е и нейтронов /п имеет вид  [c.5]

Фотоэлектрический эффект — это процесс взаимодействия рентгеновских квантов с электронами внутренних оболочек атомов. В результате фотоэффекта квант рентгеновского излучения исчезает, при этом его энергия передается электрону. Этой энергии может оказаться достаточно, чтобы вырвать электрон с одной оболочки атома и перенести его на другую или полностью удалить электрон из атома, т. е. вызвать ионизацию атома. Ослабление интенсивности излучения за счет фотоэффекта называют истинным поглощением рентгеновских лучей и характеризуют линейным т или массовым т коэффициентами ослабления. Линейный коэффициент ослабления т показывает, какая доля излучения поглощается за счет фотоэффекта на единице толщины вещества массовый коэффициент ослабления Хт (равный т/р) характеризует ослабление излучения за счет фотоэффекта единицей массы вещества.  [c.101]

Общим для всех спектроскопических методов является измерение тех или иных характеристик взаимодействия излучения с веществом (поглощение, отражение, рассеяние, возбуждение и др.) в зависимости от энергии кванта падающего на вещество излучения. И если оптическая спектроскопия в основном использовала область энергий до 5 эВ (инфракрасную, видимую, ультрафиолетовую), то возможность использования такого источника, как СИ, расширила ее в тысячи раз (до десятков КэВ, т. е. на области ВУФ, мягкую рентгеновскую и рентгеновскую).  [c.249]

Фотоэффект. Гамма-фотон или фотон другого вида излучения при прохождении через вещество может вступить во взаимодействие с атомом этого вещества как целым. При этом фотон может передать всю свою энергию и полностью поглотиться, а за пределы атома выбрасывается электрон. Такой процесс вырывания электрона из атома фотоном называется фотоэффектом, а вырываемые электроны— фотоэлектронами. Атом, потерявший электрон, оказывается в возбужденном состоянии, освободившийся уровень энергии в атоме заполняется одним из наружных электронов и при этом испускается квант характеристического (рентгеновского) излучения. В отдельных случаях энергия возбуждения непосредственно передается одному из электронов атома, который покидает атом, а характеристического излучения не происходит. Это явление называется явлением Оже, а выброшенные электроны — электронами Оже.  [c.31]


Рентгеновское излучение — фотонное ИИ, представляющее совокупность тормозного и характеристического излучений — образуется в результате взаимодействия электронов, обладающих большой скоростью, с веществом анода рентгеновской трубки. Рентгеновская трубка представляет собой стеклянный вакуумный баллон, в который впаяны два электрода катод — вольфрамовая нить накала и анод — пластина из тугоплавкого материала, например вольфрама, молибдена. Катод, нагреваемый от источника тока до высокой температуры, испускает электроны, которые притягиваются находящимся под высоким напряжением анодом. Кинетическая энергия электрона зависит от анодного напряжения на трубке.  [c.12]

Метод двух (трех) энергий непосредственно базируется на современной теории и аналитическом описании взаимодействия рентгеновского излучения с веществом в диапазоне энергий. При контроле в области до 1,022 МэВ (метод двух энергий) отдельно учитывается вклад фотоэлектрического поглощения и комптоновского рассеяния. В области более высоких энергий (метод трех энергий) дополнительно учитывается эффект образования пар электрон-позитрон. Для того чтобы дополнительной вычислительной обработкой выделить вклад каждого вида взаимодействия и в конечном счете сформировать независимые наборы проекций для отдельной реконструкции томограмм распределения электронной плотности и распределения эффективного атомного номера, необходимо каждую оценку проекции Рн ( > Ф Е) проводить при двух (трех) неперекрывающихся спектрах энергий фотонов.  [c.424]

Существуют разновидности рентгеноспектрометрии, анализирующие одновременно только одну спектральную линию (одноканальные), две (двухканальные) или несколько линий (квантометры). Для регистрации рентгеновских спектров могут использоваться вторичные эффекты, сопровождающие процесс взаимодействия рентгеновского излучения с веществом, нанример флуоресцентный рентгеноспектральный анализ, основанный на регистрации вторичного спектра флуоресценции под действием рентгеновских лучей эмиссионный рентгеноспектральный анализ, при котором регистрируется рентгеновский спектр, возбужденный электронами абсорбционный рентгеноспектральный анализ радиоизотопы и др. Нашли применение дисперсионные методы анализа материалов.  [c.183]

Конструктивные и схемные особенности другого подкласса атомно-физических анализаторов — аппаратов для рентгеноструктурного анализа — вытекают из назначения прибора — регистрации дифракционных картин взаимодействия рентгеновского излучения с веществом. Основные узлы таких анализаторов — источник рентгеновского излучения, стабилизаторы напряжения, гониометры, вычислительные блоки. Для современных устройств характерными являются высокая производительность, возможность одновременного использования нескольких способов регистрации дифракционных картин (например, измерение с помощью гониометра, фотографическая регистрация, запись на самописец, цифропечать и т. п.), высокая стабильность питания рент еновской трубки (до 0,1 %),точная система юстировки, возможность автоматического определения интегральной интенсивности с заданного участка дифракционной картины, возможность ввода данных исследования в ЭВМ для дальнейшей обработки, дистанционное управление работой анализатора.  [c.292]

В другом предельном случае, когд о 3> wq и интенсивность 1р onst, что соответствует, например, столкновению быстрых электронов или взаимодействию рентгеновского излучения с веществом, получаем  [c.54]

Наконец, уже в течение 15 лет ведутся работы по рентгенолито-графии, призванной в будущем по мере миниатюризации микросхем заменить фотолитографию, в которой минимальный размер воспроизводимого рисунка определяется длиной световой волны. Согласно существующим представлениям рентгенолитография будет иметь существенные преимущества перед другими методами микролитографии (электронной, ионной и т. п.) в том случае, когда возникает необходимость тиражирования микросхем в промышленных масштабах. При этом предполагается использовать область длин волн от 0,8 нм до 2 нм (иногда от 0,4 нм до 10 нм), что определяется выбором источника излучения, физикой взаимодействия МР-излучения с веществом, длиной пробега МР-фотонов и вторичных электронов, дифракционными ограничениями, материалом шаблонов и т. п. Следует ожидать, что с открытием высокотемпературной сверхпроводимости появятся новые возможности эффективного построения микросхем с субмикронными размерами, и работы по рентгеновской литографии получат дополнительный импульс.  [c.4]

Теории отражения электромагнитного излучения от шероховатых поверхностей посвящен ряд обзоров и монографий (см., например, [3, 14, 21]). Однако рентгеновский диапазон длин волн имеет специфические особенности. Прежде всего, здесь имеет смысл рассматривать лишь малые углы скольжения, при которых коэффициент отражения рентгеновского излучения велик. Кроме того, в рентгеновском диапазоне (в отличие от задач радиофизики и акустики), где все вещества обладают малой поляризуемостью, скачок диэлектрической проницаемости на границе раздела крайне мал. В результате оказывается, что при описании взаимодействия рентгеновского излучения с шероховатой поверхностью вводятся два параметра, характерных для этого диапазона длин волн aQyk и а I 1 — е Д (о — радиус корреляции высот шероховатостей 00 и Я — угол скольжения и длина волны падающего излучения е —диэлектрическая проницаемость вещества, на которое падает излучение), от значений и соотношения которых зависят отражающие свойства поверхности [10, 11].  [c.48]


В основе получения изображения при компьютерной томографии лежит взаимодействие рентгеновского излучения с тканями и органами человека. Рентгеновская трубка, генерирующая излучение, вращается вокруг пациента. Детекция измененного излучения осуществляется серией последовательных детекторов, количество которых может доходить до 700. При этом получают информацию о тонких срезах ткани. Компьютерная обработка серии последовательных срезов позволяет реконструировать изображение различных тканей и органов организма человека, включая сосуды. По аналогии с ангиографической методикой для качественной визуализации сосудов необходимо наличие в сосудистом русле позитивного водорастворимого контрастного вещества. В настоящее время появилась компьютерно-томографичес-кая методика, позволяющая значительно улучшить качество получаемого изображения и сократить время исследования. Это спиральная компьютерная томография. При исследовании пациента происходит одновременное вращение рентгеновской трубки вокруг туловища и линейное движением стола, на котором находится обследуемый. Результатом этого является спиральная траектория рентгеновского излу-  [c.320]

Фотоэффект, эффект Комптона, рождение электронно-позитронных пар. Предположим, что через вещество распространяется монохроматический пучок фотонов. Энергию фотонов будем варьировать в широком интервале от оптического диапазона к рентгеновскому и далее — к -у-излу-чению. При прохождении через вещество интенсивность фотонного пучка будет уменьшаться за счет различных процессов фотон-электронного взаимодействия, приводящих к поглощению или рассеянию фотонов. Не будем принимать во внимание резонансные процессы взаимодействия излучения с веществом. Тогда остаются три процесса, приводящие к ослаблению фотонного пучка фотоэффект (фотоны поглощаются электронами), эффект Комптона (фотоны рассеиваются на электронах), рождение электроннв-позшп-  [c.157]

Физической основой нейтронной радиографии является зависимость сечения взаимодействия излучения с веществом от характеристик вещества и прежде всего от его атомного номера и массового числа. В отличие, например, от рентгеновского и v-излучений эта зависимость для нейтронов (преимущественно низких энергий) выражена более сильно и имеет до некоторой степени противоположный характер (рис. 40). В связи с тем что эффективные сечения взаимодействия а нейтронов с ядрами веществ увеличиваются с понижением энергии нейтронов (рис. 41), в радиационной дефектоскопии нащли преимущественное использование тепловые и надтепловые нейтроны. Из анализа кривых следует, что нейтроны вполне целесообразно использовать при дефектоскопии таких веществ, как марганец, бор, кадмий, водород и др. В этих веществах наблюдается резкое изменение а в зс-висимости от энергии, что позволяет хорошо выявлять дефекты.  [c.338]

Амплитудный анализатор АИ-100 с датчиком УСД-1, оснащенный кристаллом NaJ(Ta), имеет разрешающую способность по Y-линии s 9%. Основные процессы взаимодействия Y-квантов с веществом — фотоэлектрические поглощения, комптоновское рассеивание и образование пар. Результатом взаимодействия излучения с веществом сцинтиллятора является возбуждение атомов молекул, которые, возвращаясь в нормальное состояние, испускают фотоны с частотой в области спектральной чувствительности фотокатода фотоумножителя ФЭУ-13. Кристалл йодистого натрия, активизированный таллием, обладает световым выходом относительно большой плотности, содержит атомы йода с большим атомпы. весом (Z = 53), хорошо себя зарекомендовал в спектрометрии рентгеновского и у-излучения. Так как интенсивность световой вспышки линейно связана с энергией, возбужденной 7-квантом в кристалле, на аноде фотоумножителя ФЭУ-13 появляется пропорциональный ей импульс тока, регистрируемый набором статистически распределенных импульсных счетчиков.  [c.57]

По диапазонам длин волн (в порядке убывания) или частот (в порядке возрастав..я) выделяют радиоспектроскопию, микроволновую спектроскопию, суб-миллиметровую спектроскопию, инфракрасную спектроскопию, оптическую спектроскопию (включающую ближнюю ИК-, видимую и частично УФ-области спектра и выделенную гл. обр. по прозрачности оптнч. материалов — стекла, кварца и др.), ультрафиолетовую спектроскопию, рентгеновскую спектроскопию. По характеру взаимодействия излучения с веществом С. подразделяют на линейную (обычную) С. и нелинейную спектроскопию, к-рая возникла благодаря применению лазеров для возбуждения спектров. Применение перестраиваемых лазеров на растворах красителей и полупроводниковых диодных лазеров, а также использование электронных цифровых методов регистрации спектров позволили достичь очень высокого спектрального разрешения и высокой точности спектральных измерений.  [c.625]

Возникает вопрос о правомерности использования формул Френеля (1.1) и (1.2), описывающих взаимодействие электромагнитного излучения с однородными и изоторопными средами в оптическом диапазоне длин волн, для рентгеновского излучения. Дело в том, что длина волны рентгеновского излучения сравнима с межатомными расстояниями, а у кристаллов — и с постоянной решетки. Тем не менее, как показано в работах [1, 20, 67], эффектами пространственной дисперсии в рентгеновской области можно, как правило, пренебречь и описывать вещество зависящей от частоты диэлектрической проницаемостью е (ш). С учетом этого обстоятельства, а также считая, что граница раздела достаточно гладкая (вопрос влияния шероховатостей будет подробно рассмотрен ниже), вполне правомерно описание отражения рентгеновского излучения с помощью формул Френеля.  [c.12]

Флуороскопические экраны изготовляют нанесением на картонн)то основу флуоресцентного вещества (люминофора), которое представляет собой, например, смесь кристаллов сульфида цинка (ZnS) и сульфида кадмия ( dS), активированную серебром. В результате процессов взаимодействия рентгеновского и у-излучений с веществом люминофора возникает люминесценция со свечением в зеленой или желто-зеленой части видимого спектра. Чувствительность контроля оказывается в 3 - 6 раз ниже, чем при радиографии. Эти экраны служат для регистрации электронов, протонов, а-частиц, а также могут быть использованы входными элементами рентгеновских электронно-оптических преобразователей (РЭОП) и во флюорографии.  [c.278]

Э. в. различных диапазонов X характеризуются различными особенностями (способы возбуждения, прием и регистращш, взаимодействие с веществом и т. и.). Различают радиоволны, световые волны (видимая, инфракрасная и ул1>тра-фполетовая части спектра), рентгеновское излучение и у-излучение (см. табл.). Наибольшие различия б свойствах Э. в. различных диапазонов возникают прн взаимодействиях Э. в. с веществом. Процессы излучения и поглощения. Э. в. от самых длинных волн до инфракрасных достаточно нолно описываются соотношениями электроди-намик и и электронной теории. На болео высоких частотах доминируют процессы, имеющие существенно квантовую природу.  [c.469]

Влияние рассеянного излучения на радиографическую чувствительность. Рассеянное излучение всегда возникает в облучаемом изделии, поскольку при взаимодействии излучения с веществом часть рентгеновских лучей поглощается, часть рассеивается, а часть проходит через изделие (рис. 56). Рассеянное излучение уменьщает радиографическую чувствительность, так как из-за образования вуали уменьшается контрастность снимка. Контрастность снимка определяется разностью оптических плотностей соседних участков снимка, соответствующих бездефектным и дефектным местам контролируемого изделия. Любые предметы, будь то образец, кассета, поверхность стола, стены или пол, попавшие под прямое излучение, становятся источниками рассеянного излучения. Особенно велика доля рассеянного излучения в изделиях большой толщины из-за значительного числа рассеивающих центров. Поэтому в изделиях большой толщины обнаружить малые дефекты всегда труднее.  [c.112]


СИ-спектроскопия в настоящее время включает в себя спектральные области от инфракрасной до рентгеновской в завиоимости от объекта исследования — атомную, молекулярную и спектроскопию твердого тела в зависимости от объекта регистрации — фотонную, электронную, ионную. При регистрации взаимодействия падающего пучка фотонов измеряются поглощение, отражение (т. е. в итоге оптические константы) й рассеяние. При регистрации результатов взаимодействия излучения с веществом измеряются спектры действия СИ — это спектры возбуждения люминесценции (фосфоресценции и флуоресценции), термолюминесценции и др. Во всех этих методах регистрируются фотоны. При регистрации фотоэлектронов, созданных СИ при облучении вещества, существует целый ряд методов ФЭС — фотоэлектронная спектроскопия, РЭС — рентгеновская электронная спектроскопия и др. При этом регистрируется, распределение фотоэлектронов по энергиям и углам. Широко применяются методы электронной спектроскопии с возбуждением СИ, в частности ЭСХА (электронная спектроскопия для химического анализа) и др. Для анализа результатов фотохимического взаимодействий СИ с веществом применяются также маос-апекрометрические методы.  [c.249]

Другим видом энергетических потерь заряженной частицы М, пролетающей через вещество, являются потери энергии иа тормозное излучение. Особенно велики эти потери для электронов больших энергий. Электрон, [фолетающий через вещество, испытывает сильное взаимодействие со стороны электрического поля атомных ядер вещества и претерневает отклонение. Так как заряд ядра Ze значительно больше заряда электрона, а масса электрона т очень мала по сравнению с массой ядра (Мдд 1836 т), то электрон испытывает резкое торможение в иоле ядра и при этом теряет значительную часть своей энергии, испуская квант (фотон) электромагнитного излучения. Эти потери энергии вследствие излучения называются радиационными потерями или потерями на тормозное излучение. Примером радиацнонного излучения электронов является рентгеновское излучение (имеющее сплошной спектр), возникающее прн бомбардировке антикатода рентгеновской трубки электронами.  [c.28]

В самом конце XIX в. впервые появились факты, которые поставили под сомнение элементарность атомов. В это время были открыты катодные и рентгеновские лучи, а- и р-радиоактив-ность и Y-излучение радиоактивных веществ, причем оказалось, что свойствами испускать катодные и рентгеновские лучи, а также испытывать радиоактивный распад обладают различные атомы. Таким образом, возник вопрос об атоме как о сложной системе, способной разрушаться с образованием новых атомов. Сходство свойств различных атомов позволяло надеяться на то, что устройство всех известных атомов удастся свести к различным сочетаниям и взаимодействиям небольшого числа элементарных частиц. Естественно, что на этот раз речь идет о частицах еще более элементарных, чем атомы.  [c.541]

Ограничения, связанные со статистической природой излучения фотонов, их взаимодействия с веществом и регистрации характерны для любых информационных систем, использующих рентгеновское излучение, но их количественное проявление в ПРВТ отличается от традиционных радиационных методов.  [c.409]

АНАЛИЗ [активационный — метод определения химического состава вещества с помощью регистрации излучения радиоактивных изотопов, образующихся при облучении вещества ядерными частицами люминесцентный — химический анализ вещества по характеру его люминесценции рентгенорадиометрический— анализ химического состава, основанный на регистрации рентгеновского излучения, возникающего при взаимодействии излучения радиоизотопного источника с атомами вещества рентгеноснектральный — метод определения химического состава примесей вещества по характеристическому рентгеновскому спектру его атомов рентгеноструктурный— метод исследования структуры вещества, основанный на изучении дифракции рентгеновского излучения в этом веществе спектральный — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров — испускания, поглощения, комбинационного рассеяния света, люминесценции АНТИФЕРРОМАГНЕТИЗМ— магнитоупорядоченное состояние кристаллического вещества с антипараллельной ориентацией спиновых магнитных моментов соседних атомов в кристаллической решетке АЭРОДИНАМИКА—раздел аэромеханики, изучающий законы движения газообразной среды и ее взаимодействие с движущимися в ней твердыми телами АЭРОМЕХАНИКА— раздел механики, изучающий равновесие и движение газообразных сред и механическое воздействие этих сред на погруженные в них твердые тела  [c.225]

МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]


Смотреть страницы где упоминается термин Взаимодействие рентгеновского излучения с веществом : [c.423]    [c.85]    [c.131]    [c.324]    [c.375]    [c.22]    [c.317]    [c.302]    [c.239]    [c.34]    [c.79]    [c.125]    [c.37]    [c.347]   
Смотреть главы в:

Физические величины. Справочник  -> Взаимодействие рентгеновского излучения с веществом



ПОИСК



Взаимодействие излучения с веществом

Излучение и вещество

Излучение рентгеновское



© 2025 Mash-xxl.info Реклама на сайте