Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры и среды испытания

Влияние температуры и среды испытания  [c.81]

Влияние температуры и среды испытаний на характеристики замедленного разрушения образцов  [c.460]

Медные образцы начиная с 200 °С окисляются толщина оксидной пленки увеличивается с повышением температуры и длительности испытания. При повышенной скорости деформации время действия атмосферного воздуха меньше, поэтому свойства меди лучше. Уменьшение скорости испытания увеличивает длительность коррозионного воздействия внешней среды. Активное влияние последней особенно заметно в том случае, если медь одновременно подвергается растягивающим усилиям, тогда как увеличение времени выдержки образцов перед испытанием более чем в 150 раз лишь немного уменьшает временное сопротивление и практически не оказывает влияния на пластичность, так как происходит поверхностное окисление образцов.  [c.32]


ТАБЛИЦА 6. ВЛИЯНИЕ ВНЕШНЕЙ СРЕДЫ ТЕМПЕРАТУРЫ И ДЛИТЕЛЬНОСТИ ИСПЫТАНИЯ НА ОТНОСИТЕЛЬНОЕ СУЖЕНИЕ бескислородной МЕДИ  [c.34]

Прочность лопаток газовых турбин обычно определяют сравнением характеристик длительной прочности, полученных при испытании образцов на воздухе, с расчетными значениями напряжений. Однако литературные данные свидетельствуют о том, что в ряде случаев коррозионная среда влияет на длительную прочность существеннее, чем уменьшение живого сечения образцов вследствие коррозии. При этом отмечается, что с изменением температуры и времени испытания степень указанного влияния может значительно отличаться.  [c.310]

В качестве примера рассмотрим результаты моделирования испытаний одного из микродвигателей. При этом исследовалось как влияние эксплуатационных факторов по цепи питания и по температуре внешней среды, так и совокупность технологических факторов, воздействие которых регламентируется допусками на геометрические размеры, свойства материалов и т.д.  [c.262]

В табл. 6.13 представлены результаты вероятностного анализа при учете технологических факторов на фоне детерминированного воздействия эксплуатационных факторов, которое выражается в виде различных сочетаний напряжения, частоты и температуры окружающей среды. Эти сочетания определялись с помощью матрицы коэффициентов влияния, фрагмент которой приведен в табл. 6.11. Здесь приведены только границы разброса потребляемой мощности в номинальном режиме работы, пускового тока и времени разгона, хотя по каждому показателю были получены и гистограммы распределений. Эти данные позволяют выявить неблагоприятные сочетания внешних воздействий по различным рабочим показателям. В данном случае седьмой вариант эксплуатационных воздействий оказывается неблагоприятным по уровням потребляемой мощности и пускового тока, а восьмой — по уровню времени разгона. На рис. 6.42 представлены гистограммы распределения значений номинального тока в различных условиях испытаний, которые дают  [c.262]

В справочнике на основании работ советских и зарубежных ученых, а также исследований автора описаны механические и технологические свойства более 70 металлов и 20 сплавов в зависимости от температуры испытания, содержания примесей и способов получения. Приведены сведения об основных физических свойствах всех известных в настоящее время металлов. Основное внимание уделено влиянию различных факторов на пластичность и хрупкость металлов, температурным зонам их. Рассмотрены вопросы о ресурсах металлов, методиках испытаний, разрушении, терминах, даны рекомендации по повышению качества металлов. Показано решающее влияние примесей и окружающей среды на их свойства.  [c.2]


Коэффициент влияния частоты, равный (ст-1 )//< i, — характеристика увеличения предела выносливости при повышении частоты испытания, номинальной температуре и отсутствии коррозионной среды (за исходную частоту по ГОСТ 2860—65 принимают 10— 300 Гц).  [c.15]

Этот метод. может быть применен при изгибе, растяжении-сжатии и кручении (опыта использования метода при ударных, контактных и термоциклических испытаниях пока не имеется) симметричных и несимметричных циклах нагружения наличии и отсутствии концентраторов напряжений нормальной +20 С) температуре окружающей среды отсутствии влияния агрессивной среды.  [c.75]

Паяные алюминиевые теплообменники нашли широкое применение в производстве криогенных хладагентов. Их используют как в благоприятных условиях (например, в среде инертных газов и при постоянном давлении), так и во влажной атмосфере, а также в условиях колебаний температуры в интервале от 297 до 172 К в сочетании с циклическими изменениями давления. Алюминиевые паяные теплообменники имеют высокие эксплуатационные характеристики в указанных условиях. Случаи разрушения обычно связаны с усталостью, коррозией, эрозией или с избыточным статическим давлением, при этом усталость и коррозия являются наиболее неблагоприятными факторами, поданным опыта эксплуатации [1]. В настоящее время нет достаточного количества данных, чтобы оценить влияние окружающей среды, температуры, частоты нагружений или других условий на усталостную прочность сплава 3003-0 и выделить из этих факторов те, которые являются решающими для паяных алюминиевых теплообменников. Задачей настоящей работы была оценка влияния температуры испытания, частоты нагружения и окружающей среды на скорость роста трещины усталости в алюминиевом сплаве 3003-0 с целью обеспечения более рационального конструирования теплообменников и более эффективного использования сплава в этих узлах. Остальные условия не принимали во внимание.  [c.137]

Испытания в среде деионизированной воды. Результаты испытаний образцов толщиной 3,18 мм в среде деионизированной воды при частотах 1 и 20 Гц при комнатной температуре и коэффициенте асимметрии цикла R — 0,l приведены на рис. 2, б. Как видно из этих данных, изменение частоты нагружения при испытании в указанной среде не оказывает влияния на результаты испытаний. Значения Сип даны в таблице.  [c.140]

Влияние скорости и температуры деформации и способа нагружения на механические свойства металлов. Механические свойства (прочность, твердость, пластичность ) не являются константами металла, а зависят от условий испытаний (температуры, скорости деформации, напряженного состояния среды), искажен-ности кристаллической решетки, состояния поверхности, формы и геометрических размеров детали или образца.  [c.30]

Испытания велись до достижения на поверхности трения значений установившейся температуры для данных условий работы. По графикам, построенным для каждого опыта, определялась установившаяся температура нагрева поверхности трения и температура других точек тормоза. Наибольшее значение для выбора тормоза имеет нагрев поверхности трения поэтому в дальнейшем изложении приводятся значения установившихся температур этой поверхности. Так как при испытаниях более удобно измерять не температуры нагрева, а температуры перегрева, что исключает влияние температуры среды, то указываемые далее  [c.623]

Исследователи неоднократно отмечали многообразие связей между долговечностью материала как функции режима нагрузки и рядом сопутствующих производственных и эксплуатационных факторов (формой и размером деталей, состоянием поверхностных слоев эффектом термообработки, температурой окружающей среды, влиянием агрессивной среды, вакуума, радиации и т. п.), а также фактором случайности. Поэтому, несмотря на большой опыт проведения испытаний на усталость (начало их относится к 1854 г.), и в настоящее время нередко возникают затруднения при попытке заблаговременно и с достаточной степенью точности оценить опасность усталостного разрушения реальных объектов в эксплуатационных условиях. Многообразие связей заставляет в каждом отдельном случае, даже при одном и том же характере нагрузок, критически подходить к использованию опыта расчета других конструкций и материалов, так как условия подобия часто неизвестны.  [c.12]


Опытный образец насосного агрегата проходит сначала испытания на воде. Основная цель испытаний на водяном стенде — проверка работоспособности агрегата. Необходимость предварительных испытаний на воде диктуется сложностью осуществления возможных доработок насоса при испытании его на натрии, так как в этом случае при разборке насоса требуется его отмывка от натрия. Частые разборки насоса затрудняют сохранение в стенде требуемой чистоты натрия, а время, затрачиваемое на извлечение насоса из стенда, удлиняется за счет необходимости предварительного слива натрия и охлаждения стенда. Поэтому целесообразно первоначальную проверку и доводку конструкции проводить на воде. В конечном счете это экономит время и средства на создание натриевого насоса. Разумеется, при этих испытаниях проверяются только те характеристики насоса, которые не связаны с влиянием натрия и рабочей температуры на его элементы. Например, при испытаниях на воде (f<50° ) нельзя изучить температурное поле насоса, проверить стойкость деталей проточной части к воздействию рабочей среды, оценить эффективность работы системы охлаждения и т. п.  [c.248]

Неоднозначность влияния температуры на трение ФПМ можно дополнительно иллюстрировать рис. 3.9. Здесь показаны результаты испытаний трех типов ФПМ (6КХ-1Б, 7КФ-34 и ФК-16Л) на различных лабораторных машинах трения (сплошными линиями показаны зависимости для образцов толщиной 10 мм, а штриховыми — для образцов толщиной 4 мм). Характеристики фрикционной теплостойкости этих материалов, полученные на различных машинах трения, существенно отличаются. Как будет показано далее, вид характеристики фрикционной теплостойкости определяется общим комплексом условий режима трения — температурой, давлением, скоростью скольжения, макрогеометрией контакта, окружающей средой и другими факторами.  [c.232]

Испытания проводили по методике ГОСТ 23,210—80. Исследовали влияние давления и скорости скольжения при различном уровне охлаждения окружающей среды (рис. 3.22). В целях сокращения тепловыделений при трении влияние давления определяли при скорости скольжения около 12,5 мм с. Температура в зоне трения при этом составляла —60 °С (температура воздуха в камере —80 °С). Влияние скорости скольжения определяли при давлении 0,6 МПа. При увеличении скорости температура в зоне трения быстро повышалась. Кривые на рис. 3.22 получены при температуре  [c.240]

Условия эксплуатации машин и механизмов — высокая и низкая температура, агрессивная среда, частота, асимметрия и нестационар-ность нагружения и т. п. существенно отражаются на сопротивлении материалов усталостному разрушению. В большинстве случаев учесть влияние эксплуатационных факторов аналитически не представляется возможным. В прикладных исследованиях при испытании материалов стараются как можно точнее отразить условия эксплуатации деталей. Ниже приведены результаты изучения влияния основных эксплуатационных факторов на характеристики трещиностойкости материалов при циклическом нагружении.  [c.146]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Зависимость (8.2) оказалась пригодной для довольно широкого класса материалов, в том числе и полимерных, на значительном диапазоне температур и времен испытаний. Отметим, что наибольший разброс экспериментальных данных наблюдается при очень длительных и очень коротких временах разрушения, а наименьший при средних временах длительной прочности, где наиболее хорошо оправдывается зависимость (8.2). Испытания, проведенные в высоком вакууме (Г. М. Бартенев, 1955), показали, что внешняя среда не является первостепенной причиной влияния на временную зависимость, за исключением отдельных частных случаев сильных поверхностно-активных сред (см. В. И. Лихтман, Е. Д. Ш укин и П. А. Ребиндер, 1962).  [c.424]


Окалиностойкость металлов и сплавов оценивают по увеличению массы образцов при испытаниях в среде горячего воздуха. Результаты испытаний приведены на рис. 1.21. Одновременное влияние температуры и пористости на окисление в течение 10 ч ППМ (образцы размером 65X Х25Х2 мм) из частиц никеля показано на рис. 1.22. Максимум  [c.56]

Существенное влияние на результаты механических испытаний, поведение металлов при обработке давлением и эксплуатацию оказывает окружающая среда. Это следует обязательно учитывать и не только при повышенных температурах для металлов, взаимодействующих с кИсЛб-  [c.25]

Внещняя среда оказывает влияние на свойства никеля при высокой температуре и испытании в атмосфере воздуха никель может упрочниться вследствие внутреннего окисления.  [c.162]

В статье пред.ложен ряд средств для лабораторных испытаний материалов с покрытиями при высоких температурах, показана некорректность нагрева образца прямым пропусканием электрического тока. Исследование длительной прочности проведено в камере лучевого нагрева, где нагреватель изолирован двойной охлаждаемой кварцевой стенкой от образца, т. е. от влияния агрессивной газовой среды на нагреватель. Для сплава с покрытием найдена зависимость запаса прочности и коррозионной стойкости при высоких температурах от предварительно-напряженного состояния. Термостойкость покрытий опреде.чялась в безынерционной лучевой печи с тепловым потоком до 250 ккал./м сек., время выхода печи на режим — 0.02 сек. Приведены результаты определения в этих печах теплозащитных и теплоизоляционных свойств ряда покрытий на молибдене. Для фиксации момента разрушения покрытия в условиях резких теплосмен разработаны датчики и регистрирующая аппаратура. Описана конструкция установки для изучения мпкротвердости покрытий при температурах до 2000° С. Библ. — 1 назв., рис. — 9.  [c.337]

Несомненно также, что термостойкость всех материалов уменьшается с ростом максимальной температуры цикла. Это можно объяснить не только возрастанием напряжений с повышением температуры, но и большей порчей материала при более высоких температурах, главным образом в поверхностных слоях. Замечено, что трещины термической усталости возникают не только в тех зонах и сечениях детали, которые подвергаются нагреву и охлаждению с наибольшей скоростью (например, в зонах, соответствующих границе действия потока горячих газов или, наоборот, охлаждающего потока), а также в зонах действия максимальных температур и поэтому, как правило, с наиболее окисленной поверхностью. Наблюдаемое значительное влияние среды на термостойкость подтверждает значение состояния поверхности так, долговечность турбинных лопаток при теплосме-нах 1050ч 600°С с вводом в газовой поток солей морской воды уменьшилась примерно в 10 раз по сравнению с результатами испытания в обычных условиях [81]. Отсюда становятся понятными причины положительного влияния на термостойкость защитных поверхностных слоев.  [c.162]

В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как было показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1.  [c.68]

Сравнение данных графиков при низких уровнях Д/С показывает, что как азот, так и аргон оказывают наименьшее влияние на развитие трещины. При низких значениях ДХ скорость роста трещины усталости в аргоне и азоте примерно одинакова, в то время как при более высоких уровнях Д/С в среде аргона она в 2,4 раза выше, чем при испытаниях в азоте. Такая разница в скорости роста трещины при более высоких значениях ПК наблюдается, возможно, благодаря влиянию температуры, а не различию в газовой среде испытаний. Испытания в среде аргона проводили при комнатной температуре, в то время как температура азота была 172 К- Результаты исследования Келси с сотрудниками [9] показывают, что скорость роста трещины усталости уменьшается при снижении температуры.  [c.142]

Температурные условия окружающей среды (как понижент ные, так и повышенные) на стойкость клапанов практически влияния не оказывают. Клапаны, испытывавшиеся в условиях низких температур (230—200 К) выдерживали по 5—7 тыс. циклов без нарушений состояния подушки, так же как и клапаны, испытанные в условиях высоких температур (320—330 К). Объяснить это следует тем, что при дренаже в условиях большого перепада давления наблюдается сильное охлаждение клапана и вентиля. Вследствие этого дренаж происходит практически в одинаковых условиях, определяемых не температурным режимом окружающей среды, а температурой, создаваемой в процессе дренажа в результате перепада давления.  [c.80]

Для измерения общего электродного потенциала в процессе циклического нагружения образцов нами [98] разработана установка (рис. 16), которая состоит из машины для испытания материалов на сопротивление усталости 5, электродвигателя 6, счетчика числа циклов 7 и нагружающего механизма 2. Испытываемый образец 4 с помощью фторопластовых втулок 8 помещают в термостатируемую камеру с коррозионной средой 3. Включение вращающегося образца в цепь измерения электродного потенциала осуществляется через контактное устройство 9 и электрод сравнения 10. Регистрация изменения электродных потенциалов осуществляется измерительной аппаратурой 1 с точностью 15 мВ. Для исключения влияния повыщающейся в процессе циклического деформирования образца температуры на изменение общего электродного потенциала установка оборудована термостатом, позволяющим поддерживать температуру коррозионной среды близкой к комнатной с точностью + 0,5°С. Для поляризации образцов в ванну введен платиновый электрод, подключенный к источнику поляризующего тока.  [c.41]

Брэзвил и др. [146] изучали влияние агрессивных газовых сред на скорость распространения усталостной трещины в хромомолибденовой стали (С 0,14 %, Сг 2,28 %, Мо 1,36 %). Компактные образцы толщиной 25,4 мм с боковым надрезом нагружали с частотой 5 Гц и асимметрией цикла R = 0,1. Было установлено (рис. 51) сильное разупрочняющее действие водорода и сероводорода. Испытание в водороде при комнатной температуре и давлении 133 кПа показало увеличение скорости распространения трещины в 10 раз по сравнению с испытанием в вакууме. При испытании в сероводороде со значительно меньшим давлением (0,65 кПа) скорость роста усталостной трещины в 50 раз выше, чем в вакууме, и в 5 раз выше, чем в водороде. Водяной пар и особенно аргон значительно меньше влияют на сопротивление указанной стали усталост-  [c.102]


В атмосферных условиях и в условиях повышения влажности ненагру-женные детали из мартенситных нержавеющих сталей не подвергаются заметной коррозии. Однако исследования коррозионной стойкости при повышенных температурах (образцы нагревали до 250 или 350°С, окунали в 3 %-ный раствор Na I и переносили во влажную камеру, где при 50°С выдерживали 22 ч. Затем цикл повторялся. База испытаний составляла 30 суточных циклов) с периодическим смачиванием 3 %-ным раствором Na I показали, что эти стали подвержены точечной коррозии. Общим иеж-ду исследованием выносливости сталей при повышенных температурах и периодическом их смачивании коррозионной средой, определением коррозионной стойкости без приложения к образцам внешних нагрузок при повышенных температурах и периодическом смачивании является то, что в обоих случаях металл поверхностных слоев образцов подвержен усталости вследствие резко циклического изменения температуры с большим градиентом. Определение коррозионной стойкости сталей при периодическом смачивании коррозионной средой может дать качественную картину влияния химического состава и структуры стали на ее коррозионно-механическую стойкость при повышенных температурах.  [c.109]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]

Большой цикл испытаний проведен для определения влияния деформаций и напряжений на коррозионное поведение сталей и сплавов в среде N2O4 при высоких температурах и давлениях. Исследования образцов после испытаний в N2O4 с деформациями, превышающими предел текучести, показали, что ни один из испытанных материалов при температурах 200, 300, 400 °С и давлениях 50—150 бар не обнаружил усиления коррозии под напряжением или коррозионного растрескивания [1.19, 2.17].  [c.48]

Испытаниям на усталость характерен повышенный разброс результатов, что обусловлено большим числом различных факторов, влияющих на сопротивление усталостному разрушению. Основными факторами, определяющими рассеяние результатов испытаний на усталость, являются макро- и микронеоднороДность структуры конструкционных материалов, неоднородность качества поверхности образцов II элементов конструкций, колебания в условиях испытаний (среда, температура и пр.). Разброс характеристик сопротивления усталостному разрушению зависит также от состояния испытательного оборудования и квалификации обс.чуживающего персонала, однако при соблюдении основных требований к постановке и проведению испытаний влияние последних факторов на рассеяние результатов оказывается незначительным.  [c.137]

Изложенный механизм предполагает зависимость эффектов упрочнения и разупрочнения при ползучести металла от его сопротивления окислению. В связи с этим интересны результаты сравнительного изучения ползучести никеля и хромоникелевого сплава на воздухе и в вакууме, описанные в работе [403]. Сплав имел следующий состав 19,2% Сг 1,5% Fe 1,4% Si 0,47% Mn 0,1% Al 0,04% С остальное — никель. Он подвергался испытанию в интервале температур 593—1038° С и напряжений 10—420 Мн1м (1,05—42,2 кГ1мм ). Максимальное разрежение (при 593°С) составило 0,67 мн/м (5-10 мм рт. ст.), минимальное (при 1038°С) 13,3 мн/м (10 мм рт. ст.). Влияние среды на характеристики ползучести хромоникелевого сплава аналогично влиянию, установленному для чистого никеля. Однако из-за большей жаростойкости хромоникелевого сплава влияние температуры при прочих равных условиях оказалось для него более слабым, чем для никеля. Таким образом, полученные экспериментальные факты можно рассматривать как свидетель-  [c.439]

Первоначально исследователи полагали, что с помощью указанных зависимостей можно описать экспериментальные результаты исследований для широкого класса материалов и различных условий испытаний, но более поздние исследования показали существеппое влияние на /С среды (/(/ максимальное в вакууме), его значения возрастают при увеличении модуля упругости, повышении температуры Т и уменьшении коэффициента асимметрии цикла R, кроме того, Kih очень чувствителен к предыстории нагружения [219, 259, 3141,  [c.29]


Смотреть страницы где упоминается термин Влияние температуры и среды испытания : [c.4]    [c.98]    [c.198]    [c.211]    [c.158]    [c.184]    [c.204]    [c.8]    [c.97]    [c.37]    [c.311]    [c.438]   
Смотреть главы в:

Циклическая прочность металлических материалов  -> Влияние температуры и среды испытания



ПОИСК



Влияние pH среды

Влияние Влияние температуры

Среда с температурой до

Температура испытаний

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте