Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Возникновение энергий

Поток энергии. Если в системе отсутствует лучистый или иной внешний подвод энергии к границе раздела фаз, то следует считать, что поверхностная плотность возникновения энергии равна нулю  [c.50]

На рис. 138 приведено изменение потенциальной энергии ионов металла, склонного к самопроизвольному окислению (растворению). На этом рисунке кривые 1 w 2 воспроизводят рис. 107, иллюстрирующий механизм возникновения скачка потенциала на границе  [c.198]


Из рассмотренной схемы взаимодействия между металлом и электролитом (см. рис. 8), вытекает, что причиной возникновения электродных потенциалов является перенос ионов из металла в раствор и обратно. Электродные потенциалы являются энергетической характеристикой двойных слоев, представляя собой меру энергии, нужную для перехода ионов в раствор или в обратном направлении. Когда двойной электрический слой достигает разности потенциалов, при которой энергетический уровень ионов в металле и растворе сравняется, процесс перехода ионов прекращается (устанавливается равновесие).  [c.19]

Для металлов, имеющих сильную склонность к переохлаждению до спонтанного образования центров затвердевания, таких, как галлий, олово, сурьма, описанного выше охлаждения гнезда термометра недостаточно. Получающееся при этом падение температуры стенки гнезда термометра не приводит к возбуждению кристаллизации, поскольку эти металлы могут оставаться в переохлажденном жидком состоянии в случае сурьмы примерно на 40 К ниже равновесной температуры затвердевания. Интенсивное охлаждение наружной стенки тигля потоком аргона или азота [21] позволяет преодолеть эти особенности металлов. В этом случае тигель, но не сколь-нибудь значительный участок печи, должен быть быстро охлажден на несколько десятков градусов. Этого достаточно для возникновения центров кристаллизации по всей внутренней стенке тигля. Выделяющейся теплоты перехода достаточно для повышения температуры образца и тигля до температуры затвердевания в течение нескольких минут. Достижение плато затвердевания образца происходит в результате быстрого роста дендритов, что всегда наблюдается при затвердевании из переохлажденного состояния. Затем рост дендритов прекращается и оставшийся металл затвердевает с гладкой поверхностью раздела фаз, медленно продвигающейся к гнезду термометра. Альтернативный метод [55] возбуждения центров кристаллизации таких металлов, как олово и сурьма, состоит в удалении тигля с образцом из печи при достижении в ней температуры затвердевания и помещении его в другую печь, имеющую температуру примерно на 90 °С ниже. Как только из-за выделяющегося при начале затвердевания тепла прекратится охлаждение тигля с образцом, он переносится в исходную печь, имеющую температуру лишь на несколько градусов ниже температуры затвердевания. Успех подобной процедуры ярко демонстрирует выделение энергии при переходе от жидкого состояния к твердому.  [c.177]

Возникновение электронной или дырочной электропроводности при введении в идеальный кристалл различных примесей обусловлено следующим. Рассмотрим кристалл 81, в котором один из атомов замещен атомом 8Ь. На внешней электронной оболочке 8Ь располагает пятью электронами (V группа периодической системы). При этом четыре электрона образуют парные электронные связи с четырьмя ближайшими атомами 81. Свободный пятый электрон продолжает двигаться вокруг атома 8Ь по орбите, подобной орбите электрона в атоме На однако сила его электрического притяжения к ядру уменьшится соответственно величине диэлектрической проницаемости 81. Поэтому для освобождения пятого электрона требуется незначительная энергия (приблизительно 0,008 адж). Такой слабо связанный электрон легко отрывается от атома 8Ь под действием тепловых колебаний решетки при низких температурах. Низкая энергия ионизации примесного атома означает, что при температурах около—100° С все атомы примесей в Се и 81 уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. При этом основными носителями заряда являются электроны и возникает электронная (отрицательная) электропроводность, или электропроводность п -типа.  [c.388]


Энгельс первый высказал мысль о том, что излученная звездами в космическое пространство материя должна вновь сконцентрироваться и дать начало новому круговороту материи. Какие законы управляют возрождением энергии, мы еще не знаем, но вопросы возникновения миров будут решены человеком, это так же достоверно, как и то, что в природе не происходит никаких чудес.  [c.132]

Физическая основа образования лазерной искры — возникновение в фокальном пятне вследствие нагрева газа термической плазмы, температура которой может достигать 10 К. Неравномерность распределения по объему плазмы электрически заряженных частиц приводит к резкой неравномерности распределения электрического потенциала в этом объеме и, как следствие, — электрическому пробою. Пробой имеет характер миниатюрного взрыва и сопровождается яркой вспышкой. Поскольку на образование лазерной искры расходуется большое количество энергии излучения лазера и в ряде случаев ее образование нарушает ход технологического процесса с применением лазерного излучения (например, сварки), этого явления стараются избегать.  [c.126]

Второе начало термодинамики, предсказанное еще М. В. Ломоносовым, было окончательно установлено в середине XIX в. Клаузиусом и Гельмгольцем (1850—1851). Оно позволяет определить возникновения самопроизвольно протекающих процессов в термодинамических системах и формулируется так при самопроизвольном переходе теплоты от нагретого тела к холодному, часть тепловой энергии может быть переведена в работу.  [c.259]

Диссоциация молекул водорода на отдельные атомы (АИ>0) или возникновение атомарного водорода в результате разрядки ионов водорода на катоде электролизера, а это тоже процесс с затратой энергии.  [c.344]

Поверхность раздела между образующейся твердой и исчезающей жидкой фазами создает энергетический барьер при гомогенном возникновении зародышей, для преодоления которого необходима флуктуация энергии, равная Поэтому энергетически более выгодно возникновение зародышей твердой фазы в кристаллизующейся жидкости преимущественно на готовых межфазных поверхностях. Такими поверхностями при гетерогенной кристаллизации могут быть поверхности твердых частиц, всегда существующие в технических расплавах.  [c.438]

Баланс свободной энергии при возникновении плоского зародыша аналогично (12.2) будет  [c.439]

Каталитическое влияние готовых поверхностей раздела фаз на возникновение зародышей зависит от действия факторов, усиливающих или ослабляющих этот эффект. На процесс гетерогенной кристаллизации влияет краевой угол между подложкой и находящимся на ней зародышем твердой фазы, так как от значения этого угла зависит соотношение поверхностных энергий между зародышем и сосуществующими фазами. Значение краевого угла определяется такими факторами, как близость структур кристаллических решеток подложки и твердой фазы зародыша, а также химическая природа поверхности подложки.  [c.440]

Дислокация представляет собой энергетически неуравновешенный атомный комплекс с повышенной свободной энергией. Под влиянием внешнего силового (энергетического) воздействия она начинает двигаться к положению с наименьшей свободной энергией (стабильному состоянию). В процессах возникновения и движения дислокаций, в том числе при пластической деформации, они перемещаются к поверхности, где увеличивают плотность участков с повышенной свободной энергией, повышенной активностью, что имеет большое значение при сварке металлов давлением в твердом состоянии.  [c.472]

Кинетика диффузионного превращения. Диффузионное превращение происходит по механизму образование зародыша и рост новой фазы . Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости (см. гл. 12). Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным /з поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре Гр, а также при уменьшении поверхностной энергии зародыша.  [c.493]


Кинетика выделения фаз при распаде твердых растворов. Распад с выделением фаз происходит по механизму образования и роста зародышей в соответствии с общими закономерностями этого механизма. Помимо затрат выделившейся объемной свободной энергии на приращение поверхностной энергии и компенсацию энергии упругих деформаций, образование зародышей тормозится еще и необходимостью больших флуктуаций концентрации. Поэтому для начала распада требуются большие степени переохлаждения (пересыщения) и длительные выдержки при соответствующих температурах. В то же время при данных температурах должны заметно развиваться процессы диффузии растворенных компонентов. Общая скорость образования новой фазы в зависимости от степени переохлаждения описывается кривой с максимумом. Чем больше степень переохлаждения, тем меньшие размеры имеют устойчивые зародыши, способные к росту. В координатах температура — время процесс описывается С-образной кривой. В реальных металлах возникновение зародышей облегчается наличием дефектов кристаллического строения.  [c.497]

При ускоренном охлаждении и больших степенях переохлаждения вместо стабильной фазы 0 часто образуется метастабиль-ная фаза 0, содержащая обычно меньше растворенного компонента, чем в стабильной (см. рис. 13.6). Фаза 0 зарождается гетерогенно предпочтительно на малоугловых границах блоков внутри зерен, скоплениях вакансий и отдельных дислокациях. Они имеют полностью или частично когерентные границы раздела. Возникновение метастабильных фаз обусловлено меньшим значением энергетического барьера при их зарождении, чем стабильных. Кроме того, для возникновения метастабильной фазы требуются меньшие концентрационные флуктуации. При длительной выдержке может произойти переход 0 в 0, в результате чего будет достигнуто равновесное состояние сплава с минимальной свободной энергией.  [c.498]

Точно такую же роль поверхностные явления играют и при возникновении перегретых состояний жидкости, только теперь все определяется выгодностью или невыгодностью образования пузырька газа. В этом случае при переходе ДЛ/ частиц из пузырька в жидкость поверхностная энергия уменьшается на величину (6.13). Поэтому поверхностный член, 2аю /г, в формуле (6.16) будет  [c.136]

Если замкнутая траектория на фазовой плоскости является изолированно , она называется предельным циклом. Наличие устойчивого предельного цикла на фазовой плоскости говорит о том, что в системе возможно установление незатухающих периодических колебаний, амплитуда и период которых в определенных пределах не зависят от начальных условий и определяются лишь значениями параметров системы. Такие периодические движения А. А. Андронов назвал автоколебаниями, а системы, в которых возможны такие процессы, — автоколебательными [ 1 ]. В отличие от вынужденных или параметрических колебаний, возникновение автоколебаний не связано с действием периодической внешней силы или с периодическим изменением параметров системы. Автоколебания возникают за счет непериодических источников энергии и обусловлены внутренними связями и взаимодействиями в самой системе. Одним из признаков автоколебательной системы может служить присутствие так называемой обратной связи, которая управляет расходом энергии непериодического источника. Из всего сказанного непосредственно следует, что математическая модель автоколебательной системы должна быть грубой и существенно нелинейной.  [c.46]

Возникающее при деформации смещение масс связано с возникновением энергии движения. Если ускорения малы, то можно считать, что в любой момент нагружения система находится в равновесии. Такое нагр Лние носит название статического. Это — тоже схема.Применимость определяется тем, насколько кинети/ескг мала по сравнению с упругой энергией  [c.17]

То есть не зависит от пути, проходимого телом от одного состояния к другому иначе было бы возможно осуществление perpetuum mobile первого рода, т. е. возникновение энергии из ничего.  [c.48]

А. Вольта для объяснения действия вольтова ба и противоречащей закону сохранения энергии, Фг заявил о невозможности возникновения энергии из 1 и указал на взаимные переходы одного вида Э1 в другой Контактная теория полагает, что сила. .. будто бы возникнуть из ничего. .. Мы имеем много п сов, при которых внешняя форма силы может претер такие изменения, что происходит явное нревращен в другую. Так, мы можем превратить химическую в электрический ток, а электрический ток—в химич силу. Прекрасные опыты Зеебека и Пельтье показ взаимную связь теплоты и электричества, а Эрстеда собственные показывают превращаемость электричес магнетизма. Но ни в одном случае, даже е электрич угрем и скатом, нет производства силы без соответс щего израсходования чего-либо, что питает ее .  [c.204]

Когда ионы металла переходят в раствор (энергия гидратации ионов достаточна для разрыва связи между ион-атомами и электронами), на поверхности металла остается эквивалентное количество электронов (рис. 7), которые в раствор не переходят и сообщают металлу отрицательный заряд. 3)тот заряд вызывает электростатическое притяжение между положительно заряженными ионами металла, перешедшими в раствор, и поверхностью металла. Указанные явления на границе металл — водный раствор электролита приводят к возникновению двойного электрического слоя, образуемого электрическими зарядами, находящимися на металле, и ионами противоиоложного заряда, располагающимися у поверхности металла в растворе, что приводит к установлению некоторой разности иотенциалов между металлом и раствором электролита (рис. 8, а).  [c.15]


Выше температура рассматривалась исключительно для макроскопических систем, причем поведению индивидуальных микроскопических частиц, составляющих такие системы, внимание не уделялось. Однако вскоре после возникновения классической термодинамики параллельно с ней стала разрабатываться кинетическая теория газов. Масквелл в 1859 г. и Больцман в 1869 г. получили формулы для распределения скорости или энергии в системе молекул, находящейся в тепловом равновесии.  [c.20]

Затвердевание металлов происходит при падении свободной энергии твердой фазы ниже уровня энергии жидкого состояния. Температура, при которой это имеет место, есть температура затвердевания (или в случае сплава) температура ликвидуса. Затвердевание требует, однако, образования в жидкости центров кристаллизации, механизм возникновения и роста которых весьма сложен. При температурах, лежащих ниже температур затвердевания, но близких к ней, различие в свободных энергиях жидкой и твердой фаз малы, поэтому и силы, приводящие к переходу между ними, невелики. Когда появляется твердый зародыщ, свободная энергия падает в результате перехода в твердую фазу, однако поверхностные силы на границе между фазами приводят к росту свободной энергии. И только когда эффект от образования новой фазы превысит этот поверхностный эффект, маленькая твердая частица сможет расти. Когда это происходит, говорят, что зарождается затвердевание и твердая фаза быстро распространяется в жидкости с выделением скрытого тепла, которое увеличивает температуру до температуры затвердевания. Величина переохлаждения, возможного до образования центров затвердевания, зависит от тепловых свойств конкретного металла.  [c.176]

НОЙ способности. В противном случае было бы невозможным тепловое равновесие внутри полости черного тела для тел из различных материалов. Закон Кирхгофа, однако, значительно сильнее, чем это кажется на первый взгляд. Уравновешиваться должны не только полная поглощенная энергия и полная энергия изучения, но должен быть сбалансированным каждый ин-ду цированный излучательный и поглощательный процесс. Это называется принципом детального равновесия и является фундаментальным результатом, основанным на статистической механике. В статистическом ансамбле, представляющем систему в равновесии, вероятность возникновения некоторого процесса должна равняться вероятности протекания обратного процесса.  [c.323]

Превращения при распаде твердого раствора протекают с образованием фаз, имеющих состав, отличный от исходной матричной фазы. Поэтому для гомогеЕиюго возникновения зародыша новой фазы критического размера необходимо наличие флуктуаций энергии и концентрации. Чем больше степень переохлаждения, тем меньше критический размер зародыша и требуемые для его образования флуктуации энергии и концентрации. Чаще зародыши образуются в дефектных местах кристаллической решетки, на границах зерен, в местах сконления дислокаций, на включениях примесей и т. д. (гетерогенное зарождение). Это объясняется уменьшением работы образования критического зародыша (по сравнению с гомогенным зарождением) и его размеров.  [c.103]

Таким образом, КВС как области с повышенным энергосодержанием, переходят на периферию, тем самым увеличивая ее энергию. Такой механизм неустойчивости действует только в одном направлении и хорюшо согласуется с возникновением реверса при образовании зоны рециркуляции в области диафрагмы вихревой трубы. В этом случае КВС возникают на фанице рециркулирующего потока. Направление силы Г можно определить по знаку скалярного произведения вектора угловой скорости вращения приосевого вихря Л и вектора угловой скорости вихревого жгута <0, после его разворота. В описанном выше безре-циркуляционном режиме это произведение положительно, что соответствует силе, направленной к периферии. Возникновение зоны рециркуляции приводит к изменению направления начальной завихренности КВС и осевой составляющей скорости, что соответствует зеркальному отражению относительно плоскости, перпендикулярной оси вихревой трубы. Но при зеркальном отражении скалярное произведение не изменяется и, соответственно, не изменяется направление действия силы F. В результате вихревой перенос энергии будет идти из зоны рециркуляции в область потока, выносимого через отверстие диафрагмы, что и приводит в конечном счете к его нагреванию.  [c.130]

Фотоэмиссия. При поглощении эмиттером светового излучения могут появиться электроны настолько большой энергии, что некоторые из них преодолевают барьер и оказываются эмитти-рованными. Это явление известно под названием внешнего фотоэффекта. Для металлов условие возникновения фотоэмиссии (закон Энштейна) имеет вид  [c.66]

Рассмотренные ранее процессы возникновения химической неоднородности характерны в основном для малых скоростей охлаждения или применительно к сварке для мягких режимов. Скорости охлаждения кристаллизующегося металла шва при сварке с большими погонными энергиями q/v обусловливают достаточно интенсивное протекание диффузионных процессов, что приводит к выравниванию состава и снижает внутрикристал-лическую ликвацию (рис. 12.32). При увеличении скорости охлаждения диффузионные процессы пройти не успевают и степень внутрикристаллической ликвации Сл увеличивается вплоть до максимума при значении Wi. Дальнейшее увеличение скорости охлаждения (шз), естественно, еще более подавляет диффузионные процессы, однако степень внутрикристаллической ликвации уменьшается в связи с изменением самого характера кристаллизации, приближением его к бездиффузионному процессу.  [c.466]

При высоких (закалочных) скоростях охлаждения и степенях переохлаждения в некоторых сплавах типа твердых растворов замещения (алюминиевых, медных, никелевых и др.) образуются особого рода метастабильные фазы, представляющие собой локальные зоны с повышенной концентрацией легирующего элемента. Из-за различия в атомных диаметрах металла-растворителя и легирующего элемента скопление последнего вызывает местное изменение межплоскостных расстояний. Эти зоны называют зонами Гинье — Престона (ГП). Учитывая, что тип решетки не изменяется, зоны ГП часто называют предвыделениями . Они имеют форму тонких пластин или дисков и размеры порядка мкм. Границы их раздела полностью когерентны, поэтому поверхностная энергия зон пренебрежимо мала. У зон малого размера энергия упругих искажений решетки также мала, поэтому энергетический барьер для их зарождения весьма невелик. Зоны ГП зарождаются гомогенно на концентрационных флуктуациях. Особенность образования зон ГП — быстрота и безынкубационность их возникновения даже при комнатной и отрицательной температурах. Это обусловлено повышенной диффузионной подвижностью легирующих элементов, которая связывается с пересыщением сплава вакансиями при закалке.  [c.498]

Физическая природа возникновения АЭ в материале при его пластическом деформировании и разрушении, очевидно, связана с микропроцессами необратимого деформирования и разрушения материалов. Приложенная нагрузка приводит к возникновению в материале конструкции полей напряжений и деформаций, за счет энергии которых зарождаются и развиваются дефекты, приводящие в конечном итоге к разупрочнению материала. Зарождение, перемещение, рост дефек1 ов, а также их исчезновение сопровождаются изменением напря-женно-деформированного состояния и перестроением микроструктуры материала. При этом в материале перераспределяется внутренняя энергия, что приводит к возникновению АЭ. В металлах возникновение АЭ связано с образованием и движение дислокаций, зарождением и развитием трещин, с фазе-  [c.255]


Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения — результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента — результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.  [c.293]

Взаимодействие света с металлом приводит к возникновению вынужденных колебаний свободных электронов, находящихся внутри металлов. Такие колебания вызывают вторичные волны, приводящие к сильному отражению света от металлической поверхности и сравнительно слабой волне, идущей внут])ь металла. Чем больше электропроводность металлов, тем сильнее происходит отражение света от нх поверхности. В идеальном проводнике, для которого а -> оо, поглощение полностью отсутствует н весь падающий на его поверхность свет отражается. Поэтому заметный слой металла является непрозрачным для видимого света. Сильное поглощение проникающей внутрь металла световой волны обусловлено превращением энергии волны в джоулево тепло благодаря взаимодействию почти свободных электро1Юв, испытываюидих вынужденные колебания под действием световой волны.  [c.61]

Прежде чем объяснить возникновение хара1стеристических рентгеновских лучей, определим, исходя из постулата Бора, полную энергию водородоподобного атома (иона, имеющего единственный  [c.159]

Ячейки Керра применяются и в лазерной технике при генерации гигантских импульсов . Для этой цели затвор Керра помещается между одним из зеркал резонатора и торцом рубина. При включении ячейки Керра самовозбуждение затрудняется, что приводит к увеличению разности заселенности уровней (т. е. возбужденных атомов), необходимых для возникновения генерации. Затем, выключив ячейку Керра, можно получить мощ1юе излучеиие — гигантские импульсы . Например, используя ячейку Керра, можно заставить вьтсветиться импульс света с энергией К) Дж, генерируемый в твердотельном лазере за время порядка 10 с при этом высвечивается мощность 10 Вт = 1 ГВт.  [c.292]


Смотреть страницы где упоминается термин Возникновение энергий : [c.49]    [c.232]    [c.255]    [c.45]    [c.22]    [c.17]    [c.191]    [c.185]    [c.195]    [c.50]    [c.104]    [c.185]    [c.83]    [c.472]   
Смотреть главы в:

Физическая природа разрушения  -> Возникновение энергий



ПОИСК



267 — Составляющие линейные и угловые 267 — Энергия возникновения

Отталкивание атомов водорода, как причина возникновения потенциальных барьеров, препятствующих свободному внутреннему вращению Отталкивание" уровней энергии нулевого



© 2025 Mash-xxl.info Реклама на сайте