Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура условия надежности

Метод расчета по предельным состояниям совершеннее метода расчета по допускаемой нагрузке, ибо он позволяет правильнее учесть многие обстоятельства, такие, как неодинаковость ожидаемой вариации различных видов нагрузки, неодинаковость ожидаемой вариации свойств различных материалов. Эта большая совершенность метода выражается не только в возможности более обоснованного выбора численных значении отдельных коэффициентов, нежели выбор общего коэффициента запаса в расчете по допускаемой нагрузке, но ив более правильной в принципиальном смысле структуре условия надежности. Коэффициенты в условии (3.39) расположены так, что при невыполнении (3.42) невозможно получить из (3.39) неравенство, аналогичное по структуре условию (3.41). Позднее будет показано, что в ряде случаев наиневыгоднейшей является такая комбинация нагрузок, при которой некоторые нагрузки не достигают своего максимума. Это обстоятельство также поддается учету при расчете конструкции по предельным состояниям. При указанном расчленении общего коэффициента запаса мыслим научный подход к установлению величины отдельных коэффициентов, в то время как величина общего коэффициента запаса в расчете по допускаемым нагрузкам или по допускаемым напряжениям назначается ощупью, лишь с учетом опыта эксплуатации.  [c.213]


Показатель надежности системы Л зависит от структуры, условий функционирования системы, показателей надежности ее элементов (оборудования).  [c.392]

Необходимо указать на следующие основные группы факторов, изменения которых диктуют и определяют направления НТП в сфере ТО и ремонта конструкция автомобилей и структура парка надежность транспортных средств условия эксплуатации автомобилей ресурсные ограничения воздействие на окружающую среду.  [c.381]

Надежность работы системы зависит от многих условий правильности структуры системы, надежности каждого элемента, входящего в эту систему, и влияния на ее работу различных внешних факторов. Важнейшими из этих факторов являются изменение напряжения источников питания, изменение сопротивления обмотки реле и электромагнитов вследствие нагрева током, влияние температуры и влажности окружающей среды, влияние вибраций станка. Поэтому,, какой бы надежной и стабильной ни была система, полностью исключить случайности в ее работе невозможно.  [c.79]

Отпуск стали является заключительной операцией термообработки, выполняемой после закалки. Его основной целью является трансформирование полученного в результате закалки мартенсит в структуру, обладающую оптимальным комплексом вязкостно-прочностных свойств, способных обеспечить надежную и долговечную работу изделия в заданных условиях эксплуатации.  [c.36]

Полученные зависимости позволяют при знании физических законов изнашивания или других законов старениях учетом возможных вариаций исходных показателей работоспособности и условий эксплуатации прогнозировать потерю работоспособности изделия и определять основные показатели надежности, так как в структуру формул входят исходные данные, не зависящие от времени.  [c.138]

Другая особенность работы сложных систем заключается в следующем. Предположим, что надежность всех элементов системы обеспечена, т, е. все их параметры находятся в пределах, установленных ТУ и их безотказность Р (О — Означает ли это, что и вся система будет работоспособна Обычно считают, что да. Однако это верно лишь для расчлененных структур. Как правило, безотказность работы элементов — необходимое, но не достаточное условие для безотказной работы всей системы.  [c.181]

Технические условия на изделия, как правило, не регламентируют значений основных параметров поверхностного слоя и часто ограничиваются указанием шероховатости поверхности и ее микротвердости. Не всегда учитываются также последовательность и структура операций, режимы обработки, различные методы обработки, которые выбираются в основном из условия получения высокой производительности. В результате различные технологические процессы приводят к изготовлению деталей разного уровня надежности, как можно видеть на примере турбинных лопаток, прецизионных шпинделей, сложных корпусов и Других ответственных деталей.  [c.436]


На структуру ремонтного цикла могут накладывать отпечаток конструктивные особенности машин, специфические условия их ремонта и эксплуатации, требования надежности.  [c.540]

Однако положительные факторы роста (концентрация потоков, увеличение диаметров трубопроводов и мощности перекачивающих агрегатов) теперь оказываются в значительной мере исчерпанными. Переход к освоению средних по запасам месторождений, падение добычи в освоенных районах уже оказывают и будут оказывать в будущем неблагоприятное воздействие на общие показатели подотрасли транспорта. В этих условиях главные направления повышения эффективности связаны с совершенствованием структуры мощностей, с гибкой адаптацией к изменениям в размещении нефтедобычи, с улучшением эксплуатационных свойств системы, и прежде всего надежности ее функционирования.  [c.185]

Наличие связей — основной признак системы, что отличает ее от конгломерата (набора) элементов. Однако для обеспечения целей системы нет необходимости всегда учитывать все элементы и связи. Например, при установлении надежности системы машина в некоторых условиях внешней среды (условиях эксплуатации) можно ограничиться определением показателей надежности ее деталей и узлов и установлением связей между наработками этих элементов, не рассматривая таких элементов системы, как кристаллографическая структура материалов этих деталей и узлов. В то же время, если цель исследования состоит в определении физических основ отказов, учитывать структуру материалов необходимо.  [c.9]

Надежность работы стали в условиях повышенных температур и сложного напряженного состояния определяется прежде всего вероятностью хрупкого разрушения. Поэтому важно изучить связь характеристик сопротивления хрупкому разрушению со структурой и составом стали.  [c.203]

С помощью такой методики повышается надежность испытаний на предельную пластичность, так как исследование проводится на одном образце и исключается погрешность, вносимая неоднородностью структуры металла, условиями нагрева и другими параметрами испытаний.  [c.20]

Исследуя надежность на уровнях развития, приходится, во-первых, рассматривать более длительные периоды времени предстоящего функционирования системы, в течение которых заметно изменяется сама система (ее конфигурация, структура, параметры), а во-вторых, иметь дело с существенно менее определенной информацией по предстоящим условиям развития и функционирования системы. Кроме того, время, отводимое для выработки решений, здесь не является основным лимитирующим фактором.  [c.141]

Математические модели, предназначенные для решения задач надежности СЭ, должны обеспечивать возможность их сопряжения для получения необходимой цепи взаимосвязанных результатов и решений. В то же время по мере лучшего понимания содержания задачи уточняются исходные данные, включая более полное представление о самой системе, меняются целевые критерии и уточняются представления о перспективах развития или условиях функционирования системы, появляются новые методы и средства чисто математического исследования. Все это приводит к необходимости вводить в математическую модель определенные коррективы, заменять одни расчетные блоки другими. Такое развитие математической модели должно происходить по возможности безболезненно, чтобы ее корректировка не сводилась каждый раз к созданию модели заново. Таким образом, структура комплексной математической модели, возможность безболезненной замены одних расчетных блоков другими и введения новых блоков, простота организации новых связей между блоками существующей комплексной математической модели, возможность расширения номенклатуры входных и выходных характеристик отдельных блоков без нарушения работы всей модели -все это является необходимыми требованиями к математическим моделям, используемым для исследования надежности СЭ.  [c.146]

Нормирование средств обеспечения надежности, как отмечено в 7.1, опирается на те же три пути, что и нормирование ПН. Общие соображения об использовании каждого из этих путей при нормировании ПН, рассмотренные в 7.2, в значительной степени применимы и при нормировании конструкции системы, уровней избыточности, структуры и параметров средств автоматического управления, условий эксплуатации системы (техническое обслуживание оборудования и аппаратуры, повышение качества работы эксплуатационного персонала).  [c.391]


Поскольку показатель надежности системы в целом Я зависит от показателей надежности ее элементов Л,-,/ = 1, п, а надежность каждого элемента можно повышать дискретно (например, путем внутреннего резервирования, изменения конструкции, структуры и т.п.) и, кроме того, различными для разных элементов способами, условие (7.2) не носит конструктивного характера. Для определения оптимального уровня надежности системы лучше использовать какую-нибудь процедуру целочисленной оптимизации. Заметим, что обычно на-  [c.392]

Рассмотренные как для первого, так и для второго случая постановки задач опираются на экономические оценки. Как и для других объектов нормирования, здесь также возможно использование экспериментальных исследовательских расчетов и прошлого опыта. Одним из вариантов использования прошлого опыта является задание требований к надежности элементов по прототипу. Такое задание основывается на анализе имеющейся статистической информации по надежности уже существующего оборудования (аппаратуры), близкого к рассматриваемому по значению, структуре или элементной базе. Требования по надежности в этом случае задаются с учетом возможного роста надежности элементной базы оборудования, изменения параметров по сравнению с прототипом, условий функционирования и т.п. Такой прогноз в значительной степени также опирается на экспертные оценки, однако подтверждается определенными фактическими данными.  [c.395]

В зависимости от назначения, особенностей конструкции и условий эксплуатации линии структура потоков, характеризующих ее надежность, может быть различной. Потоки отказов механизмов станочной линии являются простейшими, так как они ординарны, стационарны и не имеют последействия. Поясним эти понятия.  [c.252]

Разработка, создание и использование новых средств экспериментального исследования материалов и конструкций. Решение проблемы обеспечения надежности и ресурса изделий машиностроения, как уже отмечалось, в известной мере определяется уровнем разработки методов и средств экспериментальной оценки действительной нагруженности конструкций, напряженно-деформированных и вибрационных состояний, параметров структуры материалов, характеристик прочности и трещиностойкости, динамических характеристик прочности, трещиностойкости и тела человека—оператора машины при вибрационных и других воздействиях. Это обусловлено необходимостью повышения объема экспериментальной информации с возрастанием вероятности безотказной работы, которую необходимо обеспечить при создании ответственных конструкций. Полученная информация является весьма ценной для оценки завершенности экспериментальной отработки машин и конструкций при проведении лабораторных и натурных испытаний, а также для определения влияния условий эксплуатации на изделия и установления остаточного ресурса конструкций.  [c.28]

Анализ и оптимизация капиллярной структуры. Криогенные ТТ при хранении или эксплуатации могут находиться при температурах выше критической (в термодинамическом смысле), что приводит к сверхвысокому давлению пара. Такие условия в криогенных ТТ резко снижают надежность их конструкций, а в ряде случаев могут приводить к гидравлическому взрыву. Мерами по обеспечению надежности являются повышение толщины стенки и введение дополнительного резервуара для увеличения удельного объема паров в тепловой трубе при сверхкритических температурах. Первая характеризуется ростом термического сопротивления и снижением эффективности теплопередачи. Вторая будет сопровождаться интенсификацией теплопритоков к ТТ вследствие того, что для предотвращения перекачки теплоносителя в резервуар его необходимо поместить в среду с более высокой температурой, чем температура конденсатора. Кроме того, в ряде практических систем, где эксплуатируется криогенная тепловая труба, не имеется среды с такой температурой.  [c.18]

Структура условия надежности, принятая в расчете по предельному состоянию, позволяет осуществить учет такнх обстоятельств, как улучшение технологии материала, например бетона (такое улучшение позволяет повышать коэффициент приближая его к единице), и т. п. Назначение величины коэффициентов производится путем применения методов математической статистики.  [c.213]

При этом для материалов, отличающихся высокой степенью неоднородности структуры, преимущественное значение при оценке надежности будет иметь коэффициент однородности материала изделия. К числу таких материалов можно отнести орто-тропные стеклопластики, у которых степень неоднородности и стабильность физико-механических свойств материала обусловлена нарушениями ориентации стеклонаполнителя по отношению к основным конструктивным направлениям изделия (например, осевое и тангенциальное направление в цилиндрической оболочке), неравномерным распределением связующего и стеклонаполнителя в массиве изделия, различными дефектами (пористостью, недоотвержденностью стеклопластика, складками и т. д.). Поэтому решение, которое удовлетворит условие (3.16), можно получить, используя характеристики изменчивости значений предельного сопротивления материала изделия по отношению к значению действующего напряжения при котором наступает предельное состояние, т. е. условие надежности можно записать в виде X — (од. — Од) > О, тогда надежность изделия определится вероятностью этого условия а = Р (х > 0).  [c.106]

Обеспечение нормальной работы узла трения обычно достигается путем введения смазки, разделяющей рабочие поверхности, скользящие одна относительно другой. Благодаря этому, трение переносится в глубь смазочного слоя и определяется вязкостью смазки. Однако при необходимости эксплуатации механизмов в условиях высоких температур и вакуума применение имеющихся смазок становится невозможным вследствие их окисляемости и испарения. В результате работа узла происходит, по существу, в условиях сухого трения. В таких условиях надежно при достаточно низком коэффициенте трения и малом износе могут работать лишь немногие материалы. Одним из таких материалов является графит. В настоящее время имеется значительное число антифрикционных марок графита, созданных за рубежом и в нашей стране. Создание и изучение трения антифрикционных марок графита производится в Институте машиноведения в Москве и других организациях. В результате многочисленных работ установлено, что низкий коэффициент трения графита является следствием его пластинчатой структуры. Под воздействием касательных напряжений на поверхности графита образуется ориентированный слой, состоящий из чещуек, расположенных параллельно одна другой. Эти чешуйки расположены таким образом, что нормаль к их поверхности наклонена под углом 5—10° навстречу движению контртела. При изменении направления движения происходит довольно быстрая переориентация, сопровождающаяся некоторым повышением коэффициента трения. При работе пары металл—графит поверхность металла быстро покрывается слоем графита и в дальнейшем, по сути дела, происходит трение между двумя графитовыми поверхностями. Такого взгляда на механизм трения графита придерживаются исследователи в разных странах.  [c.370]


Что касается волноводов, то здесь отлично себя зарекомендовали структуры Si/SiOj, имеющие разницу в величинах коэффициентов преломления составляющих компонентов, Ли = 2, что обеспечивает условия надежного оптического ограничения. В таком волноводе свет распространяется по тонкому слою монокристаллического кремния, который прозрачен для излучения с длиной волны = 1,3...1,55 мкм. Для изготовления волноводной композиции используется метод прямого соединения пластин в сочетании со Smart- ub-процессом. Данная волноводная структура обеспечивает надежную связь (с минимальными оптическими потерями) с излучателем и фотоприемником и удовлетворяет требованиям, предъявляемым к микроволноводным композициям для монолитных оптоэлектронных устройств [29].  [c.100]

Условия надежной работы системы маслосиабжения турбоагрегата определяются рядом факторов. К ним следует отнести уровень проектно-конструкторских решений, качество изготовления и монтажа, уровень эксплуатации, структуру и качество планово-предупредительных ревизий и ремонтов.  [c.118]

Несмотря на определенное восполнение наших знаний о флюидных дисперсных потоках, последние нуждаются в специальных и всесторонних исследованиях. В первую очередь важно детально выяснить качественные изменения в структуре системы. Здесь при повышенных концентрациях необходимо в новых условиях вернуться к проблеме возможного вырождения турбулентности несущей среды, к задаче о распределении локальной и средней истинных концентраций, к необходимости оценить вид и значение критического и оптимального обобщающего критерия (включающего и соответствующие концеИтрации), к методам расчета аэродинамического сопротивления и реологических свойств системы и пр. Иначе говоря, лишь знание гидромеханических свойств флюидных потоков позволит надежно и на основе достаточно общих закономерностей вести их расчет в качестве массо- и теплоносителей. Важность этих задач определяется тем, что именно здесь возможно 264  [c.264]

Наиболее эффективным и надежным способом интенсификации теплообмена при кипении является применение пористых металлических покрытий. При этом пористая структура образуется либо в результате покрытия поверхности трубы тонкими металлическими сетками, либо нанесением на нее металлического порошка определенной зернистости. При этом образуется пористый слой с разветвленной системой сообщающихся между собой капиллярных каналов, через которые происходят эвакуация пара и подпитка пористой структуры жидкостью, подтекающей сюда под действием сил поверхностного натяжения. Кипение происходит как внутри пористого покрытия, так и на его поверхности. Высокая ннтен-сивность теплообмена свидетельствует о том, что пористая структура создает весьма благоприятные условия для зарождения и роста паровых пузырей. Например, авторы работы [137] указывают, что при кипении н-бутана (р= 1,27-10 Па) на гладкой трубе образование паровых пузырей по всей ее поверхности наблюдалось только при = 35 кВт/м2, а дд трубе с пористым покрытием вся поверхность трубы была занята паровыми пузырями уже при 7=1,5 кВт/м . Эти и многие другие опыты показали, что устойчивое развитое кипение на поверхностях с пористыми покрытиями устанавливается при весьма незначительных температурных напорах (перегревах жидкости). Основной причиной этого является то, что в данном случае поверхности раздела фаз возникают внутри пористого слоя [54, 130, 146]. При выбросе паровой фазы из пористой структуры в последней всегда остаются паровые включения, в которые испаряется тонкая пленка жидкости, обволакивающая стенки капиллярных каналов [54, 130]. В соответствии с моделью автора [14G] испарение микропленки происходит по всей поверхности капиллярного канала, высота которого равна толщине пористого покрытия. Таким образом, элементы пористой структуры сами являются центрами зарождения паровой фазы. Так как диаметр капиллярных каналов (10- —10 м) больше критического диаметра обычного центра парообразования, то испарение пленки в паровые включения или с поверхности капилляра требует значительно меньшего перегрева жидкости. Не менее важное значение имеет и то, что в пористой структуре перегрев поступающей в капилляры жидкости происходит в условиях весьма высокой интенсивности теплообмена. Действительно, при таких малых диаметрах капилляров движение жидкости в них всегда ламинарное. В этом случае значение коэффициента теплоотдачи определяется из условия (ас ) Д = 3,65. При диаметре капилляров 10- —10 м значение а получается равным 5-103—5-Ю Вт/(м2-К). В условиях сильно развитой поверхности пористого слоя только за счет подогрева жидкости можно отводить от стенки весьма большие тепловые потоки. Снижение необходимого перегрева, а также интенсивный подогрев жидкости существенно уменьшают время молчания центров парообразования, что также способствует интенсификации теплообмена на трубах с пористыми структурами.  [c.219]

Вместе с тем технологические системы обладают и такими свойствами, которые облегчают задачу обеспечения высокой надеж ности технологического процесса. Это, во-первых, возможность изменять структуру системы и ее элементов — вводить дополнительный контроль, разбивать операции на ряд переходов, ужесточать требования к отдельным операциям, изменять режимы ра боты — что непосредственно отражается на надежности технологического Процесса, во-вторых технологические системы могут обладать свойством саморегулирования (адаптации) и при изменении условий, в которых протекает технологический процесс, автьматически или за счет целенаправленных действий людей изменять свои параметры, обеспечивая требуемый уровень надежности.  [c.441]

Указанная система уравнений решалась на ЭВМ методом Рун-ге—Кутта для случая равномерного вдува воздуха в нагретый воздушный поток, закрученный на входе. Результаты расчета одного из вариантов представлены на рис. 9.3 (линии — расчет, точки — эксперимент). Сравнение опьиных и расчетных данных позволяет заключить, что изложенный метод расчета позволяет получать надежные результаты. Не анализируя подробно структуру потока в условиях вдува (см. гл. 3), отметим следующее. Коэффициент трения при малых значениях Ке ,/ уменьшается по длине канала, что обусловлено снижением поверхностного трения вследствие вдува. При возрастании Кец,/Ёё згвеличение расхода газа в канале вследствие подвода дополнительной массы приводит к падению темпа уменынения с /2 и даже к его возрастанию в конце канала при Ке ,/ Ке = 0,01. Анализ интенсивности теплообмена подтверждает вывод о том, что пористое охлаждение позволяет существенно снизить тепловой поток в стенку канала в условиях закрутки потока. Зная изменение Ке , Ке и, Ф по длине канала, далее нетрудно (аналогично течению  [c.179]

В электроэнергетике капиталоемкость будет расти гораздо медленнее, чем в топливной промышленности, несмотря на значительное увеличение в структуре вводимых мош ностей доли атомных электростанций, стоимость которых выше стоимости станций на органическом топливе. Основными факторами, сдерживающ,ими удорожание электроэнергетического строительства в ближайшие двадцать лет, станут дальнейшее укрупнение единичной мош ности основного и вспомогательного оборудования и станций в целом, ввод более дешевых маневренных электростанций, внедрение новых технологических решений, дальнейшая индустриализация и повышение производительности труда в строительстве станций и сетей. Однако в конце XX в. еш,е ош,утимее будет влияние факторов, повышающ,их капиталоемкость электроэнергетики усложнение условий выбора плош адок для крупных электростанций, продвижение энергетического строительства в северные районы, ужесточение норм выброса вредных веп ,еств в атмосферу, увеличение затрат в природоохранные мероприятия в обеспечение надежности и безопасности АЭС и т. д. На ускорении роста удельных капиталовложений может сказаться распространение в начале следуюш,его столетия реакторов-размножителей, а также гибридных термоядерных реакторов, которые, как ожидается, будут дороже обычных атомных станций.  [c.24]


Сравнение полученной кривой с кривой длительной прочности металла с феррито-карбидной структурой, построенной по результатам испытания образцов в лабораторных условиях (рис. 2.1, а, кривая 2) показывает их хорошую сопоставимость. Однако следует отметить значительный разброс точек, соответствующих разрушенным гибам. Для повышения надежности диагностики состояния металла гибов паропроводов и оценки их остаточного ресурса целесообразно дополнительно проводить анализ их поврежденности порами, используя для этого шкалу, приведенную в гл. 1.  [c.52]

Поскольку до сих пор отсутствует единая методика определения тонкой кристаллической структуры закаленной и отпущенной стали II1X-15 в чистом виде, для получения достаточно надежных данных о напряжениях II рода и размерах блоков когерентного рассеяния были применены различные методики, в том числе метод моментов второго порядка [7] и метод аппроксимации формы интерференционных линий от кристаллографических плоскостей (011) (101) — (НО) — (121) (211) — (112) мартенсита с учетом поправки ширины инструментальной ширины интерференционной линии на тетра-гональность решетки мартенсита, немонохроматичность рентгеновского излучения и геометрические условия рентгенографирования [6].  [c.177]

Раздел четвертый посвящен описанию различных моделей, которые могут быть использованы для расчета численных значений рассмотренных в разд. 2 показателей надежности различных СЭ и их оборудования. При описании моделей анализа надежности простых систем ( 4.2) выделены невосстанавливаемые и восстанавливаемые системы, а также системы с сетевой структурой и с временным резервировани ем. Эти модели применимы для случаев, когда режимные взаимодей ствия между элементами или подсистемами например, условия ус тойчивости параллельной работы электростанций в электроэнергети ческих системах, гидравлическое взаимодействие режимов в трубо проводных системах, изменения пропускной способности электропередачи или трубопроводов в зависимости от режимов работы сис-  [c.13]

Каскадные аварии в ЭЭС в большинстве случаев сопровождаются нарушениями устойчивости параллельной работы электростанций или отдельных частей системы по отношению друг к другу, а в ТПСУ -явлениями гидравлического удара. По мере развития СЭ - расширения охватываемой территории, повышения концентрации мощностей по производству (добыче, получению) и преобразованию (переработке) соответствующей продукции, повышения пропускной способности линий электропередачи и трубопроводов - наряду с общим повышением надежности систем (благодаря улучшению условий взаимопомощи частей системы) повышается вероятность каскадных аварий. С одной стороны, это связано с усложнением структуры и конфигурации СЭ при ухудшении в отдельных случаях параметров оборудования, определяющих его поведение при нестационарных процессах (например, электрических и электромеханических характеристик генерирующего оборудования ЭЭС при повышении его мощности и степени использования электротехнических материалов), повышением напряженности режимов при функционировании СЭ (вследствие ограниченности резервов и запасов различного рода), усложнением структуры и функций средств автоматического и автоматизированного управления СЭ, а с другой стороны, - с усилением режимной взаимозависимости частей системы, которая оказывается тем большей, чем выше пропускная способность линий электропередачи и трубопроводов [39,101 и др.].  [c.66]

Возрастающая на современном этапе роль ЭК страны, сложность его внутренней структуры и многочисленные связи с экономикой делают анализ условий развития этого комплекса сложнейшей народнохозяйственной задачей. Актуальность проблемы обеспечения надежности системы топливо- и энергоснабжения народного хозяйства обусловлена прежде всего следующими тенденциями развития ЭК, негативно влияющими на его надежность (см. введение) возрастанием цены отдельных аварий вследствие концентрации производственных мощностей повьшюнием опасности развития аварий в результате изменения динамических свойств систем энергетики повышением напряженности топливно-энергетического баланса в связи со снижением темпов роста производства основных видов энергоресурсов и резервных мощностей как следствием роста капиталоемкости добычи, транспорта, переработки и преобразования энергоресурсов и повышения напряженности топливно-энергетического баланса и т. д. Все это усложняет решение вопросов надежного обеспечения потребителей топливом и энергией, особенно в периоды остропиковых нагрузок, когда даже не очень серьезные аварийные ситуации могут привести к каскадному нарастанию отклонений от нормального режима функционирования энергоснабжающих систем.  [c.405]

В зависимости от того, как достоверно отражаются в физико-математической модели все детрадациоииые процессы, происходящие в структурах узлов и детален изделия, и насколько она достоверно отражает автомодельность этих процессов в различных условиях исиытаний, настолько достоверно оцениваются показатели надежности путем экстраполиро-ва1тя или форсирования режимов испытаний.  [c.123]

Такой вид трения называется избирательным переносом и используется там, где граничное трение недостаточно надежно или не обеспечивает долговечность машины [12]. Режим ИП характеризуется сложностью физико-химических процессов, что связано не только с многообразием внешних условий трения, но и с большим числом факторов, влияющих на ход этих процессов. К числу таких факторов, возбуждающих более сложные физикохимические явления на контакте при деформации и перемещении, следует отнести термодинамическую нестабильность смазки и металла давление и нагрев скорость перемещения, приводящую к столкновениям частиц на поверхностях трения каталитическое действие окисных пленок и самого металла на смазку трибоде-струкцию — разрыв молекул как гомеополярный, так и гетеро-полярный электризацию, способствующую притяжению частиц с разными зарядами и создающую двойной электрический слой образование различного рода дефектов в структуре металла де-поляризационный эффект трения в результате скольжения одной поверхности по другой, приводящий к снижению самопассивации вплоть до разрушения окисных пленок и ускорению коррозионных процессов эффект экзоэмиссии электронов, особенно при возвратно-поступательном движении.  [c.5]

Основные положения, рекомендуемые при проектировании транспортных систем АЛ. Предпочтительным является оснащение АЛ несинхронными транспортными системами, которые обладают гибкими связями и представляют поэтому проектантам большую свободу при поиске рациональной структуры АЛ, а также обеспечивают надежную работу АЛ, С целью упрощения транспортной системы, снижения ее стоимости необходимо там, где разрешают форма и масса детали, а также ее конструктивные особенности (склонность к деформации, параметры шероховатости поверхности и т. д.), применять элементы гравитационных систем. Площадь, выделяемая под АЛ, не должна вызывать необходимость изменения направления технологического потока, а значит и транспортной системы. Особое внимание должно быть уделено созданию межстаночных, меж-участковых, а также межлинейных (в системах АЛ) заделов деталей, влияющих на производительность АЛ. Желательно моделировать работу АЛ для оценки эффективности структурной схемы транспортной системы и всей АЛ. Предпочтительнее конструкция магазина без залеживания деталей , работающего в АЛ на режиме прием, выдача, прием и выдача одновременно или на проход . Транспортные и загрузочные устройства необходимо проектировать с обеспечением максимально возможной типизации и унификации особенно быстроизнашиваемых деталей, которые должны быть быстросменными в то же время они должны быть технологичными, не дорогими и иметь запас прочности количество ключей или другой оснастки, необходимых при сборке, обслуживании и ремонте, должно быть минимальным. Обслуживание транспортной системы желательно сосредоточить в определенных местах так, чтобы это не мешало работе налад Иков обслуживать ее необходимо по возможности вне рабочих смен. Особое внимание должно быть уделено условиям транс-  [c.320]

Одним из методов увеличения надежности снабжения является рассредоточение его источников. Основная масса японского импорта нефти поступала из Саудовской Аравии и Ирана, но значительный приоритет отдавался Ираку в связи с развитием с ним общих экономических связей. В 1973 г. начался импорт нефти из КНР, который в 1976 г. составил всего 4 млн. т, а па 1977 г. намечался в объеме 5,18—6,18 млн. т. Япония надеялась на расширение импорта из КНР со временем, по мере преодоления ряда технических и политических трудностей. Нефть из Дацина отличается низким содержанием серы (0,2%), но высокой вязкостью, что затрудняет ее переработку на японских НПЗ и требует смешения с другими нефтями. Поэтому по чисто техническим и коммерческим условиям промышленники Японии предпочитали бы не брать дацинскую нефть. В гипертрофированном развитии переработки и потребления нефти состоит одна из причин уязвимости экономики Японии. Все развитие ее перерабатывающей промышленности опиралось на дешевую нефть 50-х и 60-х годов. На нефть приходится примерно 70 % потребления первичных энергоресурсов, около 90 % топлива для производства электроэнергии, и 80 % этой электроэнергии потребляется в промышленном и коммерческом секторах — даже алюминиевая промышленность базируется на электроэнергии ТЭС на нефтетопливе, хотя повсеместно эта отрасль ориентируется на дешевую электроэнергию. Подобная экономическая структура болезненно реагирует на любое повышение цен на нефть, поскольку оно затрагивает каждый сектор экономики. Замена нефти практически возможна только импортом угля при высоких затратах на охрану среды либо импортом сжиженного метана при больших затратах на транспортирование и распределение, так что оба варианта имеют существенные недостатки. Единственным методом ослабления зависимости от импорта можно считать экономию энергии во всех направлениях, пока не будут достаточно освоены реакторы-размножители или ядерный синтез. Как видно, зависимость от импортной нефти еще долгое время будет характерной чертой экономики Японии.  [c.330]


С таким же положением дел приходится сталкиваться при изготовлении и эксплуатации многих современных технических систем. Вот почему так важно особое внимание уделить изучению того, что сейчас принято называть физикой надежности . Эта обширная область как раз и изучает изменение свойств материалов, их внутреннего строения в зависимости от нагрузок и тех условий, в которых им приходится работать, а также в зависимости от времени. Известно, что изделие изменяет свои свойства не только тогда, когда оно выполняет полезную работу, но и тогда, когда оно находится в хранении. На него воздействует атмосфера и разного рода находящиеся в ней агрессивные примеси, собственный вес и такой мощный фактор, как время. Со временем происходит изменение молекулярной и субмолекулярной структуры, а вместе с этим, изменение прочности, способности противостоять внешним нагрузкам. Именно с этим связан процесс старения. Какое влияние на работу технических систем — электронных и механических — оказывают микроскопические трещины Можно ли их терпеть в ответственных узлах, подобных крылу самолета А  [c.64]

Эти условия достаточно хорошо выполняются, если в коллоиде отсутствуют частицы с мицелярной структурой, а концентрация твердой фазы ограничена, например, пределами, указанными в параграфе 7-1. При этом, как показывает опыт, изучение спектральных характеристик светорассеяния позволяет получить надежные данные о спектре размеров частиц коллоида.  [c.234]


Смотреть страницы где упоминается термин Структура условия надежности : [c.50]    [c.262]    [c.8]    [c.360]    [c.7]    [c.44]    [c.187]    [c.56]    [c.294]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.213 ]



ПОИСК



Условие надежности



© 2025 Mash-xxl.info Реклама на сайте