Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование соединений

Синхронное моделирование на основе двузначного алфавита позволяет проверить схему на отсутствие грубых ошибок типа неправильных соединений элементов. Дополнительную информацию о наличии в схеме рисков сбоя получают при применении трех- и пятизначного алфавита.  [c.192]

Критерий завершения роста кластера Процесс имитационного моделирования роста частиц дисперсной фазы производится в соответствии с описанным выше гибридным DLA A-Me-ханизмом. Динамическое формирование при этом фрактальных кластеров назовем этапом структурирования. После этапа структурирования наступает этап химической трансформации углеводородной смеси, при котором происходит накопление парамагнитных соединений.  [c.170]


На рис. 394, а, б показано электрическое моделирование приведенных механических систем с последовательным и параллельным соединением упругих элементов соответственно по первой и второй системам аналогий. Для системы с последовательным соединением упругих элементов на последние действуют одинаковые силы, а их де рмации складываются, в то время как для системы с параллельным соединением упругих элементов последние получают одинаковые деформации, а приложенные к ним силы складываются.  [c.437]

При моделировании, использующем структурное подобие, на модели воспроизводится не весь процесс в целом, а отдельные операции, которые выполняют элементы модели. Проведение таких операций в определенной последовательности, достигаемой соответствующим соединением элементов структурной схемы, позволяет получить математическую модель структурного типа, составленную из вычислительных элементов непрерывного типа.  [c.16]

Развитие методов конформного отображения и применения электростатической аналогии, оптического моделирования позволило решить цикл новых задач о концентрации напряжений, о напряженности прессовых соединений, зубьев шестерен и ряд других для элементов машинных конструкций.  [c.39]

Структурное единство разнообразных технических объектов предопределило возможность разработки и применения единой методики динамического исследования и расчета различных механизмов привода металлорежущих станков (главный привод, привод подач, привод вспомогательных механизмов — транспортных, установочных, смены инструмента и т. д.). Суть этой методики состоит в том, что созданы типовые модели элементов, входящих в обобщенную структуру, и правила их соединения в общую систему. Кроме того, разработаны приемы обобщения частных результатов моделирования и построения на их основе закономерностей, характеризующих динамические свойства объектов рассматриваемого класса.  [c.95]

Наглядное представление о характере влияния параметров машинного агрегата с зазорами в соединениях на динамические процессы дают осциллограммы, полученные при моделировании си-Таблица 8 стемы уравнений движения на аналоговой вычислительной машине (АВМ).  [c.204]

Анализ результатов расчетов на ЭЦВМ и моделирование на АВМ показал, что характеристика муфты оказывает значительное влияние на неравномерность вращения рабочего органа в установившемся режиме периодического нагружения. При этом весьма эффективным средством уменьшения неравномерности вращения является применение муфты с ограничителями деформаций. В иных случаях неравномерность вращения рабочего органа в установившемся режиме не только не уменьшается за счет постановки муфты, а иногда и возрастает. Указанное можно объяснить отчасти уменьшением результирующей жесткости соединения при встройке муфты, отчасти — параметрическим возбуждением колебаний при переключениях муфты. Влияние переходных процессов в приводном двигателе на неравномерность хода машинного агрегата в значительной степени уменьшается при встройке муфты в соединение двигателя с рабочей машиной.  [c.232]


Одной из вал<ных задач является моделирование гистерезисных петель реальных деформируемых соединений, полученных экспериментальным путем (см. гл. IV).  [c.352]

В качестве следующей задачи рассмотрим моделирование на АВМ динамических процессов в машинном агрегате с зазорами в соединениях. Для определенности считаем, что зазор имеется в соединении между массами /, (рис. 47, в). Систему дифференциальных уравнений движения (15.9), (16.1), (16.2) запишем в относительных координатах  [c.357]

Рис. 104. Схемы моделирования динамических процессов машинного агрегата с зазором в соединении Рис. 104. <a href="/info/728312">Схемы моделирования</a> <a href="/info/385592">динамических процессов</a> <a href="/info/145">машинного агрегата</a> с зазором в соединении
На рис. 104, а показана схема моделирования дифференциальных уравнений движения машинного агрегата, схематизированного в виде двухмассовой системы с двигателем. Для воспроизведения характеристики соединения с зазором используется блок зона нечувствительности согласно рис, 104, а, который настраивается в зависимости от величины зазора. Зона нечувствительности располагается в рассматриваемом случае в области отрицательных напряжений. Блок, составленный из решающих усилителей 7—9, осуществляет дифференцирование обобщенной координаты.  [c.359]

Рассмотрим также схему моделирования на рис. 104, б, в которой задача моделирования динамических процессов в соединении с зазором решается путем использования трех блоков зоны нечувствительности , ограничения и умножения.  [c.359]

Блок ограничение , использующий диодные элементы, которые пропускают на него с усилителя 6 и его инвертора 7 только положительные напряжения, служит для воспроизведения зависимости где А — постоянная настраиваемая величина. Так как на блок ограничение подается напряжение только одного знака, то в цепи обратной связи имеется только один диод. Введение постоянного множителя А > 1 обусловлено известными сложностями установки и поддержания малых напряжений ограничения на потенциометре в цепи обратной связи блока. Повышенное значение коэффициента А удобно также ввиду того, что блок умножения дает на выходе величину произведения значений функций, деленную на сто. Коэффициент 0,01 должен быть скомпенсирован коэффициентами передач предшествующих блоков и следующих по схеме за блоком умножения. Коэффициенты передач и должны быть в 100/Л раз больше аналогичных коэффициентов в схеме моделирования системы с соединением без зазора.  [c.359]

Л е н с к и й А. Н. Электронное моделирование электромеханических систем с учетом упругости звеньев и зазоров в соединениях. — Изв. Вузов, Электромеханика, 1960, № 9, с. 11—20.  [c.364]

Моделирование условий возникновения очагов разрушения вследствие перекоса фланцевых элементов телескопического соединения осуществляли п)тем варьирования параметра, характеризующего смещение точки приложения силы Р = qa (см. рис. 3.8, а). При этом были реализованы два основных варианта нагружения с параметрами х =  [c.145]

Результаты моделирования полностью соответствуют теоретическим выводам. Так, при моделировании автоматической линии, состоящей из трех элементов (первые два параллельны, а третий соединен последовательно с ними) с плотностью вероятности отказа каждого X = 0,02 и плотностью вероятности восстановления [д, = = 0,05, были получены 10 реализаций. Моделировалась работа линии в течение 152 ООО ч, а коэффициент надежности снимался через каждые 8000 ч. Через 16 ООО ч коэффициент надежности для различных реализаций находился в пределах 0,535—0,555, а через 24 ООО в пределах 0,536—0,548, что дает уже хорошее приближение коэффициента, полученного усреднением 10 реализаций после 152 ООО часов и равного 0,540. Проводимые эксперименты позволяют надеяться получить более точные рекомендации для необходимого времени моделирования.  [c.134]


Возможно и дальнейшее упрощение модели поведения человека-оператора, если ограничиться рассмотрением процессов в системе лишь начиная с того момента, когда закончится адаптация человека-оператора к системе. В таких условиях удовлетворительным является моделирование поведения человека-оператора последовательным соединением трех динамических звеньев.  [c.359]

Рассмотрим моделирование на ЭЦВМ динамических процессов дискретной механической системы из двух упруго соединенных тел, одному из которых сообщается внешнее возмущение, а движение другого исследуется (см. рис. 104—105). Для качественного исследования недостаточно только выполнить численное интегрирование дифференциальных уравнений движения исследуемого тела при конкретном возмущении, необходимо также обработать результаты интегрирования для получения исчерпывающей информации о моделируемом процессе. Принципиальная схема моделирования приведена ниже  [c.351]

В методе фотоупругости для моделирования применяется эпоксидная смола ЭД-16, для химического строения которой характерно наличие активных эпоксидных групп )С—С(, соединенных с ди-  [c.271]

Подход к моделированию отдельных частей АЭС в зависимости от их внутренних свойств и особенностей (в свете рассматриваемой задачи) существенно различен. Наиболее просто моделируется низкопотенциальная часть паротурбинной установки АЭС, имеющая вполне определенную структуру и четко определенную последовательность соединения отдельных элементов оборудования и сооружений. В процессе оптимизации изменения будут касаться лишь размеров и мощности элементов или количества однотипных параллельно включенных элементов при сохранении взаимосвязей между элементами оборудования и сооружений АЭС. Здесь могут быть использованы обычные хорошо разработанные и апробированные методы математического моделирования теплоэнергетических установок [1,74].  [c.80]

С помощью имитационпого моделирования инженер, проектирующий систему, может подобрать удовлетворяющий его вариант, изменяя дисциплины обслуживания заявок, варьируя параметры обслуживающих аппаратов, их количество, способы соединения в систему.  [c.58]

Экспериментальные исследования сварочных деформаций и напряжений проводят на образцах, свариваемом объекте или его модели. Используя различные приемы моделирования, можно добиться воспроизведения процессов образования сварочных деформаций и напряжений на лабораторных образцах небольших размеров вместо реальных сварных конструкций. Правила масштабного моделирования основаны на подобии модели и натуры [4] предусматривается изготовление модели из того же металла, что и исследуемый объект, обеспечиваются подобия геометрических параметров сварного соединения, режимов сварки, температурных полей, деформаций и перемещений модели и натуры. Этими условиями можно пользоваться для моделирования напряжений и деформаций при однопроходной и многослойной сварке, а также для моделирования сварочных деформаций и перемещений, возникающих в процессе электрошлаковой сварки прямолинейных и кольцевых швов.  [c.419]

На первом этапе исследований были установлены экспериментально некоторые закономерности механического поведения рассматриваемых соединений. Для этих целей исползова1и моделирующие образцы, выполненные пайкой. В качестве металла мягких прослоек при моделировании сварных соединений использовали свинец С-1, в качестве основного металла — сталь Ст. 3. Большое различие в механических характеристиках металлов М иТ (А ц - а /а =25) обеспечивало при де< )ормировании данных образцов условия полной реализации контактного упрочнения мягких прослоек (основной металл не вовлекался в пластическую деформацию), которые отвечают расчетной схеме при анализе и полу чении соотношений по Л .  [c.132]

Имеются специальные программы для анализа электромагнитной совместимости компонентов в конструктивах радиоэлектронной аппаратуры. Например, программы семейства Omega PLUS служат для определения формы сигналов в конструкциях с печатными платами, кабельными соединениями, микрополосковыми линиями и для расчета задержек с учетом паразитных емкостей и индуктивностей. Программа Em S an этого семейства предназначена для моделирования электромагнитного излучения печатных  [c.146]

В установке ИМАШ-11 использован принцип регулирования температуры на поверхности образца изменением расстояния между образцом и нагревателем. Принципиальная схема устройства для моделирования режимов нагрева показана на рис. 94. Исследуемый образец листового материала 1 установлен горизонтально на неподвижных опорах 2, подлежащий нагреву участок образца ограничен экраном 3 из полированной нержавеющей стали. На нагреваемой и противоположной ей поверхностях образца температура контролируется хромель-алюмелевыми термопарами 4 h. 5. Образец находится в открытой сверху камере 6 прямоугольной формы, в нижнюю часть которой через штуцер подводится инертный газ. При нагреве образца на воздухе происходит возгорание связующего (если температура поверхности образца выше температуры воспламенения связующего). Опыты с нагревом стеклопластиков в защитной атмосфере азота показали некоторое увеличение прочности при уменьшении термоокислительной деструкции связующего [77]. Однако есть основания предполагать, что при нагреве могут образоваться химические соединения азота с компонентами связующего вплоть до образования цианистых соединений. Поэтому для пблной безопасности работы на установке в качестве защитной среды используется аргон.  [c.176]

Хорошо разработанные методы строительной механики для определения статических усилий, возникающих в упругих системах маншн, узлов и конструкций, потребовали во мнорих случаях экспериментального определения для машиностроения коэффициентов соответствующих уравнений, а также учета изменяемости условий совместности перемещений по мере изменения форм контактирующих поверхностей вследствие износа иди других явлений, нарастающих во времени. При относительно высокой жесткости таких деталей, как многоопорные коленчатые валы, зубья шестерен, хвостовики елочных турбинных замков, шлицевые и болтовые соединения, для раскрытия статической неопределимости были разработаны методы, основывающиеся на моделировании при определении в упругой и неупругой области коэффициентов уравнений, способа сил или перемещений, на учете изменяемости во времени условий сопряжения, а также применения средств вычислительной техники для улучшения распределения жесткостей и допусков на геометрические отклонения. Применительно к упругим системам металлоконструкций автомобилей, вагонов, сельскохозяйственных и строительных машин были разработаны методы расчета систем из стержней тонкостенного профиля, отражающие особенности их деформирования. Это способствовало повышению жесткости и прочности этих металлоконструкций в сочетании с уменьшением веса.  [c.38]


Во второй главе обсуждаются принципы построения алгоритмов исследования надежности систем методом статистического моделирования на УЦВМ. Дана общая характеристика алгоритмов оценки надежности двух классов представления систем и особенности записи алгоритмов с помощью АЛГОЛ-60. Приведены алгоритмы формирования последовательностей случайных чисел, алгоритмы расчета количественных характеристик надежности систем, работающих до первого отказа, и восстанавливаемых систем. Рассмотрены конструкции алгоритмов исследования надежности условных систем при последовательном, параллельном и смешанном соединении элементов и алгоритмов исследования надежности безусловных систем. В конце главы описан алгоритм расчета надежности систем с учетом ухода основных параметров за допустимые пределы.  [c.9]

Осуществлена алгоритмизация моделирования динамики группы последовательно соединенных передаточных механизмов. Дииамическая модель составляется из блоков. Каждый блок содержит преобразующий механизм. Путем унификации алгоритма представлена проблемно-ориентированная программа исследования произвольной группы механизмов.  [c.194]

Существенное значение для экспериментального анализа местных температурных напряжений имела разработка методов моделирования термоупругих напряжений (в частности, метода замораживания для плоских и объемных моделей). Это позволило установить (при заданных полях температур) распределе1ше температурных напряжений в зонах сопряжений оболочек и днищ, в элементах фланцевых соединений, в перфорированных крыщках, в прямых и наклонных патрубках, в зонах стыка элементов из материалов с различными коэффициентами линейного расширения (рис. 2.4). Весьма важная информация о номинальных и местных деформациях и напряжениях, а также о перемещениях получается при использовании хрупких тензочувствительных покрытий и голографии [11].  [c.32]

Наиболее точный и естественный подход к исследованию патрубковых зон сосудов давления при всем многообразии условий их нагружения заключается в непосредственном использовании трехмерных расчетных схем, принимая во внимание реальные геометрию сосуда, давления, краевые условия и распределение нагрузок. Такой подход оказывается единственно возможным для адекватного моделирования поведения сосудов давления с отношениями 1/4 сравнительного анализа с предьщущей схемой. Его практическая реализация возможна, как, впрочем, и для осесимметричных схем, лишь с использованием численных методов, ориентированных на применение современных ЭВМ. Наиболее универсальным и эффективным для решения подобных задач оказьшается, как это было отмечено вьпие, метод конечных элементов. Вместе с тем использование МКЭ гщя решения трехмерных задач все еще остается проблематичным, особенно для задач нелинейного деформирования конструкций, когда кривая вычислительных трудностей и необходимого машинного времени поднимается, образно говоря, круче кривых напряжения в зоне концентрации сосудов с патрубками.  [c.122]

Предложен способ моделирования прямолинейной трещины в расчетной схеме метода конечных элементов. Показан порядок нумерации узлов при разбиении тела с трещиной на конечные злмвентн. Разработан алгоритм и составлена программа преобразования матрицы жесткости по соединению отдельных частей тела в неразрушив-шихся узлах.  [c.133]

К числу еще назавершенных, но обнадеживающих исследований можно отнести работы аспиранта А. Н. Маника по геометрическому моделированию структуры молекул органических соединений, которые представляют собой тетраэдральные цепи углеродных атомов. Удалось геометрически показать, в частности, природу винтовой структуры молекул ДНК, что пока было известно лишь из снимков ДНК на электронном микроскопе.  [c.115]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]

В настоящей монографии рассматриваются вопросы малоцик-ювой прочности элементов конструкций различных типов оборудования, которым в процессе эксплуатации в наиболее значительной степени присущи эффекты малоцикловой усталости. В области энергетического машиностроения для элементов конструкций типа корпусов атомных реакторов, трубопроводов, элементов активной зоны, корпусов и роторов турбин, элементов разъемных соединений, теплообменных аппаратов, герметизирующих и компенсирующих элементов актуальны вопросы кинетических закономерностей деформирования и перехода к предельным состояниям. Для этих конструкций важны вопросы моделирования эксплуатационных режимов по частотам, температурам и временам, разработка унифицированных методов расчета на прочность и долговечность при циклическом, длительном циклическом и термоциклическом нагружениях, учет специфики условий нагружения.  [c.4]

Для моделирования процесса передачи тепла в дисперсных средах по схеме замещения составим для каждой фазы дисперсной среды электрическую день из последовательно соединенных ячеек сопротивлений и емкостей. Отдельные электрические цепочки соединяем по узло1вьш точкам через омические со1противления (рис. 7-11).  [c.294]


Смотреть страницы где упоминается термин Моделирование соединений : [c.115]    [c.104]    [c.105]    [c.109]    [c.103]    [c.127]    [c.144]    [c.147]    [c.173]    [c.40]    [c.31]    [c.142]    [c.246]    [c.139]    [c.282]   
Система проектирования печатных плат Protel (2003) -- [ c.209 ]



ПОИСК



Моделирование прочностных свойств сварных соединений

Создание списка соединений и запуск процесса моделирования



© 2025 Mash-xxl.info Реклама на сайте