Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точки рабочие, анализ

Кроме того, вывод о порядке уравнений первых и вторых составляющих процессов получен путем анализа большого числа переходных процессов, который сводился к оценке величин ошибок и проводился не только для тех точек рабочей области, которые расположены вблизи верхней и правой границ, но и вообще для всех точек рабочей области, в том числе и для точек разделительной кривой.  [c.83]

Подробный анализ ошибок приближенного разложения процессов для различных точек рабочей области (см. рис. 11.40, а) здесь не рассматривается. В качестве примера на рис. 11.43, а, б показаны переходные процессы, соответствующие нулевым начальным условиям для ряда точек на границах, а также для некоторых точек, расположенных внутри рабочей области. Штриховые кривые соответствуют полному описанию процессов по выходной кривой X, а сплошные — использованию приближенного разложения процессов на отдельные составляющие.  [c.84]


В качестве разделительного уравнения, выделяющего первые и вторые рабочие подобласти, было использовано соотношение (11.44), применение которого для систем третьего и четвертого порядков уже было обосновано. Анализ переходных процессов для систем пятого порядка тоже подтвердил целесообразность использования этого соотношения. Одновременно этот анализ, который проводился так же, как и для систем третьего и четвертого порядков, показал, что приближенное разложение процессов на простейшие составляющие с допустимыми ошибками возможно для всех точек рабочих областей. В качестве примера, как выше указывалось, на рис. 11.53 и 11.54 для конкретного сочетания значений коэффициентов А и Ад показаны процессы для ряда точек, расположенных внутри и на границе рабочей области. Исправление ошибок для точек рабочих областей, где ошибки весьма значительны, может быть осуществлено по тому же приему, как и для систем третьего и четвертого порядков. Сплошные, штриховые и штрих-пунктирные кривые на рис. 11.53 и 11.54 имеют такой же смысл, как и на предыдущих аналогичных рисунках.  [c.99]

Заканчивая рассмотрение циклов газотурбинных установок, следует вновь обратить внимание на то, что анализ эффективности этих установок проводился в предположении об обратимости циклов, а также на то, что рабочим телом был принят идеальный газ, теплоемкость которого не зависит от температуры. При рассмотрении реальных газотурбинных установок, так же как и при рассмотрении поршневых двигателей внутреннего сгорания, анализ циклов следует вести с учетом потерь из-за необратимости, в частности путем введения относительных внутренних к. п. д. установки.  [c.346]

Выхлопной полостью назовем полость, соединенную с атмосферой, причем давление воздуха в этой полости оказывает противодействие перемещению поршня. Одна и та же полость привода в различные моменты времени может быть то рабочей, то выхлопной, например, при прямом и обратном ходе. Однако такое деление полостей удобно для анализа работы привода и его расчета.  [c.42]

Анализ экспериментальных данных. На рис. 29 представле-Кы графики нестационарных температур точек рабочей поверхности плиты пресса № 10707/Р5 во время производственного процесса. Наибольший перепад температуры достигает 30° С (точки 3 ч 11). Расположение точек на рабочей поверхности показано на рис. 30. Температурное поле измерялось во второй половине смены, т. е. после длительного прогрева пресса.  [c.88]

Однако чаще участвующие в жидкостной экстракции ф 1зы обладают частичной взаимной растворимостью. Поэтому количества потоков по высоте экстрактора будут изменяться, а значит отношение L/G в уравнении (15.9) не будет постоянным. Тогда очевидно, что на диаграмме у — х рабочая линия будет криволинейной. Поскольку в этом случае система является как минимум трехкомпонентной, то для анализа таких систем целесообразно воспользоваться треугольной диаграммой для построения не только равновесных, но и рабочих концентрационных зависимостей.  [c.150]


Кроме автоколебаний (низкочастотных или акустических), связанных с работой системы регулирования, с рабочим процессом в камере сгорания и газогенераторе, возможна потеря устойчивости ЖРД в целом, при которой в колебательный контур, теряющий устойчивость, входят ряд агрегатов и частей ЖРД ТНА, газогенератор, соединяющие их трубопроводы и т. д. В формировании автоколебаний в контуре, теряющем устойчивость, определяющую роль играют процессы образования и распространения энтропийных волн по газовому тракту, а также крутильные колебания вала ТНА. Так как диапазон частот этих автоколебаний находится в области собственных и акустических (продольных) частот газовых и гидравлических трактов ЖРД, то при анализе устойчивости ЖРД все названные его агрегаты и части необходимо рассматривать как элементы с распределенными параметрами. Сами автоколебания условно будем называть колебаниями промежуточных частот . В данный термин вкладывается только тот смысл, что частоты этих колебаний больше частот обычных низкочастотных колебаний, связанных рабочим процессом в камере сгорания или газогенераторе с работой системы регулирования или с кавитацией в насосах, и ниже частот высокочастотных акустических колебаний в камере сгорания.  [c.262]

При исследовании идеальных термодинамических циклов поршневых двигателей внутреннего сгорания обычно определяют количество подведенной и отведенной теплоты, основные параметры состояния рабочего тела в типичных точках цикла, причем температуры в промежуточных точках вычисляют как функции начальной температуры газа вычисляют термический к. п. д, цикла по основным характеристикам и производят анализ термического к. п. д.  [c.260]

Анализ такого цикла с точки зрения теории тепловых процессов невозможен, а поэтому термодинамика исследует не реальные процессы двигателей внутреннего сгорания, а идеальные, обратимые циклы. В качестве рабочего тела принимают идеальный газ с постоянной теплоемкостью. Цилиндр заполнен постоянным количеством рабочего тела. Разность температур между источником теплоты и рабочим телом бесконечно малая. Подвод теплоты к рабочему телу осуществляется от внешних источников теплоты, а не за счет сжигания топлива. То же необходимо сказать и об отводе теплоты.  [c.262]

Фазовые углы назначают на основе анализа рабочих циклов машины. Например, в ДВС интервалы тактов принимают по положению поршня в предельных положениях в верхней и нижней мертвых точках (в. м. т. и и. м. т.), т. е. угол поворота коленчатого вала за время одного такта равен 180°. Моменты открытия и закрытия клапанов в ДВС называют фазами газораспределения. Они обеспечиваются кулачками на распределительном валу. Впускной клапан должен открываться до прихода поршня в в. м. т., т. е. с опережением на некоторый угол и, а закрываться с некоторым запаздыванием на угол 6 (рис. 18.5, < ). Выпускной клапан открывается до прихода поршня в н. м. т., т. е. с опережением на угол у, а закрывается с запаздыванием на угол р. Конкретные величины углов опережения и запаздывания зависят от марки двигателя. Например, для ВАЗ-2106 (1=12° 6 = 40° у = 42° р=10° для ЗИЛ-130 а = 31° 6 = 83° у = 67° р = 47°.  [c.486]

Анализ этапов проектирования показывает, что между ними нет четких разграничений. Работы, начатые на предыдущих этапах, продолжаются и развиваются на последующих этапах. Например, анализ и выбор принципиальных проектных решений начинается на этапах технического задания или технического предложения и заканчивается на этапе эскизного проектирования. Конструкторско-технологическая детализация начинается на этапе эскизного проектирования и завершается на этапе рабочего проектирования. Поэтому рассмотренная последовательность стандартных этапов не всегда строго соблюдается. Некоторые этапы могут быть исключены, или, наоборот, добавлены. Например, иногда принципиальные проектные решения ясны уже при составлении технического задания. Тогда исключается этап технического предложения, а нередко и этап эскизного проектирования, а обязательные работы этих этапов выполняются на последующих этапах технического и рабочего проектирования. Наоборот, если возможен ряд принципиально различных проектных решений, то нередко составлению технического задания предшествует этап предпроектных исследований, на котором отбираются варианты для дальнейшего рассмотрения в процессе проектирования.  [c.37]


После решения всех задач по реализации технологического процесса переходят к его нормированию, т. е. установлению норм расхода материалов и времени, числа рабочих, размера их оплаты и т, п. для каждой технологической и вспомогательной операции в отдельности. Суммируя результаты по всем операциям, получают нормы для технологического процесса в целом. Зная нормы, можно перейти к оценкам стоимости затрат на выполнение технологических процессов и технологической системы производства в целом (рис. 6.10). Эти задачи в САПР ЭМП можно решать формально (расчетным путем), так как стоимостные критерии имеют достаточно хорошие математические модели. Анализ различных вариантов технологической системы и выбор конечного варианта по стоимостному критерию также можно выполнить расчетным путем. Если же для выбора необходимо учесть другие, неформальные соображения, то можно использовать диалоговые режимы общения с ЭВМ.  [c.189]

Считается, что если после устранения причин, вызывающих отклонение, система возвращается к исходному состоянию равновесия, то это ее состояние считается устойчивым если не возвращается -- неустойчивым. Такой подход к анализу устойчивости позволяет определить значения внешних сил, при которых устойчивое положение равновесия становится неустойчивым. Эти силы называют критическими и рассматривают как предельные для данной конструкции. При расчете на устойчивость рабочая  [c.146]

Переход к каждому последующему этапу характеризуется уточнением, а следовательно, и усложнением моделей и углублением задач анализа. Соответственно возрастает объем проектной документации и трудоемкость ее получения. Пример, показывающий процесс развития модели ЭМУ от этапа к этапу проектирования, приведен на рис. 1.4. Если на первых шагах применяется небольшое число обобщенных параметров (как правило, не более 10—12) и упрощенные модели для предварительной оценки основных рабочих показателей, то в дальнейшем число параметров увеличивается в 10—15 раз, кроме того, вступают в действие математические модели, учитывающие взаимодействие физических процессов (электромагнитных, тепловых, деформационных), а также явления случайного разброса параметров объекта. В, итоге описание проектируемого объекта, в начале представленное перечнем требований ТЗ (не более 3-5 страниц), многократно увеличивается и составляет несколько десятков чертежей, сотни страниц технологических карт и пр.  [c.18]

Параметрическая оптимизация предполагает дальнейшее улучшение рабочих показателей объекта. При этом могут приниматься во внимание один или несколько критериев оптимальности, а в качестве параметров оптимизации могут рассматриваться как внутренние параметры объекта, так и управляющие воздействия. Если параметрическая оптимизация выполняется с применением упрощенных математических моделей объекта проектирования, то в дальнейшем необходимо произвести детальный анализ процессов, определяющих уровень рабочих показателей объекта, в различных режимах. Для этих целей используется наиболее точная математическая модель ЭМУ.  [c.270]

Анализ рабочего процесса. Реальная схема термоэлектрического генератора (термоэлемента) показана на рис. 19.7. Так как полупроводники обладают малой теплопроводностью, то их соединяют через пластину из хорошего проводника теплоты (например, меди), благодаря чему обеспечивается равенство температур обоих полупроводников на каждом из стыков.  [c.603]

На рис. 11.5 приведены характеристики трубопроводов Si и Si+ -f S2, разнотипных насосов / и // и их суммарная напорная характеристика (Q — Каждый из насосов при индивидуальной работе на трубопровод с характеристикой Si (перекачиваемая среда поступает в бак Б, задвижка г закрыта) развивает соответственно подачи Qi и Qu при напорах Hi и Яц. Мощность и КПД первого насоса характеризуется точками 2 и 5, а второго — 3 тл. 6. При последовательной работе насосов с характеристикой S] их совместный режим определяется рабочей точкой А, которая характеризуется подачей Qi+n и напором Hi+u. Из анализа характеристики видно, что последовательное включение насосов приводит не только к увеличению напора, но и к возрастанию подачи, если ее не ограничивать. В том случае, когда требуется сохранить прежнюю подачу (например, Qj), но поднять перекачиваемую среду в бак Б на высоту, в два раза большую (2Яг), характеристика сети трубопроводов  [c.121]

При анализе упругой зоны диаграммы напряжений (рис. 4.5.1) в точке Ь, разделив полную работу деформации А на объем рабочей части образца, вычислим удельную работу деформации, работу, затраченную на деформирование единицы объема материала  [c.58]

Анализ рабочих процессов различных преобразователей энергии, т. е. технические приложения термодинамики, представляет собой составную часть современной термодинамики. Так как эта часть имеет большое значение, то ее обычно выделяют в самостоятельный раздел и называют технической термодинамикой.  [c.502]

ЭДС и термический КПД топливного элемента, определяемые формулами (8.23) и (8.25), могут быть рассчитаны по имеющимся термодинамическим таблицам, содержащим значение термодинамического потенциала, энтальпии и энтропий рабочих веществ. Что касается наиболее характерных закономерностей работы топливного элемента, то они могут быть выяснены из анализа основного уравнения (8.25).  [c.574]

Если эксплуатационные условия не позволяют проводить анализы рабочей жидкости, то ее следует заменять не реже одного раза в шесть месяцев для жидкостей на основе индустриальных масел, к которым относятся и рекомендованные МГ-20 и МГ-30 и не реже одного раза в 1 — 1,5 года — для жидкостей на основе турбинных, нефтяных масел или им подобных, к которым относятся масла АМГ-10 и ВМГ-3.  [c.133]

I 500—3 000° С. Это значительно выше того, что могут выдержать металлы, но стенки камеры, в которой происходит горение, можно охлаждать, к в этом случае такие температуры становятся приемлемыми. Однако конечная температура продуктов горения при расширении их в газовых турбинах до атмосферного давления оказывается еще значительно выше температуры окружающей среды, что неблагоприятно для термического к. п. д. цикла. Обратное наблюдается у другого рабочего тела — водяного пара. Он получается в перегревателе парогенератора путем подвода тепла от горячих газов через металлическую стенку труб перегревателя, и его температура всецело определяется жаропрочностью металла, которая не позволяет получать пар с температурами более 600—650° С, да и то при использовании весьма дорогих высоколегированных сталей. С другой стороны, как это было показано при анализе циклов паросиловых установок, конечная температура водяного пара при расширении его до принятых давлений в конденсаторе ненамного отличается от температуры окружающей среды, что благоприятно для экономичности цикла. Рассмотренные свойства того и другого рабочего тела привели к мысли о создании бинарного цикла, т. е. такого цикла, в котором участвовали бы два рабочих тела, каждое из которых вносило бы в цикл свое благоприятное для термического к. п. д. СВОЙСТВО. Такой бинарный цикл получил название парогазового цикла. В нем в высокотемпературной части рабочим телом служат продукты горения топлив, а в низко-  [c.193]


Теория циклов. Исторически второй закон термодинамики возник как рабочая гипотеза тепловой машины, устанавливающая условия превращения теплоты в работу с точки зрения максимума этого превращения, т. е. получения максимального значения коэффициента полезного действия тепловой машины. Анализ второго закона термодинамики показывает, что малая величина этого коэффициента является следствием не технического несовершенства тепловых машин, а особенностью теплоты, которая ставит определенные ограничения в отношении величины его. Теоретически тепловые машины работают по круговым термодинамическим процессам, или циклам. Поэтому для того, чтобы шире раскрыть содержание второго закона термодинамики и провести детальный анализ его, необходимо исследовать эти круговые процессы.  [c.59]

Задачей термодинамического анализа компрессора является определение работы, затрачиваемой на сжатие рабочего тела при заданных начальных и конечных параметрах. Так как термодинамические процессы, протекающие в поршневых и ротационных компрессорах, идентичны, то ограничимся рассмотрением работы поршневого компрессора.  [c.81]

Прежде чем приступить к анализу основных термодинамических процессов, следует обратить внимание на то, что внутренняя энергия и энтальпия являются функциями состояния рабочего тела и их изменение не зависит от характера процесса. Поэтому желательно получить выражения для расчета и.зменения внутренней энергии и энтальпии в процессе с идеальным газом.  [c.45]

В гл. III было приведено уравнение bq = di — vdp первого начала термодинамики для потока и введено понятие удельной энтальпии pv, представляющей собой удельную энергию рабочего тела в потоке, определяющуюся его термодинамическим состоянием. В гл. VII то и другое было использовано для анализа такого процесса изменения состояния рабочего тела в потоке, когда можно пренебречь приращением кинетической энергии. При рассмотрении термодинамики потока больших скоростей, соизмеримых со скоростью звука и превышающих ее, должно быть учтено помимо технической работы приращение кинетической энергии.  [c.195]

К рабочему телу, выполняющему роль холодильного агента в компрессорных машинах, предъявляется ряд требований. Подробный анализ и сравнение между собой свойств различных агентов приводятся в специальных курсах. Поэтому здесь следует ограничиться рассмотрением только некоторых требований, предъявляемых к агенту, и то только таких, которые характеризуют его термодинамические свойства.  [c.267]

В книге рассмотрены критерии выбора решений технической задачи, определено понятие конструирования и изложены основы творческого труда. Дано определение технического задания, изложены методика его критического разбора и уточнения, общие требования к конечному результату и их осуществление на данном уровне техники. 1риведено понятие основного и рабочего принципов конструирования, описан рабочий процесс конструирования отправные точки зрения, анализ ошибок, разбивка задачи на части, возможные отклонения. Определена роль конструктора в процессе создания конструкции, дано сравнение методов индивидуальной и коллективной работы.  [c.2]

С точки зрения анализа рабочего процесса СПГГ желательно знать состав газа  [c.102]

Если на обследуемом объекте или его аналогах происходили отказы, то проводят анализ соответствующей технической документации, обращая внимание при этом на следующие данные дата и время разрушения стадия технологической операции, когда произошло разрушение температура и влажность окружающей среды степень и последствия разрушения вид, назначение и размеры объекта наличие на нем заводской или монтажной маркировки срок службы к моменту разрушения состояние поврежденного объекта расстояние, на которое отброшены куски металла, и размер зоны теплового воздействия при воспламенении рабочего продукта размещение примыкающих деталей и фотодокументация места повреждения. Химический состав, термообработка и механические свойства материала конструкции технология ее сооружения, сварка, термообработка и контроль качества в процессе монтажных работ. Состав, давление, температура, скорость и влажность коррозионной среды. Величина постоянных и переменных напряжений, частота их изменения, вид напряженного состояния, ориентация главных нормальных напряжений. Планируемые условия эксплуатации и отклонения от них в процессе работы и непосредственно перед повреждением объекта, акты освидетельствований и сведения о ремонтах. При этом учитывается информация монтажной и технологической документации, обслуживающего объект персонала и информация о прежних подобных повреждениях. В процессе анализа проводят контрольную проверку каждого наблюдения относительно истории повреждения конструкции и отмечают все противоречия, так как часто именно они позволяют найти главную причину повреждения. Значи-  [c.217]

Если движение механизма пр<жсходит под действием переменных во времени сил и также является переменным, то на первой стадии анализа эти силы не учитывают (ввиду сложности решения папкой задачи). Из анализа положений звеньев и траекторий их точек можно определить правильность действия механизма и соответствие траекпорий точек рабочего органа технологическому процессу. а также найти пространство, требуемое для размещения механизма.  [c.203]

Эксергия e = / i —ft(i —Го (si —So) зависит от параметров как рабочего тела Л , si, так и окружаюш,ей среды ро, Тп. Однако если параметры окружаюш.ей среды заданы (чаще всего принимают Го = 293 К, ро=100кПа), то эксергию можно рассматривать просто как функцию состояния рабочего тела. Понятие эксергия полезно при анализе степени термодинамического совершенства тепловых аппаратов.  [c.55]

Это уравнение по существу содержит все основные данные, которые можно получить из термодинамического анализа замкнутой системы с объемом, в качестве единственного внешнего параметра оно является отправной точкой для вывода конкретных рабочих уравнений. В сочетании с определением других термодинамических функций, таких как энтальпия, теплоемкость и свободная энергия, а также с помощью правила частного дифференцирования, это уравнение дает выражение для полного дифференциала любой термодинамической величины в функции р, у, Т. Если известны свойства, адэкватные р, и, Т, то дифференциальное уравнение можно проинтегрировать, чтобы получить изменение термодинамической функции при переходе системы из одного состояния в другое.  [c.150]

Образщ>1 этих характеристик представлены на рис. 6.16. Наклонные штриховые кривые I = onst на рис. 6.16, а устанавливают соответствие между расходом охладителя и перепадом давлений на стенке при фиксированном положении поверхности фазового превращения. В частности, линия / = 1 определяет сопротивление пластины однофазному потоку жидкости при полном испарении последней на внешней поверхности. Анализ характеристик позволяет вывести условие устойчивости. Процесс жидкостного испарительного охлаждения пористой стенки с внешним нагревом устойчив, если рабочая точка находится на возрастающем участке гидродинамической характеристики (при независимом изменении перепада давлений на стенке) dAp/dG > О или на падающем участке тепловой (при независимом изменении плотности внешнего теплового потока) dq/dl < 0.  [c.150]


Тангрен, Додж и Зейферт [781] исследовали газо-водяную смесь с точки зрения возможности использования ее в двигателях подводных аппаратов, в которых газ инжектируется в воду, являющуюся рабочей жидкостью. Предполагалось, что газ и жидкость имеют одинаковую температуру. В исследовании была использована только одна величина, связанная с газовой фазой,— объемная доля газа. При анализе системы, состоящей из воды и газа, отношение объе.мов фаз является более важным параметром, чем отношение расходов масс, которое используется при исследовании смесей газа с частицами. Для учета присутствия газа в воде были внесены изменения в величину у.  [c.329]

Рабочая программа (обрабатывающая подсистема) комплекса ПА-6. Выполнение рабочей программы происходит под управлением монитора, в функции которого входят интерпретация псевдокоманд, отражающих операторы промежуточного языка описания задания, передача управления на диспетчеры, контролирующие вычисления по той или иной псевдокоманде, анализ кодов возврата, организация циклов псевдокоманд, ведение службы времени, установка контрольных точек и т. п.  [c.144]

Так, например, анализ рабочих чертежей элементов конструкции ЭМУ, выполненных в соответствии с требованиями ЕСКД, показал, что эти чертежи содержат не менее 100—150 графических элементов (отрезков прямых линий, окружностей и дуг окружностей и пр.). Кроме того, графическое изображение на чертеже сопровождается поясняющим текстом (в среднем 10—15 строк). Принимая во внимание, что программы, предназначенные для изготовления чертежей на графопострюи-телях, должны применяться при различных значениях параметров чертежа (геометрических размеров или координат характерных точек элементов изображения), необходимо предусмотреть специальные части этих программ, выполняющие функции формирования массива чертежа, элементы которого задают численные значения параметров в операторах черчения (см. 5.3). По объему эти части программ черчения в ряде случаев оказываются не меньше, чем собственно графические, в которых, в свою очередь, необходимо иметь как минимум один оператор для формирования каждого графического элемента. Поэтому общий объем одной программы для изготовления чертежа в данном случае составляет в среднем 200—300 операторов.  [c.267]

Уравнение Шредингсра является в настояхцее время основным рабочим инструментом квантовой теории, но при его создании наибольшие трудности вызвал анализ физического смысла волновой функции ф (х, у,. Z, t). Ее свойства необычны — введенная для описания реально происходящих физических процессов, она, как это видно из (119), могла быть и комплексной. В 1927 г. М. Борн предложил интерпретацию ф (х. у, z, t), которая вскоре была признана всеми. Квадрат модуля волновой функции ф представляет вероятность обнаружешя часгицы в данной точке пространства в данный момент времени. При этом фундаментальным фактом становится то, что движение микрочастиц происходит по вероятностным законам.  [c.171]

Более подробный анализ влияния предварительного охлаждения на коэффициент ожижения для водорода можно провести по кривым на фиг. 33. Пунктирная линия на этом графике представляет собой кривую инверсии. Тонкие линии, пересекающие кривую инверсии в горизонтальном направлении, являются кривыми постоянных значений (Яд—Я, ), где и Я(,—энтальпии газа соответственно высокого и низкого давлений при температуре предварительного охлаждения f2- Разность (Я — Н ) приблизительно равна используемой для ожижения холодопроизводительности одного моля газа. По этим кривым видно, как заметно увеличивается разность (Я —Я ,) при нонп-жении температуры предварительного охлаждения Г,. Если рабочие параметры Рз и 2 выбирать таким образом, чтобы соответствующие им точки всегда  [c.62]

Необходимо, например, рассчитать на прочность коленчатый вал двигателя внутреннего сгорания. Не надо быть специалистом, чтобы представить себе объем необходимой работы. Вал установлен на нескольких подшипниках. В определенном порядке, известно каком, в цилиндрах двигателя происходит воспламенение рабочей смеси и через шатун на вал передается усилие. По индикаторной диаграмме может быть вычислен закон изменения усилия в зависимости от угла поворота вала. Несмотря,на то, что длины участков вала всего в два три раза больше характерных размеров поперечных сечений, можно с определенной натяжкой рассматривать коленчатый вал как пространственный брус, нагруженный достаточно сложной системой сил. С поворотом вала эти силы, естественно, меняются. Меняются их плечн и потому для выявления общей картины действующих сил необходимо произвести анализ изгибающих и крутящих моментов при различных угловых положениях вала. Скажем, через каждые 10° поворота вала. Это — достаточно длительная и кропотливая подготовительная работа.  [c.93]

В рассмотренной схеме непрерывно действующего теплового двигателя одно и то же рабочее тело периодически повторяет тот же самыш круговой процесс. В циклах реальных двигателей рабочее вещество часто периодически обновляется, т. е. заменяется равным количеством находящегося в том же состоянии свежего вещества. С термодинамической точки зрения замена рабочего вещества может рассматриваться как возвращение отработавшего в двигателе вещества в исходное состояние. Поэтому цикл с заменой рабочего вещества принципиально ничем не отличается от цикла с одним и тем же рабочим телом и при анализе различных тепловых двигателей обновление рабочего вещества можно не принимать во внимание.  [c.47]

В турбине Лаваля при снижении частоты вращения вала при j = = onst растет абсолютная скорость выхода пара с рабочих лопаток с2 И, как следствие этого, к. п. д. турбины быстро падает. Для уменьшения выходных потерь со скоростью С2 и понижения частоты вращения вала Кертис предложил турбину с двумя ступенями скорости. На рис. 6.2,6 представлены схема этой турбины и графики изменения абсолютной скорости и давления пара в проточной части турбины. Пар с начальными параметрами ро и То расширяется до конечного давления pi в соплах 2, а на рабочих лопатках 3 и 3 происходит преобразование кинетической энергии движущегося потока в механическую работу на валу 5 турбины. Закрепленные на диске 4 турбины два ряда рабочих лопаток 3 и 3 разделены неподвижными направляющими лопатками 2, которые крепятся к корпусу I турбины. В первом ряду рабочих лопаток 3 скорость потока падает от i до j, после чего пар поступает на неподвижные лопатки 2, где происходит лишь изменение направления его движения, однако вследствие трения пара о стенки канала скорость парового потока падает от с2 до с. Со скоростью с пар поступает на второй ряд рабочих лопаток 3 и снова повторяется идентичный процесс. Поскольку преобразование кинетической энергии в механическую работу на валу турбины Кертиса происходит в двух рядах рабочих лопаток, максимальное значение г ол получается при меньших отношениях k/ j, чем у одноступенчатой турбины. А это значит, что частота вращения вала турбины (колеса) Кертиса может быть снижена по сравнению с одноступенчатой турбиной. Анализ треугольников скоростей показывает, что оптимальный к. п. д. турбины Кертиса достигается при входной скорости пара t i вдвое большей, чем у одноступенчатой турбины. Это означает, что в турбине с двумя ступенями скорости может быть использовано большее теплопадение /loi, чем в одноступенчатой.  [c.302]


Смотреть страницы где упоминается термин Точки рабочие, анализ : [c.176]    [c.6]    [c.124]    [c.201]    [c.594]    [c.599]    [c.60]   
PSPICE Моделирование работы электронных схем (2005) -- [ c.0 ]



ПОИСК



Monte Carlo анализ расчет рабочей точки

Анализ данных рабочей точки

Точка рабочая



© 2025 Mash-xxl.info Реклама на сайте