Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

См. также Химический потенциал

См. также Химический потенциал Уровни Ландау для свободных электронов П 270, 271 Условие дифракции рентгеновских лучей формулировка Брэгга 1105, 106  [c.448]

См. также Химический потенциал Уровни Ландау для свободных электронов  [c.413]

Парциальные мольные величины имеют подстрочный индекс соответствующего вещества и черту сверху. При необходимости отметить, что величина относится к компоненту (независимому составляющему) системы, используется знак ( ) сверху. Например, У, — парциальное мольное свойство Y вещества i в фазе а цу — химический потенциал /-го компонента системы. Чертой сверху отмечены также иногда равновесные значения дополнительных внутренних переменных — количеств составляющих и их концентраций (см. (10.67)). Для множества однотипных величин использованы векторные обозначения. Так, набор внешних переменных обозначается вектором b=(V.....  [c.9]


При выводе соотношений (4.82), (4.83) не учитывались отклонения свойств пара от свойств идеального газа, а также зависимость химического потенциала (Ао от давления. При точных измерениях давления пара (в особенности при высоких давлениях) оба этих эффекта необходимо учитывать. Учет неидеальности газовой фазы может быть осуществлен или с помощью введения парциальных летучестей, или же тех или иных эмпирических уравнений состояния неидеальных газовых смесей. Здесь наиболее часто используются вириальные уравнения состояния газовых смесей (см. подробнее [20, 43, 85, 114 ).  [c.100]

Таким образом, химический потенциал фотонного газа в состоянии равновесия равен нулю (см. также задачу 7.9). Для бозонов нуль есть наибольшее возможное значение i. Это означает, что фотонный газ вырожден при любых температурах.  [c.164]

Для выражения химического потенциала растворенного в разбавленном растворе вещества также справедлива зависимость (V.36), но тогда N — молярная доля растворенного в растворе вещества, связанная с давлением пара растворенного вещества уравнением р = aN, где е — коэффициент Генри, зависящий от температуры, природы компонентов раствора и способа выражения его состава (о законе Генри см. 34).  [c.177]

Единственный рассматриваемый нами случай, когда локально-равновесное распределение отлично от однородного равновесного распределения (13.1) (с постоянными Т и ц),— это измерение теплопроводности, при котором путем соответствующего подключения источников и (или) стоков тепла мы устанавливаем изменяющуюся в пространстве температуру Т (г). В этом случае, поскольку плотность электронов п должна оставаться постоянной ( для сохранения электрической нейтральности), химический потенциал также должен зависеть от пространственных координат, чтобы выполнялось условие ц (г) = (гед (п, Т (г)). Вообще говоря, локальная температура и химический потенциал могут зависеть не только от координат, но и от времени. См., например, задачу 4 в конце этой главы и задачу 1, п. б в гл. 16.  [c.246]

Расширим понятие термодинамического потенциала, вводя в рассмотрение более сложные системы, такие как, например, системы с. химическими или фазовыми превращениями, а также открытые системы. Внутренняя энергия двухфазной системы, состоящей из воды и водяного пара, зависит от того, какая часть массы системы приходится на жидкую фазу и какая — на паровую (см. 12). Каждая фаза представляет собой открытую систему, внутренняя энергия которой зависит от массы. Внутренняя энергия смеси газов зависит от состава этой смеси. Термодинамические потенциалы К, Яи(3 связаны с внутренней энергией, поэтому все сказанное справедливо и для них. Действительно, Р — и—ТЗ, при этом Р называют также свободной энергией, а ТЗ — связанной энергией, их сумма равна внутренней энергии 7 энтальпия Н — изобарный потенциал ( = [/-)-  [c.247]


Возможности применения протекторов (гальванических анодов) в отличие от анодных заземлителей (анодов с наложением тока от постороннего источника) ограничиваются их химическими свойствами. Стационарный потенциал материала протектора в среде должен быть достаточно отрицательным по отношению к защитному потенциалу защищаемого материала, чтобы можно было обеспечить достаточное напряжение для получения защитного тока. Согласно пояснениям к рис. 2.5, между стационарным и равновесным потенциалами металла нет взаимосвязи. Это объясняет различные изменения значений потенциалов в ряду стандартных потенциалов и стационарных потенциалов на рис. 7.1. В целом различия в стационарных потенциалах у металлов получаются меньшими. Кроме того, все стационарные потенциалы зависят также и от среды (см. табл. 2.4). Температура тоже оказывает на них влияние. В частности, потенциал цинка в различных водах с повышением температуры становится более положительным вследствие образования поверхностного слоя.  [c.174]

Вопрос о соотношении В ш В был рассмотрен [25] также в рамках общей феноменологической теории, в которой движущей силой диффузии считается градиент химического потенциала (см.- 23). В, такой макроскопической теории не конкретизируется структура решетки, а также тин междоузлий, и результат может быть получен в общем виде для любых структур. При этом, однако, не удается получить явных выражений для коэффициентов В и В, а лишь соотношение между ними. В простейшем предельном случае, когда взаимодействие между атомами С мало и им можно пренебречь, по степень заполнения междоузлий р может быть любой, в такой теории были получены формулы для химических потенциалов меченых атомов С и их градиентов в случаях самодиффузии и химической диффузии. Для этого использовались общие формулы типа (23,34), определяющие плотности диффузионных потоков. Сравнение этих плотностей потоков в случаях самодиффузии и химической диффузии привело к установлению соотношения типа Даркена (ем. (23,41)) между В и /), имеющего вид (26,8). Таким образом, это соотношение оказывается справедливым не только в случае диффузии невзаимодействующих внедренных атомов по октаэдрическим междоузлиям ОЦК решетки, но и для общего случая любых структур решетки чистого (на узлах) металла и любых типов междоузлий.  [c.273]

Погрешность от диффузионных потенциалов при одинаковых растворах электролита ( i a) и ионах одинаковой подвижности (1л 1и) невелика. Это и является причиной частого применения электролитических проводников (солевых мостиков) в виде насыщенных растворов K I или NH4NO3. Однако значения I в табл. 2.2 справедливы только для разбавленных растворов. Для концентрированных растворов следует принимать во внимание выражение (2.14). По этим причинам выражение (3.4) дает лишь ориентировочную оценку диффузионных потенциалов, которые впрочем обычно не превышают 50 мВ. Наблюдаемые иногда более значительные расхождения между двумя электродами сравнения в одной и той же среде обычно могут быть объяснены влиянием посторонних электрических полей или же коллоидно-химическими эффектами поляризации твердых компонентов среды, например песка [2] (см. также раздел 3.3.1.). Большие изменения в химическом составе, например в грунтах и почвах, в случае электродов сравнения с концентрированными солями отнюдь не ведут к ощутимым изменениям диффузионных потенциалов. Напротив, у простых металлических электродов, которые иногда применяются в качестве измерительных зондов для выпрямителей с регулируемым потенциалом, следует ожидать изменений потенциала, обусловленных средой. Эти устройства являются в принципе не электродами сравнения, а просто металлами, имеющими в соответствующей среде возможно более постоянный стационарный потенциал. Этот потенциал обычно получается тем стабильнее, чем активнее данный металл, что наблюдается например у цинка, но не у специальной стали.  [c.84]

Потенциалы ц/,. и. Ноо означают приходящиеся на один моль химические потенциалы малого и бесконечно большого кристаллов, определяемые расстояниями ЛгОт центра. Таким образом, разность ц/,. — Цоо равна изменению свободной энергии при переходе одного моля малого кристалла в кристалл бесконечных размеров. Повышение давления пара Ар/р ., данное в формуле (13. 15) как функция величины кристалла, практически заметно только у маленьких кристалликов. Для макроскопических кристаллов оно очень мало и у кристаллов, размер которых измеряется сантиметрами, имеет порядок величин 10- —10 . Типичными значениями являются, например, а,= 100 эрг/см , Ы— см, У=25 см , 7 ==300°К, =8,31-10 эрг1град-моль. Отсюда получают Ар/рсо=2-10 . Поэтому химический потенциал макроскопического кристалла практически равен потенциалу бесконечно протяженного кристалла. Это значит, что макроскопические кристаллы в общем случае нельзя считать построенными по Вульфу, т. е. как тела с минимальной поверхностной энергией. Только при субмикроскопических размерах кристалла различия в упругости пара по сравнению с бесконечно большой поверхностью, а также разница между стабильными и неустойчивыми гранями кристалла становятся настолько велики, что пропорциональность между расстоянием грани от центра и свободной поверхностной энергией будет действительно наблюдаться. В этом случае образование граней практически сможет протекать в соответствии с условием равновесия Гиббса — Вульфа.  [c.321]


П. д. газа в смеси определяется химический потенциал (см.) его, условия его равновесия с жидкостями и твердыми телами (объемное поглощение, окклюзия, растворение) и адсорбция. Давление насыщенного пара в индиферентном газе (например воздухе) над жидкостью является также парциальным давлением пара в газовой смеси, равновесным с жидкостью.  [c.463]

Формулу Планка можно также получить, рассматривая равновесное излучение в полости как фотонный газ, к которому применима статистика Бозе — Эйнштейна (см. т. И, 82). Особенность этого газа состоит в том, что в результате взаимодействия с веществом фотоны могут рождаться и уничтожаться. Число их Л7 в полости не остается постоянным. При равновесии оно устанавливается таким, что свободная энергия F Т, V, N) при заданных Т и V обращается в минимум, а потому dFJdN = 0. Но dFIdN есть химический потенциал у, газа. Таким образом, для фотонов должно  [c.703]

Химический потенциал играет гораздо более фундаментальную роль, когда распределение (2.48) выводится из большого канонического ансамбля (см., например, книгу Рейфа [2]). В приведенном выше несколько нетрадиционном выводе, который также можно найти в книге [2]. использовался лишь канонический ансамбль.  [c.55]

Из состояний равновесия, определяемых условиями (1) или (2), практически реализуются лишь те, к-рые явл. устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике. с. М Тарг РАВНОВЕСИЕ статистическое состояние замкнутой статистич. системы, в к-ром ср. значения всех физ. величин, характеризующих состояние, не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в терлюдинамике. Р. с. не явл, равновесным в механич. смысле, т. к. в системе при этом постоянно возникают малые флуктуации физ. величин около ср. значений. Теория Р. с. даётся в статистич. физике, к-рая описывает его при помощи разл. Гиббса распределений (микроканонич., канонич. или большого канонического) в зависимости от типа контакта системы с окружающей средой, запрещающего или допускающего обмен с ней энергией или ч-цами. В теории неравновесных процессов важную роль играет понятие неполного Р. с., при к-ром параметры, характеризующие состояние системы, очень слабо зависят от времени. Широко применяется понятие локального Р. с., при к-ром темп-ра и химический потенциал в малом элементе объёма зависят от времени и пространств, координат её ч-ц. См. Кинетика физическая. д. н. Зубарев. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ, состояние термодинамич. системы, в к-рое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопровод ность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает определённого типа контактов со средой (напр., теплового контакта с термостатом, обмена с ним в-вом). Изоляция осуществляется обычно при помощи неподвижных стенок, непроницаемых для в-ва (возможны также случаи подвижных стенок и полупроницаемых перегородок). Если стенки не проводят теплоты (как, напр., в сосуде Дьюара), то изоляция наз. адиабатической. При теплопроводящих (диатермических) стенках между системой и внеш  [c.601]

Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы SO или СЮ не являются пассиваторами для железа. Ионы NOj также не являются пассиваторами (в отличие от ионов NO2), потому что нитраты восстанавливаются с большим трудом, чем нитриты, и их восстановление идет столь медленно, что значения плотности тока не успевают превысить /крит-С этой точки зрения количество пассиватора, химически восстановленного при первоначальном контакте с металлом, должно быть по крайней мере эквивалентно количеству вещества в пассивирующей пленке, возникшей в результате такого восстановления. Как отмечалось выше, для формирования пассивирующей пленки на железе требуется количество электричества порядка 0,01 Кл/см (в расчете на видимую поверхность). Показано, что общее количество химически восстановленного хромата примерно эквивалентно этой величине, и, вероятно, это же справедливо и для других пассиваторов железа. Количество хромата, восстановленного в процессе пассивации, определялось по измерениям [4—6] остаточной радиоактивности на промытой поверхности железа после контакта с хроматным раствором, содержащим Сг. Принимая, в соответствии с результатами измерений [7], что весь восстановленный хромат (или бихромат) остается на поверхности металла в виде адсорбированного Сг + или гидратированного  [c.261]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]


В качестве материалов для инертных анодов употребляется платина и нержавеющая сталь, на которых происходит анодное выделение кислорода. Используются также угольные аноды, в том числе графит и агломераты из углеродистых материалов, однако они имеют тенденцию расходоваться в процессе химического образования СОг- Платина употребляетсй в морской воде в виде весьма тонкого электроосажденного слоя на титане. При приложении анодного Тока извне титан разрушался бы коррозией, однако наличие платины смещает его потенциал в область пассивного состояния (см. разд. 2.8). В результате полуиается достаточно стойкий анод с большой платиновой поверхностью..  [c.131]

С появлением анодной защиты значительно возрос интерес к электрохимической защите s химической промышленности. Катодная защита, щироко используемая для подземных и гидротехнических сооружений и судов, в условиях химических производств применялась в весьма ограниченных масштабах, поскольку в основном ее применение возможно в технической воде, сточных водах предприятий, а также в ряде сред, содержащих С1 -ионы. В агрессивных средах основной химической промышленности ее использование затруднено, так как в этом случае для достижения защитного катодного потенциала необходимо применять высокие плотности тока, следствием чего является интенсивное выделение водорода на защищаемой поверхности. Так, в 0,65н. серной кислоте защитная плотность тока для, углеродистой стали при катодной защите составит около 3,5-10"" af m при анодной поляризации плотность тока на пассивном металле бу дет ниже а/см . Известные трудности возникают и в связи с так называемой аномальной зависимостью скорости растворения металла от потенциала [6, 7].  [c.85]

Имеется много фактов, подтверждающих рассматриваемую модель растворения пассивного титана. Действительно, одинаковый структурный состав барьерных слоев, образующихся при различных потенциалах, не позволяет объяснить значительное снижение анодных токов (почти на 2 порядка), наблюдаемое при повышении потенциала от 0,14 до 1,4 В (см. рис. 2.12), изменением скорости растворения этих слоев. На это указывает также и относительно незначительное увеличение химической стойкости пассивных пленок, сформированных при различных потенциалах, что оценивается по времени их самоактивации (см. выше). Основная причина снижения стационарных анодных токов — уменьшение ионной проводимости пассивных пленок вследствие снижения их дефектности. Можно полагать, что дефектность пленок уменьшается с ростом потенциала до некоторого значения ( =1,4 В), после чего меняется несущественно. Перегиб кривой (см. рис. 2.12) происходит вблизи равновесного ноте1щиала кислородного электрода. Очевидно, по мере приближения потенциала титана к равновесному кислородному, количество адсорбированного кислорода (в виде ионов 0Н или 0 ) возрастает. Это, по-видимому, и является причиной уменьшения дефектности пленок, и, как следствие, снижения тока растворения титана.  [c.43]

Аналогичный входной каскад измерительной схемы имеет восьмиканальный кондуктометр для исследований кинетики физико-химических процессов АФПК8-01. Входной коммутатор прибора автоматически, по заданной программе, подключает последовательно каждый измерительный канал к аналого-цифровому преобразователю. Время опроса одного канала 8,5 с. Преобразованный сигнал поступает на цифровую индикацию и регистрацию. В качестве регистрирующего устройства использована цифропечатающая машина типа ЭУМ-23П, которая регистрирует номер канала, знак и величину выходного сигнала. Рабочая частота генератора, питающего датчики, 1 кГц. Область линейности рабочего диапазона приборов КТГ-1 и АФПК8-01 простирается более чем на три порядка по электропроводности — от 10 до 10" См. Отметим исключительный метрологический потенциал схемы измерения отношения. Эта схема обеспечивает возможность определения нескольких величин абсолютных значений проводимости и сопротивления жидкостей, а также относительных изменений этих параметров. При этом погрешность измерений может быть доведена до 0,1% и даже меньше, а динамический диапазон —до 10.  [c.271]

Учитывая взаимосвязь ЕЬ и pH, в практике геохимических исследований получили распространение диаграммы Пурбе, описывающие потенциал водной среды, который определяется главным образом окислением-восстановлением в системе железо—сера (рис. 1), изменениями в равновесии угольная кислота—гидрокарбонат и гидролизом сульфатов железа. В этих изменениях значительная роль отводится геохимическим реакциям, например первая стадия окисления пирита, а также биогенным процессам. Соотношения, приведенные на диаграмме (см. рис. 1), не зависят от общего содержания железа в подземной воде и характеризуют только те условия, в которых соотношение железосодержащих компонентов равно единице. Рассматривая насыщенность подземных вод каким-либо соединением, следует исходить из предположения, что активность иона в пределах поля его преобладания будет равна суммарной активности растворенной серы. Таким образом, зная окислительно-восстановительный потенциал, можно установить содержание в природных водах химических элементов с переменной валентностью в той или иной форме.  [c.13]

В настоящее время процесс химического меднения часто рассматривают как сопряженный электрохимический процесс (см. гл. 4) [13, 19, 106—108]. Однако в присутствии ЭДТА [19, 107], ТЭА [19], в концентрированном тартратном растворе как без добавок, так и в присутствии стабилизаторов [109], а также в тартратном растворе с добавкой гуминовых кислот [ПО] скорость модельного процесса значительно ниже, чем скорость реального каталитического процесса. Расхождения между модельной и реальной системами в некоторых случаях могут быть объяснены при учете перемешивания раствора выделяющимся из СНгО водородом [111], однако имеются данные, что и при перемешивании скорости модельного и реального процессов сильно различаются [109]. Такие различия могут быть результатом как взаимодействия отдельных электрохимических процессов, например, кх ускорения нри совместном протекании, так и участия в процессе восстановления чисто химического механизма. Из значения смешанного потенциала меди в процессе меднения в тартратном растворе при 40 °С найдено [112], что СНгО участвует не только в анодном процессе, но влияет и на скорость катодной реакции (тормозит ее)  [c.122]

Развитие химической и электрохимической коррозии, механического и коррозионно-механического износа (механохимической коррозии) определяется энергетическими взаимодействиями в системе металл-1 — металл-2 — нефтепродукт — ПАВ — вода (электролит) (см. рис. 1). К важнейшим энергетическим характеристикам, определяющим эти процессы, относятся прежде всего характеристики самих металлов, связанные с их свойствами (пластичностью, твердостью, хрупкостью, коррозионной стойкостью и др.) работа выхода электрона из 1металла поверхностный потенциал металла Уд, контактная разность потенциалов (КРП),, нормальный электродный потенциал V нэп, потенциал нулевого заряда металла (Унз), свободная поверхностная энергия металла ( поверхностное натяжение металла) ме, энергия кристаллической решетки металла кр и др. [44—53]. Эти характеристики для одного и того же металла существенно отличаются в зависимости от состояния его внешней (видимой) и внутренней (микротрещины, совокупность внутренних дефектов) поверх ности. Эти характеристики различны также для зоны ювенильного металла и внешней зо ны наклепа — слоев деформированного металла, образующегося в результате механической обработки. Для стали зона наклепа может распространяться па глубину от 0,01 мм (при протяжке) и до 3—4 мм (при точении, прессовании) [44].  [c.18]


Уменьшение силы тока начинается с точки б (см. рис. 5) и сохраняет постоянное значение вдоль участка вг, показывая увеличение сопротивления ячейки, которое сопровождает, как будет показано позднее, химические процессы, происходящие у анода. Это объясняет заметное, влияние факторов, обусловливаемых электрической схемой, геометрией ячейки и диффузией в прианодном слое. Однако потенциал, замеряемый у анода, не зависит от этих факторов. Хоникомб и Хуген 134] показали, что если увеличить поверхность медного анода в фосфорнокислом электролите и сделать ее равной поверхности катода, то горизонтальный участок кривой / = / (напряжения на клеммах) становится все менее и менее выраженным, в то время как на кривой I = f (анодного потенциала) он остается неизменным. Следует также заметить, что вид кривой 1 = [ (напряжения на клеммах) иногда зависит от состояния поверхности анода. Так, применительно к анодам из железа и углеродистой стали в уксус-  [c.24]


Смотреть страницы где упоминается термин См. также Химический потенциал : [c.456]    [c.416]    [c.270]    [c.21]    [c.261]    [c.422]    [c.36]    [c.12]    [c.17]    [c.135]    [c.329]    [c.380]    [c.662]   
Физика твердого тела Т.2 (0) -- [ c.0 ]

Физика твердого тела Т.1 (0) -- [ c.0 ]



ПОИСК



Потенциал химический



© 2025 Mash-xxl.info Реклама на сайте