Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Локальные наблюдаемые

Тем не менее мы обнаруживаем, что влияние дисперсии (как и ранее) гарантирует, что локально наблюдаемые волны практически синусоидальны. Решающим свойством диспергирующих волн является здесь отличие групповой скорости 11, с которой переносится энергия, от скорости волн с. Волны с Я > Ящ имеют и С. с, так что энергия переносится в воде со скоростью и, меньшей, чем скорость потока с = V. Энергия в таких волнах всегда, таким образом, передается вниз по потоку. Соответственно волны обнаруживаются вниз по потоку от препятствия, которое является источником волн. Наоборот, волны с Я < имеют 17, большую, чем с = V, так что их энергия передается вверх по потоку от препятствия. В соответствии с этим очень короткие волны ряби и более длинные гравитационные волны находятся в разных метах вверх и вниз по потоку от препятствия соответственно (рис. 65).  [c.322]


Так как концентрация касательных напряжений на межфазной границе меньше [180] и одинакова как для сжатия, так и для растяжения, то наблюдаемый 5П-эффект может быть связан только с концентрацией растягивающих напряжений. Эта концентрация может обусловить локальное разрушение межфазной границы при растяжении, если последняя не обладает достаточной прочностью. При сжатии такие высокие концентрации растягивающих напряжений не возникают, граница соответственно не разрушается. В работе [168] действительно  [c.83]

В результате исследования было установлено, что хотя скорость общей коррозии (по потере массы) с ростом скорости потока до 0,6 м/с возрастала на порядок, значение ее [0,06 г/(м Ч)] было небольшим и не могло служить причиной наблюдаемых ускоренных разрушений сварных соединений, поскольку термодеформационный цикл сварки, оказывая теплофизическое воздействие на металл, определял различие физико-механического состояния и связанные с ним локальные различия в коррозионном и электрохимическом поведении металла в различных зонах сварного соединения. Неоднородность физико-механического состояния зон сварного соединения (неравномерное распределение остаточных макро- и микронапряжений, химического состава, различия в структуре) увеличивала механохимическую неоднородность и служила причиной возникновения коррозионно-механических разрушений.  [c.237]

Не менее существенное влияние на МКК хромоникелевых коррозионно-стойких сталей оказывает пластическая деформация. Создание при наклепе направленных искажений решетки приводит к повышению энергии определенных групп атомов, созданию локальных концентрационных изменений и влияет на диффузию элементов. Деформация может изменить как время до появления склонности при провоцирующих нагревах, так и интенсивность самого разрушения границ зерен. При этом эффекты, наблюдаемые в результате деформации материалов до или после провоцирующего отпуска, различаются.  [c.57]

Современные достижения в области физических исследований металлов свидетельствуют о перспективности использования не только световой, но и электронной тепловой микроскопии, когда контраст изображения обусловлен не геометрическим профилем поверхности образца, а определенными характеристиками исследуемого материала, например, работой выхода электрона при термоэлектронной или фотоэмиссии кроме того, в качестве такой характеристики может быть использован коэффициент вторичной электронной эмиссии при бомбардировке первичными электронами. Эти характеристики существенно зависят от состава, фазового состояния, ориентации и температуры изучаемого объекта, поэтому, например, эмиссионная высокотемпературная микроскопия вследствие более высокой разрешающей способности обеспечивает получение большего объема информации по сравнению со световой тепловой микроскопией. При микроструктурном изучении процессов деформирования и разрушения принципиально новые результаты могут быть получены при использовании эффекта экзоэлектронной эмиссии, позволяющего количественно характеризовать определенное энергетическое состояние локальных участков исследуемого образца, что является весьма ценным дополнением к наблюдаемым в металлографический микроскоп качественным структурным изменениям, связанным с накоплением дефектов в поверхностных слоях материала.  [c.6]


Наблюдаемую закономерность можно объяснить тем, что на границах зерна в литом молибдене выделились частицы фаз внедрения, преимущественно карбидов (рис. 3.3) и что около наиболее дисперсных из них существует локальный фазовый наклеп, облегчающий межкристаллитное разрушение металла.  [c.49]

Введение. В начале п. 1 мы дадим определение С -алгебры всех квазилокальных наблюдаемых физической системы. Далее мы изложим аксиомы изотонности, ковариантности и локальной коммутативности, общие для всех теорий локальных наблюдаемых, а затем остановимся на понятии локально нормальных состояний и на вопросе о их роли в статистической механике.  [c.353]

Пусть (трехмерное евклидово пространство) или ЗИ4 [(1 + 3)-мерное пространство Шянкоъското] —конфигурационное пространство, в котором мы собираемся действовать. И в первом, и во втором случае мы наделяем конфигурационное пространство топологией, индуцированной евклидовым расстоянием. Следуя принятым нами аксиомам (гл. 1, 2), мы ставим в соответствие всякой ограниченной открытой области О нашего конфигурационного пространства С -алгебру 91 (О) и интерпретируем ее самосопряженные элементы как локальные наблюдаемые,  [c.354]

Три названных нами постулата (изотонности, ковариантности и локальной коммутативности) образуют ядро всякой глобальной теории, основанной на алгебрах локальных наблюдаемых. Приведенная нами формулировка локальной коммута-  [c.356]

Благодаря своей простоте квантовые решеточные системы оказываются ценными и в неравновесной статистической механике. Рассматривая предельно простой случай обобш,енной модели Изинга (в смысле, указанном в начале данного пункта), Радин [309] проанализировал поведение во времени величины R) для широкого класса начальных условий и локальных наблюдаемых. Можно показать, что в этом случае эволюция во времени не действует G-абелевым способом. Для физических приложений более важно другое обстоятельство оказывается возможным придать точную математическую форму традиционно принимаемому положению о том, что скорость приближения к равновесию в термодинамическом пределе должна быть связана со степенью непрерывности спектра эффективного гамильтониана. Подчеркнем, что здесь речь идет об эволюции во времени локальной наблюдаемой, погруженной в бесконечную систему, а поэтому гамильтониан, о котором мы говорим, совпадает с тем, который локально реализует эволюцию во времени бесконечной системы. Как оператор этот гамильтониан зависит от гильбертова пространства, на котором он действует в конструкции ГНС, и поэтому степень непрерывности его спектра зависит от представления. Коль скоро начальное состояние фо выбрано, степень непрерывности спектра гамильтониана можно связать с зависимостью функции е ( со — со )=бшш от пространственных переменных. Следует иметь в виду также, что метод Радина допускает обобш,ение на взаимодействия более широкого типа, чем описанная выше простая модель Изинга.  [c.388]

В силу чего t не принадлежит области (R ) (что явствует, например, из теоремы Пэли — Винера). Из этого простого замечания и из теоремы 1, приведенной в гл. 1, 1, следует ), что если мы определим локальную алгебру Ш ( 2) как замыкание по норме (или как замыкание в слабой операторной топологии) в пространстве Жр И) алгебры, порожденной операторами и ( ), V (д) 1, е (й) , то эволюция во времени (/)/ = W (/<) будет выводить локальные наблюдаемые за пределы алгебры квазилокальных наблюдаемых. Таким образом, в этом случае эволюцию во времени нельзя определить как автоморфизм алгебры квазилокальных наблюдаемых 2В =  [c.393]

Питтингом называют разрушения локального типа, наблюдаемые в тех случаях, когда скорость коррозии на одних участках выше, чем на других. Если значительное разрушение сосредоточено на относительно маленьких участках поверхности металла, возникают глубокие точечные поражения, если плош,адь разрушения больше и глубина невелика — возникают язвенные поражения. Глубину питтинга иногда характеризуют питтинго-вым фактором. Это отношение максимально наблюдаемой глубины питтинга к средней глубине проникновения коррозии, найденной по изменению массы образца. Питтинговый фактор, равный единице, соответствует равномерной коррозии (рис. 2.7).  [c.27]

Эшби показал, что для сложных границ скольжение по границе и миграция тесно связаны. В этом случае скольжение и миграция границы пропорциональны, поскольку только в этом случае возможно скольжение без изменения структуры границы. При зернограничном проскальзывании по большеугловой границе миграция выступает как процесс, обеспечивающий непрерывное под-страивание границы до плоскости в атомном масштабе благодаря перемещению зернограничных дислокаций. Однако эту миграцию следует отличать от той, которая происходит в процессе пластической аккомодации, когда миграция, наблюдаемая при локальной пластической деформации, непосредственно не связана со скольжением по границе зерна. Такая нерегулярная миграция может препятствовать зернограничному проскальзыванию, поскольку не позволяет границе в процессе скольжения оставаться плоской. Для осуществления непрерывного скольжения по поверхности границы зерна необходимо действие источников зернограничных дислокаций. Предполагается, что источниками таких дислокаций могут быть источники типа Франка — Рида, действующие на границе зерна. Обнаруженные спиральные образования на границе зерен являются источниками дислокаций границ зерен, размножение которых происходит не скольжением, а переползанием. Дислокации границ зерен могут образовываться и в результате взаимодействия дислокаций решетки со структурными дефектами границы.  [c.178]


Теория направленного упорядочения возникла в связи с исследованиями явления временного спада проницаемости, объясняемого наличием в твердом растворе атомов внедрения. Если большинство атомов внедрения будет расположено в междуузлиях вдоль одной определенной оси, например 1100], то возникнет одноосная анизотропия. В любом твердом растворе, который неполностью упорядочен, имеется совокупность пар одинаковых атомов. Эти пары атомов выстраиваются вдоль приложенного магнитного поля. Необходимо показать, что энергии внешнего магнитного поля достаточно для того, чтобы создать направленное упорядочение, а в том случае, если направленное упорядочение уже возникло, то оно может объяснить величину наблюдаемой магнитной анизотропии. Теоретически и экспериментально было показано, что каждая пара атомов обладает энергией, зависящей от угла между локальной намагниченностью и осью пары. При температурах ниже температуры Кюри, но достаточных для того, чтобы диффузия успевала проходить за конечный промежуток времени,, пары одинако-  [c.155]

Основной разделительной линией диаграммы ИДТ является кривая 6 температурной зависимости величины равномерной деформации 0 материала (рис. 5.18). При деформациях, превышающих во, в образце формируется шейка, и диаграмма ИДТ отражает соответственно уже локальный характер пластической деформации, предшествующей разрушению. Наблюдаемая температурная зависимость равномерной дефюрмации описывается [3321 выражением, полученным на основе представлений о параболическом деформационном упрочнении в три стадии [330, 332]  [c.215]

Как видно из уравнения, значения /д, а следовательно, и V зависят от природы растворяющихся фаз, а также от сопряженных катодных реакций, протекающих на.других участках, величины тока на которых уравновешивают ток в вершине трещины. Поэтому исключительно большое значение приобретает химическая природа участков, на которых протекают анодная и катодная реакции, а также химический состав электролита (среды). Наблюдаемые скорости развития коррозионной трещины требуют высоких плотностей анодного тока, что в значительной мере может быть реализовано при активации вершины трещины за счет наличия в сплаве структурных составляющих (фаз или сегрегатов), способствующих образованию гальванического элемента. Отдельные фазы или сегрегации элементов сплава внутри твердого раствора могут действовать или в качестве многочисленных микроанодов, способствующих локальному растворению в вершине трещины, или в качестве катодов, которые способствуют локальному растворению прилегающих к ним слоев матрицы. Сегрегация элементов по границам зерен или сегрегация внутри зерен, особенно при образовании дальнего или ближнего порядка, представляет потенциальные участки, в которых возможно образование микроанодов.  [c.57]

Однако наличие в вершине трещины остаточных сжимающих напряжений в зоне пластической деформации от предыдущего цикла нагружения препятствует пластическому притуплению ее вершины. Поэтому вершина мезотуннеля в локальной зоне фронта усталостной трещины раскрывается упруго и имеет в сечении треугольную форму [83]. Наблюдаемый по поверхности зигзагообразный характер роста трещины характеризуется многообразием профилей локального фронта (рис. 3.17) (мезотуннели). Поэтому общая закономерность роста трещины с учетом эффекта мезотуннелиро-вания трещины состоит в следующем.  [c.151]

В общем случае (В. С. Иванова и Л. А. Маслов) в изломе выделяют три основные зоны />—зона чисто усталостного разрушения, характеризующаяся наличием усталостных полос (макро- и микрополос, наблюдаемых в электронном микроскопе) U — зона перехода или зона смешанного разрушения ( ямочное как результат локальных разрушений впереди трещины, хрупкие участки и усталостные полосы) и, наконец, /г — зона долома. Длина усталостного пятна l)=ia+ld. Исчезновение зоны I, свидетельствует о том, что с увеличением напряжения происходит смена напряженного состояния, реализуемого в локальном объеме впереди трещины. Хруп- кое разрушение в условиях плоской деформации сменяется на квазивяз-кое. Для оценки микрорельефа поверхности и профиля излома в институте металлургии им. А. А. Байкова разработано оригинальное телевизионно-аналоговое устройство.  [c.45]

В работе [10] исследован также остаточный предел прочности на растяжение образцов после их частичной усталостной повреж-денности. Было обнаружено, что начало расслаивания почти не снижает прочности. Но после возникновения растрескивания смолы прочность на растяжение снижается, следуя квадратичной зависимости, аналогичной развитию растрескивания смолы. В отличие от результатов работы [3] снижение прочности на растяжение оказалось не зависящим от условий циклического (от формы цикла) нагружения. Это означает, что окончательное разрушение при усталостном испытании происходит вследствие локальной неустойчивости процесса повреждения, и это проявляется в наблюдаемой зоне очень высокой поврежденности.  [c.355]

Механизм наблюдаемого хемомеханического эффекта, исходя из теоретических и экспериментальных данных, можно представить следующим образом. Первоначальный пластический накол обусловил образование зародышей двойников сдвига, которые затем росли вследствие перемещения двойникующих дислокаций. связанного с химическим растворением поверхности кристалла, понижающим поверхностный потенциальный барьер и облегчающим движение этих дислокаций (хемомеханический эффект для двойникового сдвига). Полные дислокации, юзникавшие в матрице при деформировании, взаимодействовали с двойниковыми (в частности, препятствовали росту двойника, вызывая большие локальные напряжения), но, испытывая з>начительно большее сопротивление движению  [c.127]

Результаты исследований показали, что ЗТВ у всех сталей состоит из двух слоев. Первый слой представляет собой светлую нетравящуюся полосу (белый слой), наблюдаемую и при других видах высокоскоростного локального нагрева (электронно-лучевого, электроискрового и др.). Некоторые исследователи [4] высказывают предположение о том, что одной из причин образования нетравящих-ся белых слоев может быть высокотемпературное насыщение поверхностных слоев стали азотом воздуха. Микротвердость этого слоя значительно выше микротвердости исходного материала.  [c.14]


Серия микрофотографий, снятых с поверхности образца стали 0Х18Н10Ш в процессе нагружения и отражающих развитие структурных изменений при малоцикловой усталости, представлена на рис. 1. Четкие, легко различимые полосы скольжения появляются уже на ранних стадиях испытания (рис. 1, а, б). В дальнейшем число таких полос скольжения, полос сдвига и двойников увеличивается и они захватывают новые зерна образца (рис. 1, в), приводя к упрочнению материала, в связи с чем ширина петли гистерезиса уменьшается. Картина в общем аналогична наблюдаемой при статическом деформировании, когда увеличение действующего напряжения и деформации активизирует все большее число плоскостей скольжения, что приводит к заметному упрочнению стали. Возникающие полосы скольжения являются устойчивыми и не удаляются при слабой полировке поверхности образца. Карбидное травление образца стали 0Х18Н10Ш после разрушения показало, что в зоне магистральной трещины скапливаются карбидные частицы, которые служат локальными концентраторами напряжения (рис. 1, г) и тхриводят к появлению микротрещин.  [c.75]

При микроструктурном исследовании процессов деформирования и разрушения качественно новые результаты могут быть также получены при использовании эффекта экзоэлектронной эмиссии, поскольку хорошо известно, что структурно-энергетические изменения в поверхностных слоях сопровождаются появлением электрического сигнала, который может быть усилен и зарегистрирован. Таким образом, поскольку изменение тока при экзоэмиссии отражает определенное энергетическое состояние локальных участков исследуемого образца, это может явиться весьма ценным количественным дополнением к наблюдаемым в металлографический микроскоп качественным структурным изменениям, связанным с накоплением дефектов в поверхностных слоях материала.  [c.11]

Роль электронов в металлах как фактора, определяющего их прочность и пластичность, подчеркивалась Я. И. Френкелем еще в ранних работах [1] на основе пористой электронной модели. Современные представления о реальной прочности металлов, учитывающие, с одной стороны, кооперативный характер процессов перемещения атомов при деформации, а с другой — локальный характер разрушения, не отрицают роли электронного фактора. Так, справедливо считается, что наблюдаемые различия прочностных характеристик кристаллов определяются их электронной структурой, а роль дефектов упаковки в механизме деформации и разрушения металлов и качественная связь энергии дефектов упаковки с характеристиками электронной структуры [2] общепринятые. Для дальнейшего развития этих представлений стала очевидной необходимость установления закономерностей взаимосвязи процессов деформации и разрушения с электронными свойствами самих дефектов, ответственных за прочностные свойства металлов [.3]. Со времени открытия явления взаимодействия позитронов с дефектами кристаллической решетки [4] стало понятным, что метод позитронной аннигиляции является уникальным для получения информации об электронной структуре дефектов [5]. В основе этой возможности лежит тот факт, что при наличии в кристал.те дефектов с концентрацией 10 все термализованные позитроны захватываются ими и аннигиляция с электронами в дефектах дает информацию об их электронной структуре. Если концентрация дефектов недостаточна, то в позитронную аннигиляцию будут вносить вклад как совершенные, так и дефектные области кристалла. Следовательно, использование метода электронно-позитронной аннигиляции для анализа структурного состояния в области дефектов, образующих-  [c.139]

Полуширина рентгеновской линии с поверхности излома, содержащего преимущественно признаки скола, в несколько раз меньше, чем полуширина линии с поверхности разрушения с преобладающими признака.ми пластичности. Высокая локализация деформации в вершине усталостной трещины была обнаружена на аналогичном сплаве в работе [7] методом трансмиссионной электронной микроскопии односторонним приготовлением фольги. Учитывая наблюдаемые детали микрорельефа (см. рис. 1, е—з) и очень малую зону пластической деформации при разрушении, можно считать, что в продвижении трещины в плоскости 111 важная роль яринадлеяшт локальному нормальному напряжению в ее вершине.  [c.150]

Определение скорости не только общей, но и локальной коррозии, наблюдаемой при эксплуатации энергооборудования современных электростанций, требует применения точных и быстрых методов их оценки. При этом приобретает важное значение определение указанных видов коррозии в любой момент, т. е. получение кинетической характеристики процессов. Описанные выше дисковые индикаторы коррозии позволяют определять только потери массы металла с единицы поверхности, что наиболее полно характеризует равно1мерную коррозию. Однако в большинстве случаев локальная коррозия сопровождается относительно малыми потерями металла, небольшой площадью коррозионных разрушений и сравнительно высокой скоростью ее проникновения в глубину. Оценка локального коррозионного разрушения только по потерям металла не дает действительной картины процесса. Метод оценки скорости и интенсивности коррозии ло изменению электросопротивления проволочных образцов, приведенных в контакт со средой, является наиболее точным.  [c.276]

Так, обнаруженная при резком увеличении мощности тепловьщеления и постоянном расходе теплоносителя дополнительная интенсификация процесса выравнивания неравномерности поля температуры теплоносителя, сформированной неравномерным полем тепловьщеления, благоприятно сказывается на работоспособности пучков витых труб. Наблюдаемое снижение интенсивности процессов переноса при резком уменьшении мощности тепловыделения необходимо учитывать при рассмотрении переходных режимов и останове теплообменного аппарата, поскольку в этом случае возможны локальные перегревы стенки труб. <  [c.155]

Для обтекания псевдоожнженным слоем горизонтальных труб, по крайней мере при нисходящем движении агрегатов частиц, характерным является наличие плотной шапки из частиц на трубе и просвета , более или менее лишенного частиц под нею. Наблюдаемая визуально картина кажется близкой к известной картине обтекания горизонтальной трубы плотным движущимся слоем. Однако более тщательное исследование указывает на глубокое различие. В псевдоожиженном сл ое шапка частиц с ростом числа псевдоожижения приобретает подвижность, сохраняя в то же время значительную плотность, и поверхность трубы под нею становится тогда зоной устойчиво высоких локальных коэффициентов теплообмена. В просвет под трубой с ростом числа псевдоожижения постепенно проникает все большее количество подбрасываемых частиц, и локальный коэффициент теплообмена нижней части поверхности горизонтальной трубы значительно увеличивается. В тесных (с малым вертикальным шагом) коридорных пучках одна труба может попадать как бы в след другой (других), и ход изменения локальных коэффициентов теплообмена с числом псевдоожижения еще больше усложняется.  [c.401]

Следующим этапом после районирования наблюдаемой зоны является формирование сети контроля. Основные задачи при создании сети контроля сводятся к сокращению объема измерений, обеспечению представительности и равноточности результатов контроля всей территории и созданию такой сети контроля, которая охватывает все элементы территории. Оптимизация объема аналитических работ обеспечивается группировкой индивидуальных проб в средние представительные пробы с использованием взвешивающих коэффициентов, учитывающих неоднородность распределения радионуклидов и другие факторы. Существующими методами расчета оптимального числа пунктов контроля за локальным загрязнением окружающей среды [6] показано, что число анализируемых проб должно быть близким к 100 для территории в радиусе 30 км. При этом каждая проба будет характеризовать территорию средней площадью 25 км и, естественно, не может обеспечить представительную оценку содержания веществ. Для обеспечения представительности проб каждую из них следует рассматривать как среднюю, приготавливаемую из достаточного числа индивидуальных проб. На топографической карте (М 1 100 000) минимально различимая площадь составляет 1 см , что соответствует на местности L км . Таким образом, число индивидуальных проб для приготовления средней представительной пробы в пункте контроля целесообразно принять равным 25. Места отбора этих 25 проб располагаются по углам и в центре большого конверта со сторонами от 100X200 м до 500 X ЮОО м в зависимости от размеров контролируемого элемента и градиента потенциала загрязнения. Каждую 172  [c.172]



Смотреть страницы где упоминается термин Локальные наблюдаемые : [c.35]    [c.59]    [c.60]    [c.60]    [c.235]    [c.242]    [c.243]    [c.385]    [c.390]    [c.417]    [c.870]    [c.339]    [c.1174]    [c.266]    [c.547]    [c.199]    [c.235]    [c.400]    [c.205]    [c.152]    [c.160]    [c.203]   
Алгебраические методы в статистической механике и квантовой теории поля (0) -- [ c.354 ]



ПОИСК



Г локальный

К локальности

Наблюдаемая



© 2025 Mash-xxl.info Реклама на сайте