Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Часть главная геометрического

Элементы рабочей части и геометрические параметры спирального сверла показаны на рис. 6.39, б. Сверло имеет две главные режущие кромки //, образованные пересечением передних 10 и задних 7 поверхностей и выполняющие основную работу резания поперечную режущую кромку 12 (перемычку) и две вспомогательные режущие кромки 9. На цилиндрической части сверла вдоль винтовой канавки расположены две узкие ленточки 8, обеспечивающие направление сверла при резании.  [c.313]


Предварительный расчет ТНД. Особенностью рабочего процесса в ТНД является значительный рост удельного объема пара вдоль проточной части, главным образом к ее концу. Распределение геометрических и газодинамических параметров по ступеням должно учитывать эту особенность во избежание резкого раскрытия проточной части и для получения приемлемой экономичности ТНД.  [c.166]

Приравняем проекции обеих частей этого геометрического равенства соответственно на касательную, главную нормаль и бинормаль к траектории. Если мы обозначим через F , и Fi, проекции F, то будем иметь  [c.141]

Конструктивные элементы и геометрические параметры рабочей части. Главные лезвия тп образуют режущую часть (см. фиг. 38) под углом ф (табл. 69).  [c.167]

Конструктивные элементы и геометрические параметры рабочей части. Главные лезвия тп образуют режущую часть 1 (см. рис. 26) под углом ф (табл. 49). Длина режущей части может быть найдена из выражения  [c.278]

Значения главных осевых моментов инерции и моментов сопротивления для наиболее часто встречающихся геометрических фигур приводятся в табл. 5.  [c.307]

Чем меньше размеры входной и выходной диафрагм (чем уже щели прибора), тем выше предел разрешения щелевого прибора. Однако размеры диафрагмы ограничиваются дифракционными явлениями. Величина входной щели, когда ее геометрическое изображение равно ширине центральной части главного дифракционного максимума, называется нормальной шириной щели.  [c.345]

Главный вектор R геометрически изображается замыкающей силового многоугольника, построенного на заданных силах. Проецируя обе части векторного равенства (3 ) на координатные оси, для произвольной пространственной системы сил получаем  [c.44]

Классическая механика исходит из предположения, что свойства пространства и времени не зависят от того, какие материальные объекты участвуют в движении и каким образом они движутся, В связи с этим возникает возможность предварительно выделить и изучить некоторые общие свойства движений. При таком изучении рассматриваются лишь общие геометрические характеристики движения, которые в равной мере относятся к движению любых объектов — молекулы или Солнца, изображения на экране телевизора или тени самолета на Земле. Если бы предметом нашего исследования были лишь свойства пространства, то мы не вышли бы за пределы геометрии. С другой стороны, если бы мы интересовались лишь течением времени, то возникающие при этом простые задачи относились бы к иной науке, которую можно было бы назвать хронометрией . Согласно данному выше определению механики, нас интересуют изменения положения некоторых объектов в пространстве и времени. До тех пор, пока мы не рассматриваем инерционных свойств движущихся объектов, нас интересует по существу лишь объединение геометрии и хронометрии. Такое объединение геометрии и хронометрии называется кинематикой. Кинематика не является собственно частью механики (поскольку при ее построении никоим образом не учитываются инерционные свойства материи) и могла бы излагаться в курсах геометрии. Однако по традиции в обычные курсы геометрии кинематика не включается, и необходимые сведения из кинематики приводятся в курсах механики. Связано это главным образом с тем, что хронометрия сравнительно бедна идеями и фактами, и поэтому, если отвлечься от потребностей механики, добавление хронометрии к обычным геометрическим построениям мало интересно с математической точки зрения.  [c.10]


Главный момент о геометрически тоже изображается замыкающей векторного многоугольника, построенного на векторных моментах сил относительно центра приведения. Проектируя обе части векторного равенства (4 ) на прямоугольные оси координат и используя связь момента силы относительно оси с проекцией векторного момента этой силы относительно точки на оси, имеем  [c.41]

При построении изображений предметов и выводе основных формул геометрической оптики рассматриваются гомоцентрические (исходящие из одной точки) пучки света. Лучи, входящие в эти пучки, должны составлять малый угол с оптической осью системы (такие лучи называют параксиальными). Для них допустима замена синуса или тангенса угла с оптической осью значением самого угла, что часто упрощает вычисления. При описании построений используют удобный прием ( правило знаков ), согласно которому все расстояния отсчитываются от границы раздела двух исследуемых сред и те из них, которые оказываются направленными против распространения луча, считаются отрицательными. Кроме того, учитывается знак угла. Положительным считается угол, отсчитываемый от направления главной оптической оси по часовой стрелке, а углом, отсчитываемым в противоположном направлении, приписывается отрицательный знак.  [c.278]

Из изложенного следует, что параметр Л1 зависит главным образом от конфигурации граничных поверхностей, но в определенных условиях и от числа Re. Для геометрически подобных сопротивлений при одинаковых числах Re значения будут одинаковы. При малых числах Re второй член правой части формулы (6.20), т. е. Лl/Re, играет определяющую роль в величине с. но при возрастании Re этот член становится малым, и, следовательно, число Re и вязкость перестают влиять на значение Сс при Re - оо с кв- Величина как видно из формул, определяется характером распределения безразмерного давления по внутренней боковой поверхности местного сопротивления или местным числом Ей. Число Эйлера может зависеть от Re, однако с возрастанием последнего значения Ей стабилизируются и определяются только геометрическими параметрами сопротивления и граничными условиями. Поэтому при больших числах Re, когда силы вязкости практически не влияют на сопротивление, динамическое подобие, а следовательно, одинаковые значения (. обеспечиваются только геометрическим подобием и одинаковыми граничными условиями. Верхней границей такого режима течения на участке сопротивления является значение числа Re, при котором в потоке вследствие больших скоростей возникает кавитация и происходит перестройка структуры течения, а значит, Ц/распределения давления.  [c.146]

В литературе встречается указание, что для проверки правильности определения главных моментов инерции надо убедиться в равенстве сумм моментов инерции относительно исходных осей и главных. Формулы для главных моментов инерции показывают, что такая проверка ничего не дает — она всегда будет выполняться независимо от того, верно или ошибочно вычислены исходные моменты инерции. Надежной проверкой является разбивка сечения (даже составленного из профилей проката) на простейшие части вторым способом и новое вычисление геометрических характеристик.  [c.206]

Комплексное выражение (3.19) имеет следующий геометрический смысл главная часть его есть проекция на ось Е вектора винта, а моментная часть — проекция на ту же ось момента винта относительно точки, лежащей на оси. Указанное выражение, следовательно, есть проекция винта R на ось Е, согласно только что данному определению.  [c.41]

Рассмотрим пространственный четырехзвенный механизм с одним вращательным шарниром 1 и тремя цилиндрическими 2, 3, 4 (рис. 20). Вращательный шарнир допускает относительное вращение примыкающих звеньев на произвольный угол, цилиндрические шарниры допускают вращение совместно со скольжением. Оси шарниров занимают в пространстве произвольное положение. Условимся называть звеном жесткую конфигурацию, состоящую из двух соседних осей шарниров и отрезка линии кратчайшего расстояния между ними. Таким образом, звено геометрически характеризуется комплексным углом, главная часть которого есть собственно угол между осями расположенных на его концах шарниров, а моментная часть — длина звена.  [c.101]


Значения коэффициента в зависимости от геометрических параметров режущей части резца (главного угла в плане)  [c.146]

Сопряжение главной и вспомогательной задних граней резцов делается радиусом г при вершине или переходным лезвием длиной /(,, расположенным под углом фо (табл. 20). Геометрические параметры режущей части резцов с неперетачиваемыми пластинками и резцов для обработки пластмасс даны в табл. 21—22. Геометрические параметры минералокерамических резцов даны в табл. 23.  [c.263]

Пределы измерений по шкале прибора и прибора в целом непосредственно связаны с областью его применения. В увеличении пределов измерений по шкале прибора потребитель заинтересован даже при самой малой цене деления, так как в производственных условиях часто возникает необходимость в контроле изделий со сравнительно большими допусками угри жёстких отклонениях от правильных геометрических форм. Наличие большого предела измерения по шкале позволяет производить измерение партии таких изделий без перестановки прибора (например, измерение ширины колец шарикоподшипников с жёстким допуском на непараллельность при сравнительно большом допуске на самый размер кольца). Возможность увеличения предела измерения по шкале рычажных приборов ограничивается связанными с кинематикой приборов погрешностями, главным образом непропорциональностью линейных перемещений из мерительного стержня и угловых перемещений индекса.  [c.172]

Основная плоскость и плоскость резания. При рассмотрении режущего инструмента как геометрического тела достаточно предположить наличие в процессе резания только одного главного рабочего движения тогда плоскости, определяющие углы режущей части, займут положение, относительно кото-  [c.249]

Экспериментальный коэффициент Со должен зависеть главным образом от критериев подобия — чисел М, Re, Uj/ q. При малых расходах рабочего тела величина М на всех режимах не превышает значения 0,1. В результате интенсивных срывных явлений, происходящих в проточной части на этих режимах, влияние вязкости несущественно. Поэтому коэффициент Са в формуле (4.10) является функцией числа j/ q, но сохраняется одинаковым для различных Яо и геометрических размеров. Априори можно предположить, что характер срывных явлений зависит от близости режима к точке перехода турбины на работу ее как компрессора. Поэтому представляется рациональным вести обработку экспериментальных данных в виде зависимости С% = f ( с), где = = (Mi/ o)/(ui/ o)np .  [c.186]

Как было указано в нашей работе [1 ], главная часть уравнения, относящегося к пространственному механизму, описывает некоторый сферический механизм, у которого оси параллельны осям данного механизма. Непосредственное геометрическое исследование сферического механизма, связанного с данным пространственным механизмом, было сделано в свое время в работе В. В. Добровольского [2 ].  [c.147]

Когда вы перемещаете геометрический объект, все геометрические объекты, которые на него ссылаются, также перемещаются. Таким образом, если перемещаемая точка относится к кривой некоторой поверхности, то в действительности модифицируется поверхность. Следовательно, эти команды позволяют выполнять масштабные модификации в модели, производя небольшие изменения в геометрии. Эти команды также очень полезны при стыковке частей из различных моделей в одной большой. Команды перемещения могут быть разделены на пять главных категорий  [c.110]

В технологическом отношении способы вытяжки необходигло различать главным образом по виду напряженного состояния деформируемой части заготовки. Геометрическая форма детали является в этом отношении вторичным признаком.  [c.83]

Обеспечение равномерного )заспределении скоростей по сечению рабочей зоны (камеры) технологических аннаратов полочного тина простыми способами, как правило, не представляется возможным. Это обусловлено главным образом ограниченностью габаритных размеров промышленных установок, вследствие чего очень часто исключается возможность применения достаточно плавных переходов от одного сечения подводящих и отводящих участков к другому, а также плавных поворотов, ответвлений и т. д. При наличии резких переходов, изгибов, ответвлений и других участков со сложными конфигурациями равномерная раздача потока по сечению может быть достигнута лишь при помощи специальных выравнивающих и распределительных устройств. Геометрические параметры и формы аппаратов, а также подводящих и отводящих участков, в реальных условиях очень разнообразны, поэтому различны степень и характер неравномерности потока II соответственно способы выравнивания его по сечению.  [c.10]

Однако применение того или иного материала по больщей части определяется условиями работы детали. Поэтому главным практическим средством увеличения жесткости является маневрирование геометрическими параметрами системы.  [c.205]

На поверхности зуба (рис. 13.15, а) глобоидного колеса можно выделить три характерные части. На участке II поверхность зуба является огибающей поверхности витка червяка, на ней располагаются контактные линии. На участках I и III поверхность зуба является линейчатой и воспроизводится режущей кромкой инструмента контактные линии на этих участках отсутствуют. Линия АВ, общая для участков II и III, смыкание которых происходит с переломом, находится в средней торцовой плоскости Q. В этой плоскости все зубья червячного колеса, охватываемые червяком, контактируют G червяком по этой линии на всей рабочей высоте витков. Часть зубьев червячного колеса, охватываемых червяком, помимо касания в главной плоскости имеет еще одну контактную линию, перемещающуюся по участку II поверхности зуба (некоторые положения этой линии /, 2, 3 показаны на рис. 13.15, а). Все контактные линии располагаются в направлении к центру колеса, вследствие чего векторы скорости скольжения образуют с ними углы ф, близкие к 90°, что способствует образованию >атойчивого масляного клина и определяют по сравнению с цилиндрическими червячными механизмами более высокую работоспособность. Геометрическое  [c.157]


На рис. 9.5 показаны положения главных максимумов от краев источника, которые располагаются по обе стороны главного максимума от центральной С точки на-щего источника на угловых расстояниях а. Промежуточные точки источника дают максимумы, располагающиеся между Л и Б. Если щель широкая, так что ф = = Х/Ь значительно меньще а, то изображение источника геометрически почти подобно источнику и лишь по краям окаймлено слабыми дифракционными полосами (вторичные максимумы). По мере уменьшения ширины щели ф увеличивается, приближаясь к а. Изображение источника становится более расплывчатым, и дифракционное уширение составляет все большую и большую часть геометрической ширины изображения. При очень узкой щели, т. е. при ф, значительно большем а, дифракционное уширение становится значительно больше, чем геометрическая ширина изображения, так что наблюдаемая картина мало отличается от картины, даваемой точечным источником.  [c.180]

Принцип функциональной взаимозаменяемости. Стандартизации подвергаются выходные параметры всех изделий, начиная от отдельных деталей, где имеются стандарты на размеры, форму, материал, прочностные и другие показатели, и кончая сложным агрегатом или машиной. Эти параметры выбираются не произвольно, а из стандартного ряда (класса) показателей. При изготовлении любого изделия, как известно, применяется принцип взаимозаменяемости, когда независимо изготовленные изделия могут быть собраны в узел и машину с установленными требованиями к ней. Если до последнего времени основным показателем взаимозаменяемости служила точность изготовления деталей и узлов, то сейчас принцип развивается в так называемую функциональную взаимозаменяемость [225]. Для ответственных деталей и составных частей (узлов) взаимозаменяемость необходимо соблюдать не только по размерам, форме и другим геометрическим параметрам и показателям механических свойств материалов, но и по выходным (функциональным,) параметрам, определяющим функциональные, динамические, эксплуатационные и другие характеристики изделия в целом. Установление связей между выходными параметрами изделия и параметрами отдельных элементов изделия и независимое изготовление деталей и узлов машины с требованиями (точностью), определяемыми исходя из допустимых отклднений выходных параметров, — одно из главных условий обеспечения функциональной взаимозаменяемости.  [c.425]

Применение образца малой длины имеет ряд преимуществ. Главное из них — исключение заметного проявления несущего эффекта смазочного масла в начале испытания, что скажется на малой величине износа. Так как обязательным условием испытания является хорошее геометрическое соответствие поверхностей вала и образца, последний заранее прирабатывают или подгоняют по форме вала при помощи специального инструмента, что сопряжено со значительной затратой времени и не всегда достигает цели из-за трудности в устранении исходных дефектов формы образца. Поэтому допускают часть пеприработанной поверхности, благодаря чему при испытании возможно постепенное увеличение площади поверхности трения и уменьшение давления, что может сказаться на результате. При малой длине образца устранить исходное геометрическое несоответствие вала и образца удается небольшой приработкой. Кроме того, применяя образцы малых размеров, можно получить высокие давления на машине малой мощности  [c.79]

Современные генераторы конструируются главным образом трёхфазными. Обмотка статора трёхфазного генератора состоит из трёх частей, имеющих сдвиг друг относительно друга на 120 электрических градусов (число электрических градусов равно числу геометрических, умноженному на число пар полюсов — р). Соединение фазных обмоток может быть выполнено звездой или треугольником. Схема трёхфазной однослойной обмотки с /я = 3, р = 2, q = 2, соединение групп катушек последовательное, фаз—звездой приведена на фиг. 47, тт т — число фаз, р — число пар полюсов, а (] — число пазов на полюс и фазу.  [c.534]

Пусть геометрическая форма лопаток н их установка на диске таковы, что система имеет прямую поворотную симметрию, обладая одновременно плоскостью зеркальной симметрии, нормальной к оси системы. Тогда взаимодействие между изгибными колебаниями лопаток в окружном направлении и колебаниями жестко закрепленного диска, недеформируемого в своей срединной плоскости, отсутствует. В этих условиях параметр связи равен нулю, взаимная интерференция частотных функций отсутствует, пересечения их сохранятся, и эта часть спектря основной системы качественно совпадет с соответствующей частью объединенного спектра парциальных систем. В то же время, связанность семейств изгибных колебаний лопаток в направлении оси системы с изгибными колебаниями диска сохранится, четко проявится взаимная интерференция соответствующих парциальных частотных функций. Сохранится она и для семейства крутильных колебаний лопаток. На рис. 6.13 приведен спектр собственных частот упругого диска, несущего радиально расположенные консольные стержни постоянного (прямоугольного) сечения. Здесь хорошо видна деформация спектра при изменении ориентации главных осей сечения стержней относительно оси системы. При (3=0 и 90" система приобретает прямую поворотную симметрию. При Р = 0° изгибная податливость жестко закрепленного в центре и недеформируемого в своей плоскости диска не сказывается на частотах изгибных колебаний стержней в направлении их минимальной жесткости, и частотные функции имеют точки взаимного пересечения (точки А и В, рис. 6.13). Здес -, взаимодействие колебаний стержней и диска отсутствует (х = 0), однако наблюдается сильная связанность колебаний диска и стержней в направлении максимальной жесткости последних. При р = 90 наблюдаются сильная связан-  [c.97]

Развитие кинематики в древности связано с кинема-тико-геометрическим моделированием движения небесных тел в астрономии, применением движения в геометрии (например, у Архимеда) п развитием общих физико-механических теорий, которое следует главным образом аристотелевской традиции. Все это в той или иной мере отразилось на характере трактата Герарда. Основной интерес Герарда направлен на исследование соотношений между движениями линий, площадей и объемов, которые рассматриваются последовательно в его трактате. Заметим, что, следуя античной традиции, под термином движение Герард часто понимает скорость. Говоря о равных движениях на дуге и равных движениях в точке он, очевидно, имеет в виду скорость равномерного движения. Сравнивая линии двух фигур, Герард вводит принцип соответствия между двумя бесконечными множествами элементов. Этот метод обнаруживает большое сходство с приемом Архимеда, который тот применил в Послании о методе , хотя этот трактат, по всей вероятности, не был известен в средневековой Европе. В согласии с этим приемом Герард рассматривает линии как совокупности точек, площади — как совокупности линий и т. д. Если поверхности равны п любые их линии, взятые в том же отношении, равны и если ни одна из так взятых линий не имеет большего движения, чем линии другой поверхности, то и сама поверхность не будет иметь большего движения . Герард всегда сравнивает перемещения, происходящие за равные промежутки времени.  [c.64]

Важным геометрическим параметром резца является главный угол в плане ф, который определяется между проекцией главной режущей кромки на ее основную плоскость и направлением скорости подачи. Вспомогательный угол в плане ф — это угол между проекцией вспомогательной режущей кромки на ее основную шюс-кость и направлением, противоположным вектору скорости подачи (см. рис. 1.5). При малом угле ф в работе участвует больщая часть режущей кромки резца, что улучщает отвод тепла, повыща-ет стойкость режущего инструмента, снижает износ резца. При большом угле ф ширина среза уменьшается, т. е. уменьшается активная длина режущей кромки, которая находится в непосредственном соприкосновении с заготовкой, увеличивается износ резца, поэтому снижается его стойкость. При обработке длинных нежестких валов все же применяют резцы с большими углами в плане (60...90°), так как при меньших углах возможно появление вибраций и недопустимых прогибов заготовки. При обработке жестких заготовок угол ф выполняется в пределах 30...45°. При меньших значениях угла в плане стружка получается тонкой и лучше завивается при одних и тех же глубине резания и подаче. Главный угол в плане для точения и растачивания рекомендуется  [c.11]



Смотреть страницы где упоминается термин Часть главная геометрического : [c.87]    [c.241]    [c.391]    [c.272]    [c.447]    [c.99]    [c.336]    [c.233]    [c.769]    [c.85]    [c.150]    [c.387]    [c.82]   
Динамические системы - 6 (1988) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте