Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентность волновая

Однородная турбулентность. Волновой, спектр Е(У1т,кО и Е у.т,кг ). P(tu)  [c.155]

Локально однородная турбулентность. Волновой спектр Е у.т, к ) и Еь у.т, кц) теперь является функцией предела интегрирования  [c.155]

Описанный механизм стохастичности по существу совпадает с известным обш,им описанием Л. Д. Ландау возникновения турбулентности течения жидкости через появление большого числа неустойчивых волновых мод [28].  [c.330]


Для определения интенсивности излучения достаточно рассмотреть звуковое поле на расстояниях, больших по сравнению с длиной волны Я (в волновой зоне ), эти расстояния велики и по сравнению с линейными размерами источника — турбулентной области ). Множитель XjR в подынтегральном выражении в этой зоне мох<но заменить множителем 1/г и вынести его из-под знака интеграла (г — расстояние точки наблюдения до начала координат, выбранного где-либо внутри источника) тем самым мы пренебрегаем членами, убывающими быстрее, чем 1/г, которые все равно не дают вклада в интенсивность уходящих на бесконечность волн. Таким образом.  [c.407]

Рис. Р4. Расширение волнового пакета при возникновении турбулентности в среде с 02 0 Рис. Р4. Расширение <a href="/info/22595">волнового пакета</a> при <a href="/info/203368">возникновении турбулентности</a> в среде с 02 0
Формально такое явление наблюдается при рассмотрении турбулентного течения. Однако существенное отличие состоит в том, что пульсационная составляющая распределения скорости определяется периодической структурой поверхности раздела волновой пленки жидкости, определяемой из решения уравнения Навье-Стокса, а следовательно, не носит характер случайной величины, как это имеет место при турбулентном течении. Такой характер распределения скорости, представленный формулой (1.3.12), вносит существенные коррективы в природу уравнения конвективной диффузии для волновой пленки. На самом деле, если два первых члена уравнения (1.3.8) по форме напоминают уравнение переноса вещества в гладкой жидкой пленке (при а => 0), то его третий член ответствен за волновую природу массообмена. Этот член но форме напоминает добавку к потоку вещества, обусловленную турбулентным переносом. Но как и для случая распределения скорости (1.3.12), эта добавка носит периодический, а не случайный как это имеет место при турбулентном потоке вещества.  [c.22]

Турбулентный режим. Как отмечалось ранее, течение волновой пленки жидкости и массообмен в ней имеет ряд характеристик, свойственных турбулентному режиму. Это, в первую очередь, наличие пульсационной составляющей в распределении скорости и турбулентного потока вещества в суммарном переносе субстанции. При турбулентном режиме подобные составляющие, в отличие от рассмотренных ранее при волновом течении, имеют случайный характер. Корреляция случайных величин (будь то скорости или концентрации) остается неизвестной, поэтому приходится пользоваться теми или иными моделями, отличающимися между собой как точность  [c.26]


Из графиков на рис. 8.7 видно, что с увеличением значений отношения давлений Р углы а и Р увеличиваются, т.е. от потенциального ядра струи жидкость отделяется более интенсивно с увеличением скорости истечения струи из сопла. С увеличением скорости истечения струи турбулентность жидкости, из которой состоит потенциальное ядро, увеличивается. В связи с тем что истекающая струя не ограничена твердыми стенками, волновые возмущения, образованные турбулентностью на поверхности потенциального ядра (см. рис. 4.3), как следствие этого увеличиваются. При увеличении амплитуды волн интенсифицируется отрыв от поверхности потенциального ядра частиц жидкости. Вследствие интенсификации отделения частиц жидкости от потенциального ядра, длина последнего уменьшается, т.е. увеличивается угол сужения р. Отделившиеся от потенциального ядра частицы жидкости разлетаются в пространство, заполненное газом, на более коротком расстоянии от сопла, что увеличивает угол расширения пограничного слоя струи а.  [c.195]

Струя разрушается под влиянием действующих на нее силы тяжести, сопротивления воздуха и внутренних сил, вызываемых турбулентностью струи и колебательно-волновым ха-  [c.114]

Частотный спектр, как указывалось выше, позволяет найти распределение пульсационной энергии для вихрей различных размеров, из которых складывается турбулентный поток. Экспериментально относительно просто определяется частотный спектр отдельных компонентов пульсаций, трехмерный спектр находится с помощью преобразования Фурье к измеренным корреляциям. Тем не ме-вее одномерный спектр во многих случаях является хорошим приближением к трехмерному (за исключением области малых волновых чисел.).  [c.270]

Интерес представляет картина движения отдельных частиц жидкости, расположенных в данный момент в различных местах волновой пленки. Наибольшей скоростью обладают частицы жидкости, находяш,ейся вблизи свободной поверхности гребней волн. В промежутках между гребнями, где толщина пленки минимальна, отдельные частицы жидкости останавливаются и даже приобретают на некоторое время обратное движение. Вместе с тем до чисел Рейнольдса, меньших 1600 сколь-нибудь заметного турбулентного перемешивания жидкости в пленке не наблюдается. Волновое течение представляет собой слоистое пульсирующее течение жидкости.  [c.165]

При значениях Ке, , > 1600 ламинарно-волновой режим течения пленки сменяется турбулентным. При этом так же, как и в обычных турбулентных потоках (например, в каналах), слой жидкости, непосредственно прилегающий к стенке, сохраняет черты ламинарного течения, а за пределами этого слоя пленки действует механизм турбулентного перемешивания. Это позволяет исключить из рассмотрения влияние волновых процессов, вязкости и поверхностного натяжения жидкости на касательные напряжения и связь между толщиной пленки и плотностью орошения. Анализ и результаты экспериментального изучения закономерностей течения тонких пленок показывают, что для свободно стекающей пленки можно записать равенство осредненных или локальных значений веса пленки и касательных напряжений на стенке в виде  [c.173]

Пример. Оценим значение Sq в переходной области от ламинарно-волнового течения к турбулентному. Пусть Re ,, = 1600. Жидкость — вода при Т = 20 °С.  [c.174]

Это уравнение пригодно не только для ламинарно-волнового, но и для турбулентного режимов течения.  [c.181]

Критерий начала аэрации получен на основе следующих теоретических соображений. Поток в начале быстротока характеризуется тем, что силы инерции значительно (в 10 раз и более) превышают силы сопротивления, поэтому на этом участке движение поверхностных слоев можно считать потенциальным. На поверхности раздела вода — воздух может возникнуть волновое движение в результате турбулентных возмущений, порождаемых вблизи дна и стенок и проникающих вплоть до свободной поверхности.  [c.246]


При взаимодействии сверхзвуковой струи с пластиной теплообмен осложняется еще действием волновой структуры потока, которая может дополнительно интенсифицировать теплообмен путем порождения турбулентности, отрыва потока от стенки и др.  [c.318]

Взаимодействие осесимметричной сверхзвуковой струи воздуха по нормали с пластиной. Теплообмен при взаимодействии сверхзвуковой струи с преградой, как и дозвуковой, осложнен совместным действием высокой интенсивности турбулентности, отрицательного градиента давления и дополнительно волновой структурой (может порождать турбулентность, обусловливать отрыв потока от стенки и пр.) [69]. Механизм переноса теплоты в указанных условиях до конца не ясен, поэтому теплоотдачу изучают экспериментально.  [c.399]

При конденсации на горизонтальной трубе диаметром (1 волновое и Турбулентное движение в пленке конденсата на практике не возникает ввиду малой протяженности поверхности по высоте и  [c.59]

С ростом расхода жидкости в пленке и увеличением скорости спутного движения пара в условиях ламинарно-волнового 50 < Rbj < 400 и турбулентно-волнового режимов движения пленки Reg > 400 при постоянной скорости пара Rej = (15—150)-10 , как было показано в предыдущем параграфе, минимальная толщина пленки резко убывает и в определенных условиях, особенно при низких давлениях, отрывной диаметр пузыря 10 > Smin- В условиях ОПЫТОВ ДЛЯ р = 0,06 МПа отрывной диаметр Йю в соответствии с опытными данными К. Нишикавы и др. [3.23] лежит в пределах от 1,8 до З мм,т. е. отрывной диаметр пузыря оказывается большим, чем максимальная толщина пленки бщах-  [c.107]

Теория турбулентно-волнового движения пленки вязкой жидкости, взаимодействующей на поверхности раздела фаз с потоком газа, еще не разработана. В этих условиях для расчета средней толщины пристенной жидкостной пленки обычно используют теоретический аппарат однофазного турбулентного пограничного слоя [9, 73, 74, 168]. Начало этому направлению положила работа Даклера [168], который предположил, что пленка жидкости, взаимодействующая с газовым потоком, ведет себя аналогично пристенному слою той же толщины на однофазном потоке, и использовал для расчета распределения профиля скоростей в пленке универсальные координаты =--f у ) и трехслойную схему Кармана [191]. Такой подход позволил установить следующую связь между толщиной и числом Рейнольдса для турбулентного режима течения пленки  [c.209]

В. М. Лятхера (1965—1968). В них построен обилий алгоритм расчета пространственно-временных спектров пульсаций давления на границе потока по заданному полю осредненной скорости и спектральным характеристикам пульсаций скорости. Выполненный, В. М. Лятхером (1965, 1967, 1968) анализ позволяет представить пульсацию давления на границе потока в виде суммы трех компонент турбулентной, волновой и вибрационной (связанной с подвижностью границ). В определенных условиях эти компоненты пульсации давления оказываются взаимосвязанными и не могут.рассматриваться изолированно. Однако такие случаи (изучаемые, в частности, при исследовании явлений гидроупругости) встречаются сравнительно редко (Л. А. Гончаров и Л. С. Максимов, 1963 М. А. Павли-хина, 1965 В. М. Лятхер, 1965). В обычных условиях отдельные компоненты пульсации давления могут рассматриваться самостоятельно.  [c.749]

Для вертикальных пучков при Яg>20гp"v", а также для горизонтальных пучков расчет производится при условии турбулентного волнового движения пара в пленке [12]  [c.61]

Саноян В. Г., Аноян А. К-, К вопросу о движении на носов в турбулентном потоке, сб. Исследование максимального сто ка, волнового воздействия и движения наносов , Изд-во АН СССР  [c.413]

Разнообразие волновых структур в активных средах проявляется и в сложных структурах конденсированных сред. Следует прежде всего рассмотреть аналогию волновой картины пластической деформации при упругопластическом переходе в вихреобразования в движущейся трубе жидкости при переходе от ламинарного течения к турбулентному. Этому неравновесному фазовому переходу отвечает критическое число Рейнольдса. С другой стороны, переход от упругой деформации (апало1- ламинарного течения) также является неравновесным фазовым переходом, возникающем в результате потери упругой устойчивости деформируемой конденсированной среды, проявляющаяся на различных масштабных уровнях. В обоих случаях переход структуры из одного устойчивого состояния в дру1ое сопровождается порождением aBTOBOjni, как способа диссипации энергии средой в критических точках (см. главу 1).  [c.254]

Вычислим полную интенсивность излучения. Плотность потока звуковой энергии в волновой зоне направлена в каждой точке вдоль направления п, а по величине равна q = p / p. Полная интенсивность получается умножением q на r do и интегрированием по всем направлениям п ). Фактически нас интересует, однако, не мгновенное пульсирующее значение интенсивности, а ее усредненное по времени значение (турбулентность предно-  [c.408]

В случае нелинейной зависимости фазы (частоты) от амплитуды график зависимости амплитуды возмущения а (х, Г ,)) принимает вид острых клиньев (рис. 1.3) [6 . При многомодовой неустойчивости возмущения, принадлежагцие широкой полосе спектра волновых чисел, возбуждаются и растут (рис. 1.4) [6]. Амплитуды симметричных относительно центра волнового пакета мод не равны одна другой. Энергия возмущения достаточно равномерно распределена по спектру возбужденного волнового пакета. Траектории первоначально близких систем расходятся экспоненциально. В системе развивается многомодовая турбулентность. Для количественной характеристики нелинейного взаимодействия возмущений, рассмотренного в обоих случаях, применялись показатели Ляпунова [11].  [c.12]


Несмотря на то, что при анализе волнового течения пленки жидкости и массообмена в ней формально соблюдаюз ея основные внешние признаки турбулентности -к осредненной скорости добавляется скорость пульсационного движения (1.3.12), а также добавка к потоку вещества, обусловленному турбулентным переносом (третий член уравнения (1.3.8)) - все эти добавки не носят случайный характер. К тому же, как показано ранее, при пленочном волновом течении соблюдается основной принцип самоорганизации (см. 1.1).  [c.22]

В первой области (О < Ке. <10/ имеет место регулярная картина н ней вихревые движения хотя опреде мются вязкостью, но являются трехмерными и наблюдаются по всей области. Структура движения характеризуется наличием длинных волокон с малой скоростью движения, чередующихся с областями больших скоростей. При вполне регулярной общей структуре волокна непрерывно разрушаются, приводя вначале к волновой конфигурации, а затем внезапно отбрасываются от стенки в область, где, соприкасаясь с внешним потоком, разрушаются, образуя типичную турбулентную беспорядочность. Процесс выброса является неупорядоченным и во времени, и в пространстве, происходит под различными углами от 0 до 26°, но всегда вниз по потоку. Распределение волокон и частота выбросов являются функцией числа Рейнольдса.  [c.25]

Развитое пристенное турбулентное движение рассматривается как движение двух кинематически и динамически взаимосвязанных вязкой и турбулентного сред, отличающихся друг от друга физико-механическими свойствами (вязкостью, теплопроводностью и диффузией). При определенных условиях образуется как бы двухфазная среда вязкая возле твердой поверхности и турбулентная - в основном потоке, при этом поверхность сред покрыта сложной системой волн (табл. 3.1, по Ф. Г. Галимзянову). Волновая поверхность раздела имеет пространственную трехмерную структуру. Волны сильно изменяются по дтине и амплитуде. Некоторые волны могут иметь амплитуду большутэ, чем толщина вязкой среды возле твердой поверхности. При движении турбулентной среды по кривым линиям тока, образованным волнами (рис. 3.1), возникают центробежные силы, которые уравновешиваются град-  [c.48]

В предельном случае модельная структура пристенного турбулентного движения состоит из трех элементов 1) вязкой среды возле твердой поверхности 2) крупномасштабных образований (крупномасштабная турбулентность), отрываюшцхся от вязкой среды в результате волнового взаимодействия вязкой и турбулентных сред и 3) турбулентной среды в основном потоке, состоящей из мелкомасштабной турбулентности, зависящей от предыстории движения/33-56/. Крупномасштабная турбулентность, разрушаясь, поддерживает мелкомасштабную турбулентность. Мелкомасштабная турбулентность стремится к однородной турбулентности однако крупномасштабные вязкие струи поддерживают неоднородную турбулентность. Таким образом, пристенная турбулентность генерируется в результате волнового взаимодействия вязкой среды с турбулентной и только в результате такого взаимодействия поддерживается эта турбулентность. Если бы на время удалось приостановить приток крупных образований в турбулентную среду со стороны вязкого подслоя, то в ядре потока образовалось бы движение, аналогичное молекулярному движению разреженных газов, т.е. со скольжением относительно твердой поверхности при этом имелось бы постоянное значение турбулентной вязкости. По-видимому, такое явление имеет место, но периодического характера. Наличие крупных образований между вязкой и турбулентной средами сглаживает это скольжение и образуется плавное изменение поля скоростей. Однако влияние вязких струй на турбулентное ядро потока с удалением от стенки уменьшается и при определенных условиях в ядре потока имеет место однородная турбулентность. При обычных экспериментальных исследованиях кинематические параметры на границе вязкой и турбулентной сред осредняются в пространстве и во времени /33-56/.  [c.51]

Таким образом, турбулентное движение - это многомодальное волновое движение вязкой сплошной среды, сопровождающееся хаотическим временно-пространственным разрушением и восстановлением структуры и стремящееся к однородной турбулентной структуре при больших возмущениях и молекулярной структуре при малых возмущениях /33 - 56/.  [c.51]

При Re,,,, = 5 -7 движение пленки ла.минарное, прн Re,,., > > 400 — турбулентное, а при промежуточных значениях—волновое. П. Л. Канина установил влияние сил поверхностного натяжения на ламинарное течение иленки, п))и котором случайные воз.мущения пр водили к волновому ее движению, Средняя толщина пленки оказалась меньше, что привело к увеличению коэффициента а на 21 % по сравнению с рассчитанным по формуле Нуссельта. Для вертикальных труб при лами 1арно-волновом течении а определяют по формуле (17.54), но при С 1,15. На горизонтальных трубах волновое и турбулент1юе течения пленки не образуются из-за . алой дл1 ИЬ пути, и расчет ведут по формуле (17.54).  [c.212]

В нер Бые про блема ламинарных пленок с гладкой поверхностью была подробно рассмотрена Нуссельтом. Позднее в работах Киркбрайта и С. С. Кутаталедзе была поставлена проблема турбулентных пленок. Проблема волнового стекания ламинарных пленок была поставлена П. Л. Капицей.  [c.103]

При свободном движении жидкости в пограничном слое температура жидкости изменяется от t до а скорость —от нуля у стенки, проходит через максимум и на большом удалении от стенки снова равна нулю (рис. 3-25). Вначале толщина нагретого слоя мала и течение жидкости имеет струйчатый, ламинарный характер. Но по направлению движения толщина слоя увеличивается, и при определенном ее значении течение жидкости становится неустойчивым, волновым, локонообразным и затем переходит в неупорядоченно-вихревое, турбулентное, с отрывом вихрей от стенки. С изменением характера движения изменяется и теплоотдача. При ламинарном движении вследствие увеличения толщины пограничного слоя коэффициент теплоотда-  [c.88]


Смотреть страницы где упоминается термин Турбулентность волновая : [c.218]    [c.205]    [c.135]    [c.203]    [c.406]    [c.13]    [c.27]    [c.55]    [c.85]    [c.179]    [c.213]    [c.29]    [c.402]   
Введение в теорию колебаний и волн (1999) -- [ c.436 ]



ПОИСК



Асимптотическое поведение корреляционного и спектрального тензоров однородной турбулентности в области больших масштабов (малых волновых чисел)

Коэффициент волнового сопротивления турбулентной

Коэффициент волнового сопротивления турбулентной динамический

Поведение спектра турбулентности в области очень больших волновых чисел

Распространение сферической волны и волнового пучка в турбулентной среде в пределах прямой видимости — случай слабых флуктуаций

Режим волновой турбулентный



© 2025 Mash-xxl.info Реклама на сайте