Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновой ламинарный режим течения

Волновой ламинарный режим течения  [c.232]

При значениях Ке, , > 1600 ламинарно-волновой режим течения пленки сменяется турбулентным. При этом так же, как и в обычных турбулентных потоках (например, в каналах), слой жидкости, непосредственно прилегающий к стенке, сохраняет черты ламинарного течения, а за пределами этого слоя пленки действует механизм турбулентного перемешивания. Это позволяет исключить из рассмотрения влияние волновых процессов, вязкости и поверхностного натяжения жидкости на касательные напряжения и связь между толщиной пленки и плотностью орошения. Анализ и результаты экспериментального изучения закономерностей течения тонких пленок показывают, что для свободно стекающей пленки можно записать равенство осредненных или локальных значений веса пленки и касательных напряжений на стенке в виде  [c.173]


Последующие теоретические и экспериментальные исследования позволили оценить корректность допущений, использованных в анализе. Как ясно из анализа 4.3, действительный волновой режим течения ламинарной пленки приводит к повышению интенсивности теплоотдачи и требует введения соответствующей поправки к формулам (4.37) и (4.37а). Согласно [13] эта поправка, предложенная Д.А. Лабунцовым, имеет вид  [c.178]

Основы теории устойчивости ламинарного течения тонкого слоя вязкой жидкости, имеющей свободную поверхность, были разработаны П. Л. Капицей [56], который показал, что при числах Рейнольдса, больших некоторого критического значения, энергетически более выгодным является ламинарно-волновое течение. Поставленное П. Л. Капицей и С. П. Капицей экспериментальное исследование [57] подтвердило это положение, показав, что существует некоторый минимальный расход, при котором на поверхности жидкости возникают волны. При расходах, меньших минимального, волновой режим течения не развивается, причем в этих условиях искусственно созданные волны затухают. В последующие годы вопросы устойчивости ламинарного движения по отношению к малым внешним возмущениям, которые,, наложившись на основное течение, могут либо усиливаться, либо затухать, аналитически изучались рядом авторов [3, 10, 11, 45, 46, 49, 86, 91, 96, 126, 147, 149, 156, 180, 214-217]. Появилось также большое число работ, в которых развитие волнообразования на поверхности жидких пленок изучалось экспериментально [4, 15, 16, 22, 25, 28, 29, 31, 32, 40, 51, 53-55, 57, 62, 63, 66,. 67, 75, 79, 84, 85, 92-94, 97, 106, 108, ИЗ, 116, 117, 120, 133, 137,, 139, 145, 151-154, 158, 167, 169, 172, 179, 187, 188, 190, 192, 200, 206, 208, 209].  [c.190]

На высокой (длинной) вертикальной поверхности и при значительных разностях температур Д Г = = 7" - Гс расход конденсата может возрасти настолько, что ламинарно-волновой режим течения жидкости на стенке в некотором сечении переходит в турбулентный. Из опытных данных известно, что смена режимов происходит при значениях  [c.244]

При ЯД Г > хАТ) имеет место смешанный режим течения на начальном участке длиной реализуется ламинарно-волновой режим, а на нижнем участке — турбулентный. Для смешанного режима течения конденсата средний коэффициент теплоотдачи определяется формулой  [c.244]

Применительно к условиям нисходящих тонкопленочных потоков различных жидкостей, в том числе и морской воды, для определения коэффициента теплоотдачи предложен ряд расчетных уравнений [49, 51, 81]. Для испарительных аппаратов опреснительных установок наиболее приемлемы уравнения, в которых учитывается режим течения пленки как показатель, в значительной степени определяющий интенсивность теплообмена. Как показывают исследования [79], теплообмен в нисходящем потоке при различных плотностях орошения, а следовательно, и при различных Rem протекает по-разному и зависит от числа Рг. В связи с этим в расчетах необходимо выделить два возможных режима течения пленки ламинарно-волновой и турбулентный. Рекомендации, приведенные в [56], позволяют оценить переход ламинарно-волнового режима течения пленки к турбулентному по уравнению  [c.159]


Если число Рейнольд са менее или равно 20--30, имеет место ламинарное течение жидкости в пленке. При Не>30- 50 течение волновое, и, наконец, при Ке>1500 наступает турбулентный режим течения.  [c.20]

Следовательно, режим течения пленки по всей высоте вертикальной трубы ламинарный. Поправка на волновой характер движения пленки Ег=1,20. Поправку на изменение физических свойств конденсата с температурой можно не учитывать из-за малости температурного напора /я—<0- С учетом поправки г, коэффициент теплоотдачи равен  [c.303]

Основное различие в подходах к решению задачи теплообмена при конденсации на вертикальной поверхности и в вертикальной трубе в условиях ламинарного режима течения пленки конденсата под совместным действием гравитационных сил, и касательных напряжений, возникающих на границе раздела фаз, заключается в способах определения и учета сил, действующих на пленку. Для упрощения решения, а также в связи со слабой изученностью влияния парового потока на движение пленки конденсата и теплоперенос в ней обычно пренебрегают влиянием того или иного фактора сил тяжести [6.40— 6.42], поперечного потока пара [6.43, 6.44 и др.] и т. д. Однако почти все работы по конденсации движущегося пара имеют характерный недостаток — касательные напряжения на границе раздела фаз определяются по формулам, рекомендуемым для сухих гладких или шероховатых поверхностей [6.44—6.48] и справедливым для двухфазного кольцевого течения лишь в случае чрезвычайно малой толщйны пленки, когда отсутствует волновой режим течения или амплитуда волн не превышает толщины ламинарного слоя парового потока. В остальных случаях волнового режима сопротивление трения во много раз превышает сопротивление для гладкой твердой поверхности, что должно соответствующим образом отразиться на характере течения пленки и теплопереноса в ней. Имеющиеся расчетные рекомендации по теплообмену в рассматриваемой области удовлетворительно обобщают опытные данные, по-видимому, за счет корректирующих эмпирических поправок. Поэтому естественно расхождение расчетных и опытных данных, полученных при конденсации паров веществ с иными теплофизическими свойствами и отношением Re VRe, даже при соблюдении внешних условий (Re", АГ, q,P).  [c.158]

Главное влияние на процесс теплообмена конденсирующегося пара со стенкой оказывает пленка конденсата, так как тепловое сопротивление ее отличается большой величиной вследствие низкой теплопроводности всех неметаллических жидкостей. Интенсивность отвода тепла от поверхности конденсации через пленку конденсата зависит от температурного напора, характера движения, физических свойств и толщины пленки. При вертикальном расположении трубы наблюдаются два основных режима движения пленки конденсата. В верхней части трубы пленка имеет ламинарный характер. Затем по мере увеличения ее толщины увеличивается скорость движения лленки и ламинарный режим двлжения ее переходит в турбулентный. При ламинарном движении пленки конденсата имеют место также два режима течения. В верхней части трубы наблюдается чисто ламинарное течение, а потом оно переходит в ламинарный волновой режим, при котором на поверхности пленки конденсата появляются капиллярные волны.  [c.271]

При обтекании плоской поверхности на начальном участке конденсации пленка оказывается весьма тонкой, режим течения в ней — ламинарным. С ускорением пленки и увеличением ее толщины наблюдается переходный ламинарный режим, при котором поверхность пленки является волновой. Такого рода течения были исследованы П. Л. Капицей [Л. 73], а позже В. Г. Левичем и В. К- Бушмановым. Волновой рел им течения пленки сравнительно легко переходит в турбулентный при наличии внешних возмущений, что было установлено П. Л. Капицей и С. П. Капицей с полнощью теневого метода.  [c.280]


В зависимости от величины числа Рейнольдса Ке = Q/ь, где Q — плотность орошения (т.е. объемный расход жидкости на единицу ширины пленки), течение жидкости в гравитационной пленке может осу-ш,ествляться в ламинарном, волновом и турбулентном режимах. Известно [5, 23, 180], что ламинарный режим теряет устойчивость при значениях критического числа Рейнольдса Ке = 2 Ч- 6. Однако известно также [23], что реальное появление волн наблюдается лишь начиная с точки, существенно смещенной вниз по потоку. Во всяком случае, даже для чисел Рейнольдса 6 Ке 400, соответствующих волновым режимам [5], значительная часть длины пленки будет без-волновой. Если учесть, что эта длина существенно превосходит длину начального участка, где происходит формирование стационарного профиля скорости и установление толщины пленки, то следует признать, что гидродинамические закономерности установившегося ламинарного течения пленки при равновесии вязких и гравитационных сил являются определяющими при расчете интенсивности массообмена во многих аппаратах. Таковы, например, широко распространенные в химической и нефтехимической промышленности насадочные абсорбционные и ректификационные колонны, где пленки стекают по поверхности насадочных тел, протяженность которых не превышает нескольких сантиметров (кольца Рашига, кольца Палля, седла Берля и др. [180]).  [c.21]

При этом возникают силы, стремящиеся вернуть жидкость к равновесию. При стекании пленок большое значение имеет сила, обусловленная поверхностным натяжением жидкости. Под действием восстанавливающих сил жидкие частицы стремятся вернуться к положению равновесия. Однако по инерции они будут проходить положение равновесия, вновь испытывать действие восстановительных сил и т. д. На это движение накладывается действие сил тяжести [Л. 133]. В результате на поверхности пленки, подвергшейся случайному возмущению, будут возникать волны. Волновые движения, возникающие разновременно в различных местах от случайных возмущений, налагаясь друг на друга, прив(5Нят к сложной трехмерной картине процесса. Ламинарно текущая пленка обладает неустойчивостью относительно возмущений с достаточной длиной волны (>б). При малых числах Рейнол 1Дса возникающие в слое возмущения сносятся вниз по течению. Если же число Рейнольдса пленки больше некоторого предельного Кеволн, то образуется устойчивый волновой режим.  [c.267]

Согласно [3-3, 3-25] лампнарно текущая пленка всегда обладает конвективной неустойчивостью относительно возмущений с длиной волны, намного большей толип-шы пленки. Наличие конвективной неустойчивости не означает невозможности осуществления ламинарного течения. При малых числах Рейнольдса возникающие в пленке возмущения сносятся вниз по течению и не приводят к образованию какого-либо устойчивого рел има. Если же число Рейнольдса пленки больше некоторого предельного ResonH, то образуется устойчивый волновой режим. При ReВОЛН такой режим невозможен.  [c.57]


Смотреть страницы где упоминается термин Волновой ламинарный режим течения : [c.191]    [c.47]   
Смотреть главы в:

Жидкометаллические теплоносители Изд.3  -> Волновой ламинарный режим течения



ПОИСК



Ламинарное те—иве

Ламинарный режим течения

Режим ламинарный

Режимы течения

Течение ламинарное



© 2025 Mash-xxl.info Реклама на сайте