Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость распространения колебани

С квантовой точки зрения лучистый поток представляет собой поток некоторых частиц—фотонов, энергия которых равна Tiv, где /1=6,62-10-3 Дж-с —постоянная Планка и v —частота колебаний эквивалентного электромагнитного поля. Напомним, что длина волны X связана с частотой v соотношением Xv= , где с—скорость распространения колебаний (в вакууме с=3-10 км/с).  [c.149]

Если бы фазовая скорость v, входящая в (4.3), не зависела от длины волны q, то (о была бы пропорциональна q и дисперсионной кривой (О (q) была бы прямая 1, показанная на рис. 4.1, г штриховой линией. Этот случай должен реализоваться для непрерывной среды. В цепочке же, построенной из упруго связанных атомов, т. е. имеющей дискретную структуру, короткие волны, которым отвечают более высокие частоты колебаний, распространяются медленнее, чем длинные. Иначе говоря, для тел с дискретной структурой должно иметь место явление дисперсии — зависимость скорости распространения колебаний от длины волны или, что то же самое, от волнового вектора q. Для простейшего случая линейной цепочки упруго связанных атомов зависимость v or q выражается следующим соотношением  [c.126]


Если принять, что фазовая скорость распространения колебаний в выражении для п равна динамиче-  [c.207]

Рассмотрим некоторые особенности работы компрессора при периодических колебаниях давления в его входном сечении. Из-за гидравлических сопротивлений и демпфирующих свойств ступеней колебания давления во входном [сечеиии доходят до выходного сечения компрессора ослабленными, причем степень этого ослабления (при отсутствии каких-либо резонансных явлений) должна увеличиваться по мере возрастания частоты колебаний. Кроме того, всякие возмущения давления передаются по тракту компрессора с конечной скоростью, в результате чего колебания давления на входе достигают выходного сечения с опозданием, т. е. со сдвигом фазы. Если бы проточная часть компрессора представляла собой простой канал, то скорость распространения волн давления по его тракту (относительно корпуса) складывалась бы из скорости распространения возмущений в неподвижной среде (т. е. скорости звука) и скорости потока. Но в действительности канал компрессора загроможден рабочими и неподвижными лопатками, которые затрудняют распространение звуковых волн, и поэтому скорость распространения колебаний давления от входа компрессора к выходу, по-видимому, близка к осевой скорости воздуха.  [c.164]

Скорость распространения колебаний с определяется как Частота колебаний /=  [c.317]

Со—скорость распространения колебаний в жидкости в см сек  [c.392]

Слс — скорость распространения колебаний в материале преобразователя.  [c.392]

Частота объёмных колебаний равна ov= s , где s—скорость распространения колебаний-, равная по порядку вели-  [c.156]

При выводе (40.10) мы не учитывали дисперсии фононов и анизотропии скорости распространения колебаний в кристалле.  [c.388]

Если бы волноводная система состояла из двух звеньев с различными значениями скоростей распространения колебаний, но с одинаковыми волновыми сопротивлениями  [c.224]

Акустическое сопротивление единицы поверхности называется удельным акустическим сопротивлением и является характеристикой данной среды. Из формулы (6.4) вытекает, что удельное акустическое сопротивление равно произведению плотности среды на скорость распространения колебаний  [c.173]

Первое теоретическое вычисление скорости звука было дано Исааком Ньютоном в его Принципах натуральной философии. Он нашел, что скорость распространения колебания давления прямо пропорциональна корню квадратному из упругой силы сопротивления воздуха сжатию и обратно пропорциональна корню квадратному из плотности среды. Выполнив вычисления, он получил величину 979 футов в секунду для скорости звука в воздухе на уровне моря при стандартных условиях и нашел, что это значение почти на 15% меньше, чем экспериментальное значение 1142 фута в секунду, выведенное из наблюдений над выстрелами из орудия. Ньютон объяснил расхождение присутствием в атмосфере взвешенных твердых частиц и паров воды.  [c.5]

Обозначим через и скорость распространения колебаний вдоль оси X. Тогда можно ввести автомодельную переменную f = X - ut,  [c.32]

VI и V2 соответственно. Источник и прибор движутся вдоль соединяющей их прямой скорость распространения колебаний равна а. Найти число у колебаний, регистрируемых прибором в единицу времени. (Эффект Доплера.)  [c.21]


Скорость распространения колебаний 98, 100  [c.363]

Vf — фазовая скорость распространения колебаний этой частоты в диэлектрике  [c.44]

Ультразвуковые расходомеры. Они основаны на взаимосвязи между скоростью измеряемого потока и скоростью распространения звуковых колебаний между двумя точками трубопровода. Первичный преобразователь такого расходомера представляет собой отрезок трубопровода с установленными на его стенках двумя пьезоэлектрическими датчиками, играющими роль излучателя и приемника высокочастотных колебаний. Измеряемым параметром может быть сдвиг фаз или разность частот колебаний, направляемых по потоку или против него. Как указывается в работе [13], основные источники погрешностей ультразвуковых расходомеров следующие а) изменение скорости распространения колебаний из-за изменения плотности потока б) отражение ультразвукового луча в) зависимость показаний от числа Не (вследствие того, что фактически измеряется не средняя по сечению трубы скорость, а средняя скорость вдоль ультразвукового луча). Электронно-акустическая аппаратура 372  [c.372]

По квантовой теории излучение представляет собой поток частиц — фотонов, энергия которых равна /гу, где /1 = 6,62-10- 4 Дж-с — постоянная Планка, а V — частота колебаний эквивалентного электромагнитного поля, связанная с длиной волны А, соотношением у = с Х, где с — скорость распространения колебаний (для вакуума с— =3-105 км/с).  [c.68]

Строго говоря, направление преломленного луча при этом не будет прямолинейным поскольку пучок УЗК является расходящимся, то вследствие различия скорости распространения колебаний в направлении оси пучка и крайних его лучей при крупнозернистой структуре должна иметь место рефракция — луч будет искривляться в сторону направления минимального значения модуля упругости.  [c.67]

Теперь рассмотрим продольные колебания стержня, В этом случае направление удара перпендикулярно направлению длины стержня, поэтому смещение различных точек происходит перпендикулярно длине. Таким образом, в этом случае возбуждаются поперечные колебания. Следовательно, хотя в стержне имеют место продольные колеба ния, скорость распространения колебаний определяется не формулой (4-1-4) и=К /р, а формулой (4-2-13), по  [c.249]

В рассматриваемом случае допустимо пренебречь величиной е, так как значение е для различных сталей колеблется в пределах (1,4—5)-10" Тогда скорость распространения колебаний равна  [c.312]

Формование на установках с вибрирующим днищем состоит в послойном уплотнении укладываемой в форму бетонной смеси вертикально направленными колебаниями поддона формы. Сообщаемый контактному слою бетонной смеси вибрирующим днищем импульс распространяется в направлении верхней поверхности смеси. Скорость распространения колебаний зависит от упруговязких свойств смеси и параметров колебаний.  [c.112]

Конечно в поведении рассмотренной модели и в поведении реальной шины имеются и отличия. Так, например, благодаря наличию упругого протектора, ударное усилие на входе в контакт при сверх-критических скоростях будет не сосредоточенным, а распределенным на некотором участке (см., например, фиг. 3). Однако рассмотренная модель позволяет с полной очевидностью подтвердить высказанное ранее предположение, что критической скоростью шины является скорость распространения колебаний по ее окружности. Установлению зависимости этой скорости от конструкции шины и внутреннего давления в ней посвящен следующий раздел.  [c.338]

СКОРОСТЬ РАСПРОСТРАНЕНИЯ КОЛЕБАНИЙ 267  [c.267]

Длина волны. Скорость рас-аространевия волны. Скорость распространения колебаний о в пространстве называется скоростью волны. Расстояние между ближайшими друг к другу точками, колеблюпхимися в одинаковых фазах (рис. 221), называется длиной волны. Свяаь между длиной волны X, скоростью волны  [c.222]

Более общие и полные комбинированные методы определения скорости звука основаны на комплексном подходе к этой задаче. Комбинированные методы использованы в исследованиях К- Осва-тича, А. Виглина и др. [Л. 28, 224]. В этих работах совместно решаются уравнения движения, неразрывности, состояния н кинетики процесса. В результате получаются формулы для фазовой скорости распространения колебаний, которые зависят от частоты, формы и амплитуды колебаний, дисперсности и других факторов.  [c.86]

Если ультразвуковой луч падает на границу раздела сред под углом, отличным от прямого, то наряду с отражением наблюдается преломление, причем отношение синусов углов падения, отражения и преломления равно отношению скоростей распространения колебаний соответствующего вида в первой и второй средах. Если pi i< <Р2С2, то при переходе продольных упругих волн из одной твердой среды в другую кроме двух отраженных лучей будут наблюдаться и два преломленных (рис. 4.10). Углы падения, отражения и преломления связаны следующим соотношением  [c.119]

Из модели, представленной на рисунке 12.2, б, видно, что скорость распространения колебаний маятников зависит от жесткости k пружины и массы т маятников. Действительно, если жесткость пружины бесконечно велика, то при выведеши из положения равновесия одного маятника одновременно сдвинутся и все другие маятники. Это означает, что скорость распространения колебаний (волны) бесконечно велика. И наоборот, при жесткости пружины, раВ>Гой нулю, колебания не передаются от маятника к маятнику, т. е. скорость волны равна нулю. Отсюда видно, что скорбеть волнового процесса тем больше, чем больше упругость пружин. Если при одних и тех же пружинах массу каждого маятника увеличить, то скорость волнового процесса уменьшится. Действительно, для одного и того же смещения (за данный промежуток времени) в случае большей массы нужна и ббльшая сила, т. е. ббльшая деформация пружины. Увеличение же деформации пружины означает, что первый маятник должен удалиться от положения равновесия дальше и затратить на й то больше времени, чем в случае маятников малых масс.  [c.359]


Рассмотрим подробнее интерференционные условия в случае испускания фоыона. Ради простоты мы не будем учитывать дисперсию фононов и анизотропию скорости распространения колебаний, т. е. положим iiia=sf, где s — скорость звука. Из (40.7) и (40.5) легко вывести, что  [c.386]

При решении вопроса о напряжениях, возникающих в случае продольного удара призматических стержней, обыкновенно пользуются приближенными формулами такого же вида, как мы получили для поперечного удара [(а) и (Ь) 44], но уже Томас Юнг заметил, что влияние массы стержня должно быть учитываемо более рациональным способом, чем это делается при выводе приближенной формулы. Он, между прочим, показал, что, как бы ни был мал ударяющий груз, при ударе возникнут остаточные деформации, если только отношение скорости ударяющего груза V к скорости распространения колебаний в стержне (скорости распространения звука) превосходит относительное удлинение, соответствующее пределу упругости материала. В самом деле, в момент удара по плоскости соприкасания в стержне возникнут сжимающие напряжения и соответствующее им сжатие будет распространяться со скоростью звука вдоль стержня. Возьмем весьма малый помежуток времени за который можно считать скорость V падающего груза не изменившейся. За этот промежуток сжатие в стержне распространится на протяжении участка (рис. 83). Укорочение этого участка будет равно перемещению падающего груза vt. Следовательно, относительное сжатие в момент удара равно  [c.361]

При подходе ударной волны к некоторой точке давление, плотность и другие характеристики среды в этой точке резко (скачкообразно) возрастают. Скорость распространения ударной волны превышает скорость распространения колебаний звуковых частот и зависит от условий возникновения ударной волны, выделения энергии в начале разряда, плотности среды, геометрии канала и ряда других факторов. По мере удаления фронта волны от источника энергии в результате рассеивания энергии давление падает, а скорость приближается к скорости распространения колебаний звуковых частот. Так, например, скорость движения фронта ударной волны в воде при средних мощностях на 1 см длины КЯНЯ.ЛЯ порядка нескольких десятков тысяч киловатт мало отличается от скорости распространения звуковых колебаний вблизи канала разряда. На малых расстояниях от оси канала, не превышающих Уз длины искрового промежутка, ударная волна имеет цилиндрическую симметрию, соответствующую симметрии канала разряда, а на больших расстояниях — сферическую, как от точечного источника. С переходом в область сферической симметрии резко возрастает рассеяние энергии ударной волны.  [c.284]


Смотреть страницы где упоминается термин Скорость распространения колебани : [c.30]    [c.126]    [c.251]    [c.428]    [c.275]    [c.496]    [c.392]    [c.395]    [c.399]    [c.211]    [c.150]    [c.152]    [c.100]    [c.44]    [c.312]    [c.83]    [c.255]    [c.77]   
Теория упругости Изд4 (1959) -- [ c.98 , c.100 ]



ПОИСК



Звук создается колебаниями. Конечная скорость распространения звука. Скорость звука не зависит от высоты Опыты Реньо. Распространение звука в воде Опыт Уитстона Ослабление звука при увеличении расстояния Ноты и шумы. Музыкальные ноты создаются периодическими колебаниями Сирена Каньяр де ла Тура Высота тона зависит от периода Соотношения между музыкальными нотами. Одно и то же отношение периодов соответствует одинаковым интервалам во всех частях гаммы. Гармонические шкалы Диатоническая гамма. Абсолютная высота. Необходимость темперации. Равномерная темперация. Таблица частот. Анализ Ноты и тоны Качество звука зависит от гармонических обертонов. Ненадежность разложения нот на составляющие только при помощи уха Простые тоны соответствуют колебаниям маятника Гармонические колебания

Колебания ультразвуковые скорость распространения

Поперечные колебания, скорость распространения

Продольные колебания скорость распространения

Распространение колебаний

Скорость волны. Общее решение задачи о распространении волны Начальные условия. Граничные условия. Отражение на границе Струны конечной длины Простые гармонические колебания

Скорость иульсационная 475Скорость распространения в газезвуковых колебаний

Скорость распространения



© 2025 Mash-xxl.info Реклама на сайте