Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура стали: изменение при отпуск

Структура стали изменение при отпуске  [c.1653]

Структурные изменения при отпуске вызваны распадом мартенсита и выделением карбидов. На микрофотографиях 352/3—8 показаны микроструктуры после отпуска при 280, 340 и 480° С. Игольчатое строение сохраняется, однако после травления структура выглядит более темной. Микроструктуры после отпуска при 280 и 340° С трудно различить. Тем не менее, приведены микрофотографии обеих структур для сравнения со структурой низкокремнистых сталей (№ 118) с тем же содержанием углерода (ф. 342/1, 2, 4, 5 343/1, 2). После одинаковых термических обработок в низкокремнистых сталях происходят более значительные изменения.  [c.20]


Отпуск — это процесс термической обработки, связанный с изменением строения и свойств закаленной стали при нагреве ниже критических температур. При отпуске происходит распад мартенсита (пересыщенного твердого раствора С в а-Ре после закалки) и остаточного аустенита. Вследствие перехода к более устойчивому состоянию образуются структуры продуктов распада УИ и Л, смеси а-Ре и карбидов. При этом повышаются пластичность и вязкость, снижается твердость и уменьшаются остаточные напряжения в стали.  [c.107]

Рентгенографические исследования [100, 109] подтверждают, что непосредственно в процессе деформирования стали по режиму ВТМО происходит выделение углерода и одновременное дробление блоков аустенитных зерен. Однако у стали, не прошедшей отпуска, последний эффект не проявляется, поскольку он перекрывается более сильным эффектом, связанным с обеднением аустенита углеродом при деформации. При сравнительно небольших степенях обжатия (до 30%), не вызывающих значительного выделения углерода из твердого раствора, но приводящих к его деформационному упрочнению, снижается способность аустенита к образованию полос сдвига. А именно полосы сдвига при их образовании являются потенциальными центрами кристаллизации (для последующего мартенситного превращения). Все это приводит к увеличению остаточного аустенита после таких режимов ТМО, что было отмечено также в ряде других работ [106, 120 и др.]. При больших степенях деформации решающую роль в рассматриваемых процессах приобретает другой фактор — обеднение аустенита углеродом. В результате точка мартенситного превращения повышается, а количество остаточного аустенита в структуре стали уменьшается [100]. Такое изменение соотношения фазовых составляющих приводит к повышению не только прочности, но и пластичности стали при некоторых средних значениях обжатия после ВТМО наблюдается максимум пластичности, что соответствует состоянию, когда после закалки сохраняется наибольшее количество остаточной у- или р-фазы (для сплавов на основе титана) [100, 130, 134].  [c.82]

При глубоком травлении закаленных сталей выявляется особенно плотная и гладкая картина. От нее отличается картина глубокого травления улучшенных сталей. Влияние отпуска становится заметным в интервале температур от 150 до 400° С. Повышение температуры отпуска до 650° С не приводит к дальнейшим изменениям. Выявленная глубоким травлением структура стали после неполного отжига выглядит более грубой. Если глубоким травлением закаленной стали выявлены трещины, то трудно установить, вызвано ли их появление обработкой горячими кислотами или они являются закалочными трещинами. Даже после отпуска при 350—400° С все еще могут появляться трещины.  [c.44]


Одинаковые свойства (ударная вязкость, вид излома и твердость, а также критическая температура хрупкости) могут быть получены на двух сталях за счет изменения количества мартенсита в структуре. В качестве условных критериев могут быть приняты характеристики стали 40Х. После отпуска на твердость HR = 35 сталь 40Х с 60% мартенсита при температуре +20° С имеет ударную вязкость 3,9 /сг/сж  [c.115]

Низкий отпуск заключается в нагреве закаленной стали до 150—250 °С, непродолжительной выдержке (от 30 мин до 1,5 ч) при этой температуре и последующем охлаждении деталей в машинном масле или на воздухе. При этом в структуре стали остается мартенсит с измененной кристаллической решеткой. После низкого отпуска твердость поверхности практически не изменяется, но уменьшаются остаточные закалочные напряжения и несколько повышается вязкость. Такой вид отпуска применяют для режущего и измерительного инструмента (например, сверл, метчиков, плашек, калибров, скоб, шаблонов).  [c.257]

Термическую обработку сталей проводят обычно на вторичную твердость для получения хорошей теплостойкости (520—540 О, об уровне которой можно судить по изменению твердости при отпуске (табл. 43). Необходимость использования высоких температур закалки связана с высокой термостойкостью карбидов MgG и МС, растворяющихся выше 1050 С. После закалки в структуре сохраняется 6—12 % карбидов, что позволяет получить зерно аустенита 10—12. Количество остаточного аустенита после закалки 20—30 %.  [c.645]

Операция термической обработки, при которой путем нагрева ниже критической точки выдержки и последующего медленного или быстрого охлаждения неустойчивые структуры мартенсита и остаточного аустенита, полученные при закалке, превращаются в более устойчивые и происходит снижение внутренних (остаточных) напряжений и изменение механических свойств, называется о т-п ус ком стали. В процессе отпуска структура закаленной стали при низких температурах переходит в отпущенный мартенсит,  [c.245]

Отпуск стали оказывает существенное влияние на ее механические и служебные свойства. При низких температурах отпуска (до 250 °С) уменьшается склонность стали к хрупкому разрушению. Прочность и вязкость стали при низкотемпературном отпуске (до 250 °С) несколько возрастает из-за уменьшения внутренних напряжений и изменений структуры стали.  [c.442]

Изменение структуры мартенситно-аустенитной стали при отпуске  [c.186]

Детали подшипников подвергают типичной для заэвтектоидных сталей термической обработке неполной закалке от 820 — 850 °С и низкому отпуску при 150 — 170 °С. После закалки в структуре сталей сохраняется остаточный аустенит (8 - 15%), превращение которого может вызвать изменение размеров деталей подшипников. Для их стабилизации прецизионные подшипники обрабатывают холодом при -70. .. — 80 °С. Окончательно обработанная подшипниковая сталь имеет структуру мартенсита с включениями мелких карбидов и высокую твердость (60 - 64 HR ).  [c.337]

Под влиянием изменения структуры стали, протекающего, в зависимости от температуры и времени отпуска, существенно изменяются сопротивление сталей хрупкому разрушению и вязкость, каким бы показателем, пригодным для оценки, их не характеризовали. На рис. 21 показано изменение показателей вязкости инструментальных сталей, полученных различными способами, в зависимости от температуры и продолжительности отпуска. Естественно, что предел текучести сталей (твердость) зависит также от этих структурных изменений, хотя и не в такой мере, как вязкость. На основе экспериментальных результатов для каждой стали можно подобрать такую оптимальную комбинацию параметров термообработки (температура и продолжительность аустенитизации, температура и продолжительность отпуска), при которой показатель, характеризующий структуру стали, сложившуюся под ее воздействием (будь то удельная работа разрушения или вязкость разрушения), будет максимальным и предел текучести также будет наибольшим. В этом состоянии распределение выделений по размеру и по объему стали сравнительно равномерно и за время заданного срока службы инструмента это распределение, а также распределение легирующих между матрицей и карбидами остаются практически неизменными.  [c.42]


D) Неверно. При отпуске в стали протекают фазовые и структурные превращения, а изменение структуры всегда влечет за собой изменение свойств.  [c.92]

Низкий отпуск проводится при температуре 120. .. 250 °С. Продолжительность выдержки при отпуске устанавливается из условий обеспечения стабильности свойств стали и объемных изменений деталей при эксплуатации, Обычно выдержка тем длиннее, чем ниже температура отпуска. Она может длиться от 0,5 до 15 ч. Цель низкого отпуска состоит в сохранении высокой твердости и уменьшении остаточных напряжений, возникших при закалке. При отпуске получают структуру - мартенсит отпуска. Низкому отпуску подвергают инструментальные, углеродистые и легированные стали, а также детали, прошедшие перед закалкой цементацию, нитроцементацию, или детали, подвергнутые поверхностной закалке.  [c.629]

Естественно, что использовать различие в плотностях анодных токов для рассматриваемой цели можно лишь в том случае, когда увеличение плотности анодного тока обусловлено исключительно избирательным растворением материала границ зерен, в частности, обедненных хромом. Если же в структуре стали, например, в результате длительного отпуска произошли изменения, приведшие к выпадению карбидов хрома и в теле зерна, то прирост анодного тока будет характеризовать суммарный эффект избирательного растворения всех участков, обедненных хромом, а не только сосредоточенных по границам зерен [148, 149]. Однако выделение карбидов хрома в зерне становится возможным лишь в результате очень длительных отпусков [148], существенно превышающих продолжительность провоцирующего отпуска, обычно рекомендуемого при выявлении МКК (ГОСТ 6032-58).  [c.54]

В отличие от закалки, при которой окончательная структура формируется в процессе охлаждения, при отпуске формирование структуры происходит во время выдержки при температуре, поэтому скорость охлаждения после отпуска не вносит изменений в структуру и свойства углеродистой стали. Длительность выдержки при отпуске составляет обычно от 0,5 до 1,5 ч.  [c.110]

Изменение структуры стали при отпуске вызывает изменение механических свойств. На рис. 57 приведены кривые, характеризующие изменение механических свойств закаленной углеродистой стали 40 в зависимости от температуры отпуска.  [c.97]

Внутренние напряжения, возникшие в результате обработки, ухудшают в большинстве случаев эти свойства. Далее при гальванической обработке необходимо учитывать возможные изменения структуры стали, вызванные термической обработкой (закалкой, цементацией, отпуском и др.), так как характеристики прочности гальванически обработанных материалов почти во всех случаях с повышением напряженности структурной решетки ухудшаются. Кроме перенапряжений структурной решетки, обусловленных термической обработкой, к внутренним напряжениям приводят также нарушения в строении материала, вызванные местными пороками, посторонними включениями и т. д. Изменение структуры материала может быть вызвано и механическими нагрузками от наклепа в процессе изготовления. Так, изготовленный с помощью холодной обработки корпус (например, отражатель прожектора) из относительно однородной а-ла-туни испытывает большие внутренние напряжения, вызванные растяжением его структурной решетки, которые отрицательно влияют на строение и технологические свойства покрытия. При напряженном режиме обработки также возникают внутренние напряжения, которые как по величине, так и по направленности мало изучены. При больших давлениях резания обрабатываемая поверхность подвергается холодной деформации и наклепу. Наклеп поверхности, происходящий при шлифовании с чрезмерно большой подачей, дополненный местным перегревом, приводит иногда к шлифовальным трещинам, вызванным неподдающимися учету нагрузками, и почти всегда вредно действует на последующую гальваническую обработку.  [c.153]

При сквозной закалке свойства стали по всему сечению изделия одинаковы. При несквозной закалке изменение структуры стали по сечению способствует соответствующим изменениям свойств. Распределение твердости по сечению закаленных цилиндров из стали, содержащей 0,4 o С 0,4% С и 1,0% Сг и 0,4%С, 3,5% Ni и 1,5% Сг, показано на рис. 146. При несквозной прокаливаемости твердость падает от поверхности к сердцевине. При полной прокаливаемости на мартенсит твердость по всему сечению одинакова. На рис. 146 показана твердость полумартенситной зоны [HR 50 М), которая показывает, что углеродистая сталь в данных условиях обработки имеет критический диаметр 25 мм, хромистая более 50 мм и хромоникелевая более 125 мм. При несквозной прокаливаемости отпуск при высокой температуре значительно уменьшает различие в твердости и пределе прочности по сечению. Однако предел текучести, ударная вязкость и относительное сужение в сердцевине  [c.221]

С) для получения троосто-сорбитной или сорбитной структуры основной мегаллической массы. Структурные изменения при отпуске закалённого чугуна в основном аналогичны изменениям при отпуске закалённой стали.  [c.541]

Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в больщинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости пе восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали.  [c.16]


Изучение изменений в дислокационной структуре металла отливок из стали 15Х1М1ФЛ показывает, что в эксплуатации протекают разупрочняющие процессы, влияющие на жаропрочные свойства стали. После длительной (более 10 ч) эксплуатации при температуре 540—550 °С в структуре стали наблюдают- ся как зародыщи рекристаллизации, так и свободные от дислокаций рекристаллизованные объемы. Идет процесс роста карбидных астиц с одновременным уменьщением плотности дисперсных карбидов. За счет этих процессов в структуре стали происходят заметные изменения. Рекристаллизация приводит к обособлению феррита в зернах игольчатого сорбита отпуска. Происходит также преобразование фрагментированного сорбита отпуска в бесструктурный. Обособление феррита приводит к возрастанию неоднородности структуры и как следствие — к  [c.38]

По-видимому, изменение температуры отпуска может впоследствии влиять на характер распространения трещины [36, 41]. При этом важно учитывать необходимость совместимости характера растрескивания и типа микроструктуры. Например, нецелесообразно получать мелкодисперсную структуру внутри зерна, если индуцированное средой растрескивание является межкристаллит-ным. Именно таким несоответствием может объясняться, в частности, тот факт, что аусформинг существенно повышает стойкость КР стали ПбаС, но очень слабо влияет на сталь Н -11, тогда как вязкость стали возрастает в обоих случаях [48]. Отпуск названных сталей производится при существенно различных температурах (эти данные полезно сопоставить с данными рис. 7).  [c.63]

В результате отпуска сталей Н16 и Н25 при 43Q° G, I ч происходит значительное уменьшение ширины линий интерференции. Разделение эффекта уширения интерференционных линий за счет наличия микроискажений и малости областей когерентного рассеяния позволило установить, что резкое уменьшение ширины линий, наблюдаемое при отпуске сталей Н1б и Н25 в основном связано с уменьшением величины неоднородных микроискажений. Так, в сплаве Н25 отпуск при 430° G приводит к снижению Дй/о с 2,8 до 0,3 х 10 [68 J. Размер же областей когег рентного рассеяния и твердость остаются практически неизменными (рис. 50), а предел текучести несколько- возрастает. Аналогичная закономерность в характере изменения характеристик тонкой структуры и механических свойств при отпуске наблюдается  [c.119]

Была получена зависимость ширины линии (112) от длительности отпуска для стали 50ХГ, применяемой для изготовления рессор автомобиля. Оказалось, что при увеличении длительности отпуска ширина линии (112) практически не изменяется, н, следовательно, нет оснований предполагать наличие каких-либо особо глубоких изменений структуры сталей. На этом основании длительность отпуска была сокращена с 90 до 30 мин. Испытания рессор показали практическую целесообразность проведенного сокращения длительности отпуска.  [c.28]

Было установлено [321], что после НТМО стали конструкционного типа (0,45—0,6% С 1,8% Сг 2,3% Ni 1% W 1% Si), карбиды более дисперсны и число их меньше по сравнению с обычной термической обработкой. Карбидообразование при высоком отпуске идет интенсивнее после НТМО, карбиды получаются крупнее. Эти данные указывают на взаимодействие дефектов структуры после ТМО с дисперсными карбидами. После НТМО нержавеющей хромистой стали и других со вторичным твердением (1X12, Н2ВМФ и ВНС6) отмечена высокая устойчивость структурных изменений решетки мартенсита при отпуске вплоть до температуры обратного перехода а- у сохраняется меньшая величина областей когерентного рассеивания по сравнению с обычной закалкой и анизотропия тонкой структуры, что определяет высокую прочность стали такого типа после НТМО до высоких температур [291, 323].  [c.330]

Изменение объема стали ХВГ при закалке вызывается структурными превращениями, так как мартенсит, содержащий около 1 % С, занимает больший объем (примерно на 1 %), чем исходный перлит. Для устранения увеличения объема и вызываемой им деформации при закалке инструмента необходимо, чтобы при его исходной (до закалки) перлитной структуре структура после закалки состояла не только из одного мартенси га, имеющего больший удельный объем, чем перлит, но и из остаточного аустенита, имеющего меньший удельный объем. Сохранение при закалке некоторого количества остаточного аустенита компенсирует увеличение объема стали ХВГ, закаливающейся в масле. Величина деформации при закалке зависит от химического состава стали, но она может быть уменьшена еще предварительной термической обработкой — закалкой в масле и высоким отпуском при 700°С. Такая термическая обработка уменьшает деформацию при окончательной закалке с низким отпуском.  [c.371]

Дефектом неправильной термической обработки быстрорежущей стали является чрезвычайно крупнозернистый так называемый нафталиновый излом (фиг. 229) он юявляется ббычно после повторной закалки без предварительного отжига. По исследованиям В. Д. Садовского и других, при образовании аустенитной структуры объемные изменения вызывают ее пластическую деформацию и наклеп. Последующая рекристаллизация, происходящая при очень высокой температуре и связанная с состоянием карбидных частичек, может сопровождаться гигантским ростом зерна и образованием нафталинового излома. Увеличение скорости нагрева при перекалке позволяет избежать разрастания зерна. Вообще нафталиновый излом устранить трудно, напрймер, для его устранения необходимо шестикратное повторение операции отпуска При 760° С и изотермического отжига.  [c.383]

Кроме того, упрочнению только в результате дисперсионного твердения подвергаются некоторые ферритные и аустенитные стали и сплавы. Следует отметить, что в упрочнение при термической обработке быстрорежущих и штамповых сталей, испытывающих при закалке мартенситное превращение, образование мартенсита вносит определенный вклад. При последующем высоком отпуске, обеспечивающем дисперсионное твердение, упрочнение в результате мартенсит-ного превращения частично снимается, но мартенситнаи структура стимулирует процесс выделения дисперсных избыточных фаз. То же можно сказать и о мартен-ситно-стареющих сталях. Упрочнение ферритных и аустенитных сталей и сплавов полностью обеспечивается только за счет дисперсионного твердения. В настоящее время применение мартенситио-стареющих, ферритных и аустенитиых сталей и сплавов в качестве инструментальных материалов ограничено, но существует тенденция к расширению их использования. Отличительными признаками этих материалов являются повышенная теплостойкость и небольшое изменение размеров в процессе термической обработки.  [c.369]

При обработке холодом до температуры —70° С довольно интенсивно продолжается мартенситное превращение, повышается твердость стали, но не изменяется состав твердого раствора и таким образом не изменяется теплостойкость. При этом образуется более равномерная структура стали, что в отдельных случаях оказывает благоприятное влияние на прочностную стойкость инструментов. Однако не следует забывать об отпуске после обработки холодом. Во Время отпуска закаленной быстрорежущей стали при низких температурах (150—350° С), таких же, как у эвтектоидных и доэвтекто-идных инструментальных сталей, начинается распад мартенсита, уменьшается содержание растворенного углерода (см. табл. 84), выделяются карбиды МвзС, уменьшаются искаженность кристаллической решетки мартенсита, внутренние напряжения и удельный объем, происходит снижение твердости на HR 3—6. Изменение твердости быстрорежущей стали R6, закаленной от различных температурах нагрева, в зависимости от температуры отпуска представлено на рис. 191. Для сравнения на рисунке показаны кривые отпуска ледебуритной инструментальной стали с 12% Сг (сталь марки К1) и эвтектоидной инструментальной стали S81. На первом и втором участках характер кривой быстрорежущей стали подобен характеру кривых нелегированной инструментальной стали, При дальнейшем увеличении температуры отпуска в быстрорежущих сталях в интервале температур 450—600° С при дальнейшем распаде твердого раствора уменьшение твердости сменяет значительное ее увеличение (рис. 192). Увеличение твердости данных быстрорежущих сталей тем больше, чем выше была температура нагрева при закалке или же чем больше легирующих компонентов растворилось в аустените. Этот процесс можно ясно наблюдать на кривых отпуска быстрорежущих сталей R6 (см. рис. 191) и RIO (рис. 193). Сначала вместо цементита появляются со все более увеличивающимся Содержанием легирующих компонентов карбиды Ме С (содержание углерода в мартенсите при 400°С не снижается), затем появляются собственные карбиды легирующих компонентов и сложные карбиды.  [c.215]


Эффект водородной хрупкости проявляется максимально в интервале температур от -20 до +30 °С и зависит от скорости деформации [11]. Охрупчивающее влияние водорода при содержании его до 8-10 мл/100 г — процесс обратимый, т. е. после вылеживания или низкотемпературного отпуска пластичность конструкции не слишком большого сечения обычно восстанавливается вследствие десорбции водорода из металла. Обратимая хрупкость стали обусловливается растворенным в кристаллической решетке водородом. Необратимая хрупкость зависит от содержания водорода в стали в молекулярном состоянии, агрегированного в коллекторах, где он находится под высоким давлением, вызывающим большие трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости не восстанавливаются даже после вакуумного отжига, в структуре стали происходят необратимые изменения [34, 51] образование трещин по границам зерен, где наблюдается преимущественное скопление водорода, и обезуглероживание стали.  [c.12]

Добавка хрома к железу способствует образованию мар-тенситной (игольчатой) структуры (о. ц. к.-решетка) при сравнительно медленном охлаждении стали вследствие распада аустенитной структуры (г. ц. к.-решетка), устойчивой при повышенных температурах. Малая критическая скорость закалки позволяет осуществлять ее и получать мар-тенситную структуру при охлаждении на воздухе. В закаленном состоянии эти стали имеют высокую прочность и относительно низкую ударную вязкость. Для получения оптимальных механических свойств стали подвергают термообработке. Для мартенситных сталей, как правило, применяют нормализацию и отпуск (воздушное охлаждение от температуры аустенизации и затем повторный нагрев до определенной температуры нилсе температуры аустенизации). При отпуске в интервале температур 200—370 °С происходит снятие внутренних напряжений без изменения структуры и прочностных свойств 550—650 °С — распад мартенсита на феррит и карбиды типа СггзСе, при этом прочность стали снижается, а ударная вязкость повышается. Например, у стали 0,3 С 13 Сг при отпуске до 450 С Ob=1600 МПа, ударная вязкость (по Изоду) составляет 22 Дж до 800 °С 0в = 85О МПа, ударная вязкость равна 100 Дж [51, с. 26].  [c.154]

ЭТОМ случае, поскольку помимо охрупчивания, приобретаемого в результате образования карбидной сежи, появляется склонность к охрупчиванию мартенситной фазы в результате вторичного твердения. Если сталь ЭП56 с прочностью IQQkz/mm после закалки на воздухе или замедленного охлаждения подвергнуть провоцирующему нагреву в широком интервале температур ниже 600° С, то склонность стали к КР не проявляется. Это связано с тем, что сорбитная структура, образовавшаяся при отпуске 600° С, не претерпевает изменений при провоцирующем нагреве и не охрупчивается.  [c.113]

Сравнительные исследования 26 марок углеродистых и низколегированных сталей в имитирующем условия газовой скважины растворе Na l-t- Hs OOH + HsS показали наибольшую стойкость у ферритной структуры с относительно мелкими равномерно распределенными сфероидальными карбидами, образующейся после отпуска мартенсита при высоких температурах [160]. С уменьшением величины зерна и переходом от закаленного состояния к улучшенному (т. е. после закалки с высоким отпуском) охрупчивание снижается, а с повышением количества пластинчатого перлита — возрастает. На стойкость к сероводородному растрескиванию при неизменной структуре стали практически заметное влияние оказывает изменение содержания серы (0,002—0,35%) и фосфора (0,004—0,59%). Остальные элементы марганец (0,76—2,5%), никель (0,2—3%), хром (0,03—6,25%), кремний (0,05—2,9%), молибден (0,01—1,85%) не оказывали существенного влияния (если структура не изменялась термической обработкой). Наиболее серьезное влияние оказывала сера — введение уже 0,03% S вызывало заметное усиление охрупчивания при коррозии в сероводородной среде. Это объяснено увеличением количества дефектных участков — сульфидных включений. Показано, что расслоение металла под действием водорода локализуется в местах скопления сульфидных включений.  [c.66]

Структура. Сталь 08Х17Н5МЗ принад.чежит к аустенито-мартен-ситному классу кроме указанных структурных составляющих, сталь содержит 15—25% б-феррита. Температура прямого мартенситного превращения в стали близка к комнатной температуре после закалки в структуре стали фиксируется лищь небольшое количество мартенсита. Обработка холодом или пластическая деформация стимулируют мартенситное превращение. В процессе отпуска при температурах до 450—500° С обработанной холодом или нагартованной стали происходит значительный рост предела текучести при малом изменении предела прочности [138].  [c.167]

При сквозной закалке свойства стали и, в частности, твердость по всему сечению изделия одинаковы. При несквозной зл калке изменение структуры стали по сечению способствует соответствующим изменениям свойств. Распределение твердости по сечению закаленных цилиндров из разных сталей показано на рис. 124. При несквозной прокаливаемости твердость падает от поверхности к сердцевине. Из рис. 124 видно, что твердость полумартенситной зоны (HR 50M) углеродистой стали в данных условиях обработки имеет критический диаметр 25 мм, хромистой >50 мм и хромоникелевой >125 мм. При несквозной прокаливаемости отпуск при высокой температуре уменьшает различие в твердости и пределе прочности по сечению. Однако пре-  [c.235]

Рис. 59. Изменение свойств стали 60 с грубопластинчатой структурой при отпуске деформированной прокаткой на 20% Рис. 59. <a href="/info/687482">Изменение свойств</a> стали 60 с грубопластинчатой структурой при отпуске деформированной прокаткой на 20%
Если изменения, происходящие в микроструктуре при отпуске патентированной деформированной стали можно заметить с помощью электронного микроскопа, то в отожженной стали они обнаруживаются и под световым микроскопом (рис. 82,а—в). При исследовании графитизирующего отжига (температура 680° С) стали с 0,94% С и 0,99% 51 [315] была обнаружена сферой дизация и коалесценция цементитных пластин. В исходной литой стали процессы сфероидизации и коалесценции протекают вяло. Например, указанная сталь после отжига при 680° С в течение 48 ч сохраняет структуру пластинчатого перлита и только в немногих участках, чаще на границах эвтектоидных колоний, появляется зернистый цементит. Осадка этой стали на 5% незначительно ускоряет сфероидизацию и коалесценцию цементита. После отжига при 680° С в течение 192 ч остается еще много пластинчатого перлита. В образцах же, деформированных на 20% и более, даже отжиг в течение 30 мин приводит к заметным структурным изменениям. Местами преимущественной сфероидизации служат  [c.195]

Уменьшение деформации с 90 до 25% несколько сМеЩает интервал аномальных изменений свойств в сторону более высоких температур [254—256, 295]. Существенную зависимость указанного эффекта от степени предшествовавшей пластической деформации обнаруживает и абсолютная величина падения пластичности. По данным работ [119, с. 106 295 401 402] уменьшение относительного сужения при отпуске патентированных сталей тем больше, чем выше суммарное обжатие и содержание С в стали (см. также рис. 55). Задержка в росте относительного удлинения или его некоторое уменьшение в сталях, содержащих 0,3% С и выше, хорошо согласуется с изменением относительного сужения [402] (см. рис. 55). В сталях с грубопластинчатой структурой эффект снижения пластичности при отпуске деформированной стали проявляется очень слабо (см. рис. 59), а в сталях с глобулярным цементитом — практически незаметен (см, например, рис. 56).  [c.200]

Обычно процессы сфероидизации и коалесценции цементитных частиц (отжиг на зернистый перлит, высокотемпературный отпуск после закалки) приводят к росту пластических свойств. Поэтому снижение пластичности при отпуске холоднодеформированной стали обусловлено процессами, происходящими в матрице. Эксперименты по ускоренному охлаждению могут служить некоторым подтверждением этой точки зрения (см. рис. 85). Быстрое охлаждение стали после отпуска дополнительно снижает пластичность. Такое снижение пластических свойств стали нельзя объяснить ни повышенным содержанием углерода в твердом растворе (нормальных позициях внедрения), ни увеличением напряжений, так как охлаждение в воде с 600—650° С практически не оказывает влияния на пластичность. Процессы же сфероидизации и коалесценции цементитных частиц значительно облегчают адсорбцию атомов углерода на вновь образованных границах. Такое объяснение хорошо согласуется с такими экспериментальными факторами, как увеличение эффекта снижения пластичности с повышением содержания углерода в стали, степени деформации и увеличением дисперсности цементитных пластин. В сталях с грубопластинчатой структурой эффект снижения пластичности проявляется слабее (ср. рис. 55 и 59), а в сталях с низким со)1.ержанием углерода или высокоуглеродистых сталях с глобулярным цементитом, который не претерпевает изменений при деформации, а также при последующем отпуске до 600—650° С, эффект снижения пластичности очень мал или вообще не наблюдается (см., например, рис. 56).  [c.211]



Смотреть страницы где упоминается термин Структура стали: изменение при отпуск : [c.100]    [c.119]    [c.245]    [c.113]    [c.114]    [c.337]    [c.449]    [c.173]    [c.133]    [c.205]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.697 ]



ПОИСК



Изменение структуры стали

Изменение структуры стали. Отжиг Нормализация. Закалка. Отпуск Факторы, определяющие режим термообработки. Внутренние напряжения при закалке. Дефекты закаленных изделий. Обработка стали холодом

Отпуск

Отпуск стали

Отпуская ось

Стали Структура 121 —



© 2025 Mash-xxl.info Реклама на сайте