Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Масса Методы расчета

До настоящего времени не существует строгого математического решения проблемы переноса в турбулентном пограничном с.иое, хотя литература по этому вопросу весьма обширна i. Природа пристенной неизотропной турбулентности не выяснена, и это не дает возможности составить замкнутое аналитическое описание процесса молярного переноса импульса, энергии и массы. Методы расчета либо основаны на весьма приближенных и упрощенных моделях явления, представляющих трактовку идей Прандтля и Кармана о длине пути смешения, ламинарном и турбулентном подслоях и т. п., либо базируются на интегральных соотношениях импульса энергии и диффузии с привлечением недостающих зависимостей из эксперимента. Такие теории называются полу-эмпирическими, так как эксперименту в. них отводится очень важная роль.  [c.224]


Если остановиться на методах расчета распределения потока вдоль каналов с путевым расходом, разработанных в одномерном приближении без учета структурных неоднородностей, вызванных оттоком или притоком массы, то к получаемому при этом уравнению движения различные исследователи приходят двумя основными путями исходя из уравнения импульсов [80, 104] и уравнения энергии [29, 39, 121 ]. В случае изолированных раздающего и соответственно собирающего каналов (см. рис. 10.29, а и б) получается следующее дифференциальное уравнение [73]  [c.294]

В случае машин напряженного класса, вроде транспортных, задача сложнее. Требования габаритных размеров и массы заставляют повышать расчетные напряжения, вследствие чего вероятность поломок увеличивается. Однако непрерывное совершенствование упрочняющей технологии и уточнение методов расчета позволяют и в данном случае устранить или значительно отодвинуть прочностные лимиты долговечности.  [c.28]

Общий метод расчета на динамическую нагрузку основан на известном из теоретической механики принципе Даламбера. Согласно этому принципу, всякое движущееся тело может рассматриваться как находящееся в состоянии мгновенного равновесия, если к действующим на него внешним силам добавить силу инерции, равную произведению массы тела на его ускорение и направленную в сторону, противоположную ускорению. Поэтому в тех случаях, когда известны силы инерции, без всяких ограничений можно применять метод сечений и для определения внутренних усилий использовать уравнения равновесия.  [c.287]

Принцип сопряжения многофазных задач. Развитие массопередачи (теплопередачи) началось с исследования массоотдачи (теплоотдачи) в одной из контактирующих фаз. Одновременно в этом направлении развевались и теоретические исследования методы расчета коэффициентов массоотдачи в одной из фаз (жидкой или газовой). Однако природа явлений переноса в двух- и многофазных систем намного шире и, чтобы раскрыть ее с большей полнотой, необходимо привлечение в расчетах принципа сопряжения фаз и потоков количества движения, массы и энергии. Впервые при исследовании двухфазного массообмена этот принцип был применен в работах [73, 74]. Одним из важных результатов исследований было обобщение известной зависимости между динамическим (бн) и диффузионным (6) слоем. В частности для двухфазного массообмена эта зависимость имеет вид  [c.46]


Рассмотрим модифицированный метод расчета статических производных устойчивости на основе применения коэффициентов присоединенных масс, который дает возможность выявить влияние на эффективность оперения ежи-  [c.169]

За время, прошедшее после выхода в свет первого издания настоящей книги (1960 г.), в технике возникло много новых задач. Начали применяться самонастраивающиеся механизмы, приспосабливающиеся к изменяющимся внешним условиям. Возникла необходимость рассчитывать механизмы с несколькими степенями свободы. Были разработаны методы расчета механизмов с переменными массами звеньев. Широкое применение автоматизированных систем привело к более эффективным методам их исследования.  [c.6]

Рис. 12.4. К расчету маховых масс методом Н. И. Мерцалова Рис. 12.4. К <a href="/info/461743">расчету маховых масс</a> методом Н. И. Мерцалова
Аналогия между процессами переноса теплоты, массы и количества движения является одним из распространенных инженерных методов расчета. Анализ этой аналогии для закрученного потока может быть выполнен на основе модифицированной гипотезы Прандтля, определяемой уравнениями (9.28). Первое из этих соотношений после преобразований можно представить в следующем виде  [c.186]

Изготовление подшипников качения в заводских условиях было начато в 1933 г. в Германии. В СССР выпускаются подшипники с внутренним диаметром от долей миллиметров до 1345 мм и массой от долей граммов до 4 т. Подшипники качения применяются в различных машинах и приборах, в которых они работают в широком диапазоне частот вращения (до 20 ООО об/мин) при значительных температурах. Для нужд космической техники созданы подшипники, способные работать в глубоком вакууме. В разработку современных конструкций, методов расчета и производства подшипников качения большой вклад внесли советские ученые  [c.413]

При проектировании авиакосмической техники, которая при минимальной массе должна обладать достаточной прочностью, нужно учитывать, что прочность при двухосном нагружении больше, чем при одноосном, а прочностные свойства возрастают при понижении температуры. В данной работе изучены свойства при двухосном (1 1 и 2 1) растяжении в интервале температур от комнатной до 20 К с целью получения необходимых расчетных данных. Разработан аналитический метод расчета свойств материала при двухосном растяжении, исходя из результатов испытания на одноосное растяжение при соответствующей температуре.  [c.59]

В большинстве практически важных случаев (см. п. Г) задача о нахождении критических скоростей роторов сводится к задаче о нахождении собственных частот их плоских изгибных колебаний, для решения которой могут быть применены все методы расчета собственных частот изгибных колебаний балок с сосредоточенными и распределенными массами (см., однако, выводы п. 1 о необходимости замены при расчете фактических массовых моментов инерции дисков фиктивными). Ниже описаны наиболее распространенные приближенные методы таких расчетов. Методы расчетов критических скоростей валов в более сложных случаях (когда задача не сводится к плоской), расчетов их областей устойчивости и вынужденных колебаний, а также более точные методы расчета собственных частот изгибных колебаний в настоящее время должны предполагать использование ЭВМ некоторые из таких методов изложены в п. 3.  [c.69]

Отмеченные выше методы расчетов позволяют иметь еще одну форму записи амплитуд. Так, при р возможных путях перехода между массами i и формулы (1- 31) могут быть записаны так  [c.47]

Для первой группы проблем разрабатывают методы, при помощи которых можно описать движение машины уравнениями, излагают способы решения этих уравнений для периодических и переходных режимов движения. Для второй группы разрабатывают методы расчета маховых масс, благодаря которым создается заданная неравномерность движения. Сюда же следует отнести и вопросы, касающиеся автоматического регулирования и программного управления различными системами, в состав которых входят машины. Автоматическое управление механическими системами в настоящее время получило настолько широкое развитие с применением специальных методов исследования, что задача об автоматическом регулировании и управлении выделяется из общей проблемы динамического исследования машин в самостоятельную теорию автоматического регулирования и управления машинами.  [c.5]


Как пишет И. И. Артоболевский [9], задачи о движении машин и о расчете маховых масс впервые были поставлены и решены Навье [180] и Кориолисом [168] в двадцатых годах XIX столетия. Эти авторы разрабатывали методы расчета главным образом применительно к паровым машинам.  [c.6]

Идеи Н. Е. Жуковского развивали Н. И. Мерцалов,. предложивший оригинальный метод исследования движения машин и расчета маховых масс [131], и К. Э. Рерих, изучивший периодические режимы движения машин и развивший методы расчета маховых масс [149].  [c.7]

Исследованию движения машин при различных режимах и рассмотрению методов расчета маховых масс уделил много внимания Н. И. Колчин [ПО].  [c.12]

Ракита В. С. Общий. метод расчета электропривода с переменным передаточным числом и переменными массами. Вестник электропромышленности , 1940, № 5 и 6.  [c.235]

Приближенный метод расчета частоты собственных колебаний Ф. Р. Портера [163] основывается на возможности замены вала с диском валом с равномерно распределенной массой.  [c.276]

Несмотря на определенное восполнение наших знаний о флюидных дисперсных потоках, последние нуждаются в специальных и всесторонних исследованиях. В первую очередь важно детально выяснить качественные изменения в структуре системы. Здесь при повышенных концентрациях необходимо в новых условиях вернуться к проблеме возможного вырождения турбулентности несущей среды, к задаче о распределении локальной и средней истинных концентраций, к необходимости оценить вид и значение критического и оптимального обобщающего критерия (включающего и соответствующие концеИтрации), к методам расчета аэродинамического сопротивления и реологических свойств системы и пр. Иначе говоря, лишь знание гидромеханических свойств флюидных потоков позволит надежно и на основе достаточно общих закономерностей вести их расчет в качестве массо- и теплоносителей. Важность этих задач определяется тем, что именно здесь возможно 264  [c.264]

Принцип минимального удельного расхода материалов. Стоимость материалов и полуфабрикатов в машиностроении составляет от 40 до 80 % общей себестоимости продукции. Поэтому снижение удельного расхода материала на единицу продукции имеет большое народнохозяйственное значение. Например, при снижении расхода проката на 1 % по стране экономится 600 тыс. т металла в год, что позволяет изготовить 200 тыс. тракторов или 450 тыс. легковых автомобилей Москвич . При стандартизации заготовок и изделий экономию металла можно получить в результате использования рациональных конструктизных схем и компоновок машин, совершенствования методов расчета деталей на прочность и обоснованного снижения запаса прочности, применения экономичных профилей, периодического проката, сварных конструкций, пластмасс, литых заготовок, особенно лнтья по выплавляемым моделям. Так, внедрение на Коломенском тепловозостроительном заводе им. Куйбышева Л1ГГЫХ коленчатых валов из высокопрочного чугуна (длиной свыше 4 м, массой 1450 кг) дало 2 т экономии металла на один вал.  [c.45]

Метод расчета многокомпонентного массо- и теплообмена в движущихся средах предложен в (11. Особенность этого метода состоит в том, что с его помощью можно решать задачи массообмена, организованного на различных контактных устройетвах тепломассообменных аппаратов, работающих во всевозможных гидродинамических режимах. Суть метода состоит в том, что все уравнения тепломассообмена в многокомпонентных смесях, записанных в матричном виде, с помощью известных матричных преобразований редуцируются в уравнения скалярного вида, решения которых либо известны, либо значительно упрощаются.  [c.85]

Если при данном значении т) присоединить к струе газа достаточное количество внешнего воздуха так, что + 1 > 1/т1, то PjPo > 1. Другими словами, путем распределения первоначальной энергии эжектирующего потока па большую массу газа можно увеличить реактивную тягу без затраты дополнительной энергии. Приведенное рассуждение носит качественный харак тер. Количественные зависимости можно определить, рассчитав эжектор по изложенным выше методам. Расчеты, а также эксперименты показывают, что с помощью эжектора можно реализовать такие значения коэффициента эжекции л и к. п. д. т], что выигрыш в тяге достигает в определенных условиях значительной величины.  [c.554]

Максимально допустимое значение вакуума обычно указывается в заводской кавитационной характеристике насоса. Эта величина зависит от конструктивных особенностей насоса, рода и температуры перекачиваемой жидкости. Для обеспечения нормальных условий работы насоса необходимо, чтобы расчетное значение вакуума было меньше или равно допустимому. (Метод расчета всасывающей линии порш1невого насоса здесь не рассматриваем. Благодаря неустановившемуся движению расчет при поршневом насосе отличается от расчета при центробежном насосе. В поршневом насосе на всасывание, кроме элементов всасывающего трубопровода, оказывают влияние число двойных ходов поршня и инерция всей массы жидкости во всасывающем трубопроводе.)  [c.126]

Авторы работы [107] предложили метод расчета предельной концентрации примесей, основанный на аналогии процессов переноса теплоты и массы в турбулентном двухфазном потоке. В соответствии с указанной предпосылкой предельная допустимая концентрация, исключающая выпадение примесей в виде твердой фазы, рассчитывается по известным значениям коэффициентов теплоотдачи в двухфазном потоке на всем протяжении парогенерирующего канала от начала поверхностного кипения до режима ухудшенной теплоотдачи. Авторы [107] показали, что расчетные и опытные значения предельной концентрации удовлетворительно согласуются в широком диапазоне изменения режимных параметров.  [c.331]


Указанная система уравнений решалась на ЭВМ методом Рун-ге—Кутта для случая равномерного вдува воздуха в нагретый воздушный поток, закрученный на входе. Результаты расчета одного из вариантов представлены на рис. 9.3 (линии — расчет, точки — эксперимент). Сравнение опьиных и расчетных данных позволяет заключить, что изложенный метод расчета позволяет получать надежные результаты. Не анализируя подробно структуру потока в условиях вдува (см. гл. 3), отметим следующее. Коэффициент трения при малых значениях Ке ,/ уменьшается по длине канала, что обусловлено снижением поверхностного трения вследствие вдува. При возрастании Кец,/Ёё згвеличение расхода газа в канале вследствие подвода дополнительной массы приводит к падению темпа уменынения с /2 и даже к его возрастанию в конце канала при Ке ,/ Ке = 0,01. Анализ интенсивности теплообмена подтверждает вывод о том, что пористое охлаждение позволяет существенно снизить тепловой поток в стенку канала в условиях закрутки потока. Зная изменение Ке , Ке и, Ф по длине канала, далее нетрудно (аналогично течению  [c.179]

Детали должны иметь минимальную массу при достаточной прочиости и быть надежными в эксплуатации, так как их поломка может привести к авариям в машине. Прочность детали обеспечивается правильным выбором материала, надлежаще рассчитанными размерами. Уменьшение массы деталей достигается применением более прочных и экономичных материалов. Применение наиболее точных методов расчета дает возможность получить размеры деталей без излишних запасов прочности. Многие детали должны также обладать достаточной жесткостью, т. е. способностью соп [ютивляться образованию остаточных деформаций. Особое значение это имеет для таких деталей, как валы, оси, О гюры. Жесткость деталей зависит от свойств материала, размеров и формы деталей, поэтому при конструироваиии многие детали машин подвергаются проверочным расчетам на жесткость и специальным испытаниям опытных образцов.  [c.198]

Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же, как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически гомогенной поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [54]. На рис. 59 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (232) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностати-ческой поляризации в пределах тафелевских участков.  [c.166]

Для получения более полных характеристик переходных и неустановившихся процессов, возникающих при разгоне и торможении системы с учетом упругости жидкости и трубопроводов, уточнения предложенного закона изменения проходного сечения встроенного гидротормоза, назначения оптимальной последовательности работы и характеристик управляющей и регулирующей аппаратуры, выбора оптимальных характеристик и разработки методов расчета систем такого типа выполнены теоретические исследования, в которых расчетная схема гидропривода (рис. 3) принята в виде четырехмассовой системы с упругими связями одностороннего действия. Масса 9 представляет собой суммарную массу вращающихся частей насосного агрегата, масса Шд — приведенную к поршню массу связанных с ним деталей и части жидкости гидросистемы, массы и Шз — эквиваленты распределенной массы жидкости в трубопроводах гидросистемы. Упругие связи гидросистемы обусловлены податливостью жидкости и трубопроводов. Система находится под действием концевых усилий электродвигателя Рд, подпорного клапана Рп и приложенных в промежуточных сечениях упругих связей сил сопротивления ДР,, величины которых зависят от расходов жидкости через соответствующие сечения гидросистемы. В сечениях 1 и 8 прикладываются силы сопротивления, возникающие при протекании жидкости через проходные сечения электрогидравлического распределителя. После подачи команды на перемещение золотника распределителя площади указанных проходных сечений изменяются во времени от нулевой до максимальной. В сечениях Зяб прикладываются силы сопротивления, возникающие при протекании жидкости через автономные дроссели, проходное сечение которых изменяется от максимального до минимального, обеспечивающего ползучую скорость поршня в конце хода и обратно, в зависимости от пути поршня на участке торможения и разгона.  [c.140]

Основные методы расчета вибраций машиностроительных конструкций приведены в третьей главе. Метод расчета стержневых систем основан на использовании элемента, состоящего из балки с распределенными параметрами, к концу которой подсоединена двухмассовая система, причем каждая масса обладает тремя степенями свободы. Из таких элементов могут набираться системы типа амортизированных рам, корпусов и многоопорных роторов. В качестве примера рассматриваются колебания турбогенератора с трехопорным ротором. Анализируется влияние на виброактив-  [c.5]

Дальнейшие работы по исследованию движения машин и расчету маховых масс для машин, в которых все силы зависят от положения звена приведения, сводились к уточнению и развитию суш.ествующих методов. И. И. Артоболевский распространил метод Виттенбауэра на неустановившееся движение [8J. Е. М. Гутьяр уточнил метод расчета маховых масс, разработанный Н. И. Мерцаловым [69]. Н. И. Колчин, воспользовавшись  [c.7]

Из трудов зарубежных ученых по динамике машин и механизмов прежде всего следует отметить классический труд Ф. Виттенбауера Графическая динамика (1923 г.), в котором автор развивает графические методы кинематического, силового и динамического исследований механизмов [3]. В частности, здесь дан принципиально точный метод расчета маховых масс при помощи так называемой диаграммы Виттенбауера взамен приближенного метода Радингера.  [c.8]

Что касается учета инерции главного звена машины, то здесь инерция его массы была учтена точно через изменение кинетической энергии самого звена под действием приведенных сил. Поскольку основной массой в механизме является масса главного звена (маховик, кривошип и главный вал), то пренебрежение силами инерции звеньев механизма, соответствующими угловому ускорению главного звена, сравнительно невелико, особенно учитывая, что при тяжелых маховиках и невелико. Поэтому для тяжелых маховиков результат расчета по вышеизложенному методу касательных усилий получается весьма точным и полностью удовлетворяющим требованиям практики. Однако в машинах с легкими маховиками, в состав которых входят многозвенные шарнирные механизмы и к которым относятся многие производственные машины, указанный метод расчета дает решение, весьма отличающееся от истинного, а потому в таких случаях прибегают к решению всей задачи на основе принципиально точного метода, а именно, метода приведенных масс и работ, предложенного в 1905 г., как было упомянуто, проф. Вит-тенбауэром.  [c.225]


Уточненный расчет маховых масс по методу динамических касательных усилий и работ. В начале этого параграфа был изложен метод расчета маховиков машин, предложенный Радингером, как выяснилось, он относится к приближенным методам расчета маховых масс.  [c.241]

Более универсальны методы расчета Р. Дайслера и К. Голдмана i[3.3—3.5], так как они свободны от ограничений по характеру зависимости физических свойств от давления и температуры. Суть двух подходов к решению задачи одинакова и заключается в численном решении системы дифференциальных уравнений энергии и движения. Различие состоит в методах расчета коэффициентов турбулентного переноса тепла и массы. Р. Дайслером принято, что коэффициенты переноса ет и Eq не зависят от изменения физических свойств, что отражается на точности расчетов при резко переменных свойствах. К. Голдман на основе выдвинутой им гипотезы о том, что изменение турбулентности в каждой точке потока зависит от изменения физических свойств только в данной точке, сумел применить для расчета распределения скоростей и коэффициента турбулентного обмена те же зависимости, что и при постоянных физических свойствах при соответствующей записи в новых переменных. Р. Дайслером и К. Голдманом принято  [c.51]


Смотреть страницы где упоминается термин Масса Методы расчета : [c.238]    [c.307]    [c.6]    [c.195]    [c.110]    [c.264]    [c.325]    [c.168]    [c.42]    [c.89]    [c.8]    [c.101]    [c.103]    [c.225]    [c.240]   
Подвижной состав и основы тяги поездов (1976) -- [ c.310 , c.314 ]



ПОИСК



381 — Резонансные кривые экспериментальные систем с сосредоточенными массами — Расчет — Метод сил

КОЛЕНО ВАЛА - КОЭФФИЦИЕНТ систем с сосредоточенными массами — Расчет — Метод сил

КОЛЕНО ВАЛА — КОЭФФИЦИЕН систем с сосредоточенными массами— Расчет—Метод сил

Нагрузки на валы цепных ударные 3 — 481 — Расчет 3 390—402 — Метод приведения массы

Расчет массы состава Методы расчета

ТЕПЛОМАССОМЕТРИЯ КАК МЕТОД ИЗУЧЕНИЯ ТЕПЛОВЫХ ПРОЦЕССОВ Плотность потоков теплоты н массы в технологических расчетах



© 2025 Mash-xxl.info Реклама на сайте