Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зубчатые Валы — Деформации

При эксплуатации редуктора быстрее всего изнашиваются опорные и упорные подшипники. Кроме подшипников, осматривают шейки валов и шестерен, колеса, зубчатое зацепление, корпус редуктора. Неисправности, встречающиеся в редукторах, следующие нарушение центровки колес при износе подшипников, задиры вкладышей и шеек валов, износ, деформация, выкрашивание и поломка зубьев колес и шестерен.  [c.247]


При этом деформации валов и деформации зубчатых передач, приведенные к ведущим колесам, определяются следующим образом  [c.43]

Испытания зубчатых пар из мягких сталей на контактную усталость отличаются большим рассеиванием результатов. Отчасти это объясняется влиянием неизвестной нам динамической нагрузки на зубья, возникающей из-за неточностей в шаге и в профиле зубьев (и сильно влияющей на стойкость мягких зубчатых колёс), а также влиянием перекоса зубчатых колёс (вследствие деформации валов и неточностей изготовления).  [c.257]

В открытых передачах обычно ф < 0,3. Если при переменной нагрузке возникает перекос осей зубчатых колёс (вследствие деформации валов и опор), то следует при-  [c.303]

Учет упругости звеньев и диссипации энергии рассмотрен на примере зубчатого редуктора с упругими звеньями, входящего в состав машинного агрегата. На рис. 6.7.1, а приведена схема такого агрегата. Будем учитывать деформацию вала между двигателем D и входным звеном 2 редуктора, деформацию зубьев в обеих парах зубчатых колес и деформацию вала между выходным звеном 5 редуктора и рабочей машиной М.  [c.497]

Для уменьшения деформации зубчатого вала при наплавке применяют продольную наплавку, причем после наплавки каждого валика деталь поворачивают на 180 и наплавляют следующий валик (рис. 3). Электрод должен быть расположен на середине канавки между зубьями. Наплавление изношенных зубьев с последующей обработкой позволяет  [c.408]

После термической обработки происходит деформация зубчатого вала и поэтому центрирующие элементы вала следует подвергать шлифованию.  [c.420]

Если при переменной нагрузке имеет место значительный перекос геометрических осей зубчатых колёс (вследствие деформации валов и опор), то следует принимать < 10/и , но не  [c.665]

В открытых передачах обычно ф < < 0,3. Если при переменной нагрузке имеет место значительный перекос геометрических осей зубчатых колес (вследствие деформации валов и опор), то следует принимать Ь < 10т , но не  [c.352]

Как показывают расчеты жесткости привода на кручение [71], для коробок скоростей токарных и фрезерных станков в общем балансе деформаций закручивание валов составляет всего 15—30%. В результате изгиба валов и деформации опор и зубчатых передач крутильная податливость составляет в среднем 40%, а контактная податливость шпоночных и шлицевых соединений — 30—40%.  [c.158]

Конические зубчатые передачи получили применение в высокоскоростных ступенях редукторов вертолетных ГТД, а также в приводах агрегатов этих редукторов и агрегатов двигателя. Силовые передачи обычно имеют конические колеса с криволинейными (так называемыми круговыми) зубьями и работают с окружными скоростями до 100 м/с и выше. Ширина зубчатого венца таких колес лежит в пределах (0.25. .. 0,37) I, где I — длина образующей делительного конуса колеса. Конические передачи чрезвычайно чувствительны к взаимному положению зубчатых венцов колес. Поэтому важно обеспечить стабильность этого положения как при сборке, так и в процессе работы передачи. Основным критерием правильности сборки и эксплуатации конической передачи является правильное расположение и форма пятна контакта в зацеплении. Такое пятно овальной формы, удаленное от торцев, вершины и корневого сечения зуба, означает равномерное распределение нагрузки по длине и высоте зуба. В связи с этим особое внимание уделяется выбору местоположения опор конической передачи. При размещении зубчатого венца между опорами влияние прогиба вала и деформация опор будут оказывать минимальное влияние на перекос зубьев и поэтому такая схема является предпочтительной. При необходимости консольного расположения зубчатого венца стараются уменьшить величину вылета консоли, увеличить жесткость вала и опор. Обычно размер вылета консоли составляет около трети расстояния между опорами.  [c.513]


Зубчатая передача редуктора при опорно-осевом подвешивании ТЭД работает в тяжелых условиях, обусловленных переменными режимами работы и динамическими нагрузками, перекосом зубчатых колес от деформации оси и вала якоря, а также перекосом остова ТЭД вследствие зазоров в МОП, которые в эксплуатации могут достигать 2 мм и более. Вследствие тяжелых условий работы редуктора зубчатую передачу составляют самоуста-навливающийся зубчатый венец упругого колеса и ведущая шестерня, изготавливаемые из легированных сталей.  [c.272]

В зубчатых муфтах осевое скольжение зубьев относительно друг друга при вращении с несоосными осями валов вызывает увеличение износа их поверхности. Кроме того, изнашиваются уплотняющие элементы, которые при ремонте муфты заменяются новыми. Изношенные зубья муфты ремонтируются одним из методов — наплавкой, постановкой новых зубчатых венцов, пластической деформацией и пр., изложенных в разделе Зубчатые передачи .  [c.233]

Передача состоит из трех кинематических звеньев (рис. 15.1) гибкого колеса g, жесткого колеса Ь и генератора волн Н. Гибкое колесо g выполняют в виде цилиндра, на кольцевом утолщении которого нарезаны наружные зубья. Гибкий тонкостенный цилиндр выполняет роль упругой связи между деформируемым кольцевым утолщением и жестким элементом передачи, которым может быть выходной вал (рис. 15.1, а) или корпус (рис. 15.1, б, в). Жесткое колесо Ь — обычное зубчатое колесо с внутренними зубьями. Генератор Ь волн деформации представляет собой водило (например, с двумя роликами), вставленное в гибкое колесо. При этом гибкое колесо, деформируясь в форме эллипса, образует по  [c.234]

При консольном расположении одного из колес возрастают деформации вала и опор, что усиливает концентрацию нагрузки по длине зуба. Износ подшипников нарушает регулировку зацепления, из-за чего в передаче возникают дополнительные динамические нагрузки. Все эти особенности понижают несущую способность передач. Проф. В. Н. Кудрявцев рекомендует принимать несущую способность конических зубчатых передач с линейным контактом при расчетах на выносливость по изгибным и контактным напряжениям равной 0,85 от несущей способности цилиндрической передачи, рассчитанной на ту же нагрузку.  [c.124]

Для некоторых деталей (дисков, отсеков, зубчатых колес, шатунов, рычагов, валов) эта форма осуществима, хотя и требует коренного изменения конструкции и технологии изготовления. Поэтому наряду с увеличением моментов инерции необходимо применять другие средства уменьшения деформаций сокращение длины деталей, более тесную расстановку опор и т. д. Во всяком случае применение сверхпрочных материалов ставит перед конструкторами и технологами новые задачи, решение которых требует значительных творческих усилий.  [c.180]

Под действием приложенных сил у осей появляются деформации изгиба, а у валов деформации изгиба и кручения. Чрезмерный изгиб осей и валов нарушает нормальную работу подшипниковых узлов, зубчатых зацеплений, фрикционных механизмов. Поэтому величина деформаций валов и осей ограничивается, а их жесткость является одним йз основных критериев работоспособности. Чрезмерно большие деформации и, как следствие, разрушения валов и осей могут возникнуть вследствие колебательных процессов, особенно при резонансе. Поэтому валы быстроходных машин (центрифуги, турбины и др.) дополнительно проверяют на отсут-  [c.420]

Назначение — после улучшения — коленчатые валы, шатуны, зубчатые венцы, маховики, зубчатые колеса, болты, оси и другие детали после поверхностного упрочнения с нагревом ТВЧ — детали средних размеров, к которым предъявляются требования высокой поверхностной твердости и повышенной износостойкости при малой деформации (длинные валы, ходовые валики, зубчатые колеса).  [c.65]


Определим жесткость всего передаточного механизма П (рис. 9.1,6). При этом не будем учитывать инертность зубчатых колес и валов, так как она мала по сравнению с инертностью других звеньев машинного агрегата. Сделаем сечение / неподвижным, а к сечению 6 приложим момент Me. Под действием этого момента участок 6-5 будет скручен, и сечение 6 повернется относительно сечения 5. Равным образом, момент Мб вызовет деформацию зубьев в зацеплении 5-4, вследствие чего сечение 5 повернется  [c.253]

Волновая передача состоит из трех основных элементов двух зубчатых колес (одногос внутренним, а другого с наружным зацеплением) и генератора волн, деформирующего одно из этих колес. На рис. 222, а показана принципиальная схема одноступенчатой волновой передачи. Генератор волн Н (обозначение по аналогии с планетарными механизмами) — вращающееся звено с двумя роликами деформирует гибкое звено — колесо а,., которое принимает форму эллипса. В зонах большой оси эллипса зубья гибкого колеса входят в зацепление с зубьями жесткого колеса на полную рабочую высоту, а в зонах малой оси полностью выходят из зацепления. Такую передачу называют двухволновой (по числу волн деформации гибкого звена в двух зонах зацепления). Очевидно, что передачи могут быть одноволновые, трехволновые и т. д. При вращении ведущего вала волна деформации гибкого звена перемещается вокруг геометрической оси генератора, а форма деформации изменяется синхронно с каждым новым его положением, т. е. генератор гонит волну деформации.  [c.349]

Жесткость кинематических цепей в значительной мере определяется крутильной жесткостью валов, деформациями зубьев зубчатых колес и деформациями стыковых поверхностей шпоночных и подобных соединений. Крутильная жесткость измеряется в кГ-м1рад. Податливость и в этом случае является величиной, обратной жесткости. При определении суммарной крутильной жесткости первоначально определяют суммарную податливость и затем находят жесткость.  [c.178]

В современном машиностроении довольно широкое распространение получили детали с точными фасонными отверстиями. Получение таких отверстий вызывает технологические трудности, связанные с необходимостью исправления погрешностей, возникших в процессе термической обработки. Так, в зависимости от вида термообработки и размеров зубчатого колеса величина деформации шлицевого отверстия колеблется в пределах 0,02—0,30 мм, что обусловливает введение в технологический процесс операции калибрования. Высокая твердость деталей после закалки HR 58—62) и сложность формы обрабатываемой поверхности ограничивают возможность применения механической обработки при калибровании шлицевых отверстий, особенно для соединений с центрированием по поверхности наружного диаметра вала или с центрированием по боковым поверхностям зубьев. Большой износ фасонного инструмента, невысокое качество обработанной поверхности не позволяют эффективно использовать электроим-пульсный и электроискровой методы обработки при калибровании фасонных отверстий. Для этих целей чаще применяется размерная ЭХО.  [c.276]

Отмеченными достоинствами редукторов с раздвоенными ступенями не обладают редукторы, показанные на рис. 1.3,6 и к, поскольку опоры в них расположены несимметрично относительно зубчатых колес. Негативные последствия этого зависят от величины il/ =. h /d i (или v / , = = b la ). С уменьшением /ы снижается неравномерность нагрузки между подшипниками, вызванная силами, действующими в зацеплениях, и неравномерность рз1С1феделения удельных нагрузок по ширине зубчатых венцов от перекосов осей зубчатых венцов, вызванных деформациями валов. Схемы на рис. 1.3,6 и 1.3, к характерны для редукторов общего назначения. В них, в частности, предусматривается возможность изменения положения входного и выходного валов относительно корпуса. В курсовом проекте (так же как и при проектировании встроенных передй объектов, предназначенных для серийного или массового производства, к массо-габаритным показателям которых предъявляются жесткие требования) следхет использовать все возможности, направленные к снижению - неравномерности распределения нагрузок по ширине зубчатого венца и среди подшипников зубчатого колеса для уменьшения массы и габаритных размеров редуктора. Для этой цели, например, целесообразно изменить корпус редуктора, показанного на схеме 1.3,6, так, как представлено на рис. 1.3, в. Отказавшись от характерного и оправданного для редукторов общего назначения расположения осей в одной плоскости, можно заметно снизить габаритные размеры и массу редуктора (сравните схемы на рис. 1.3,6 иг).  [c.14]

Интерес представляет оценка демпфирующей способности цепей подач, а при анализе динамических процессов в глашом приводе важной является оценка демпфирующей способности всей кинематической цепи главного привода (от двигателя до шпинделя). Крутильная податливость и демпфирование этих цепей складываются из крутильной и изгибной податливостей валов, контактных деформаций в шлицевых и шпоночных соединениях, зубчатых, ременных и прочих передачах и муфтах, податливости двигателя и демпфирования этих элементов. Если привод осуществляется от электродвигателя, то его податливость и демпфирование имеют электромагнитную природу и определяются по соответствующим формулам 17]. Демпфирование в шлицевых и шпоночных соединениях определяется как демпфирование в комбинации плоских стыков. Демпфирование в зубчатых передачах состоит из нормальной и тангенциальной составляющих оно весьма мало и в расчет может не приниматься, если поля податливости контактных и изгибных деформаций в зубчатых зацеплениях мала в общем балансе перемещений. Постоянные времени демпфирования ременных передач, полученные обработкой данных [32], приведены в табл. 7. Демпфирующая способность ременных передач в главном приводе с шестеренчатыми коробками скоростей оказывает наибольшее влияние при наименьшей редукции. В этом случае чем меньше редукция в передачах коробки скоростей.  [c.31]


Центрирование по внутреннему диаметру й рекомендуется в тех случаях, когда материал втулки имеет высокую твердость и втулку нельзя обработать чистоюй протяжкой (отверстие втулки шлифуют на внутришли-фовальном станке) или когда после термообработки может возникнуть значительная деформация длинных участков зубчатых валов. Этот способ обеспечивает точное центрирование и обычно применяется для подвижных зубчатых соединений.  [c.546]

Зубчатая передача редуктора при опорно-осевом подвешивании тягового электродвигателя работает в тяжелых условиях из-за переменных режимов работы и динамических нагрузок, перекосов зубчатых колес от деформации оси и вала якоря, а также переко-  [c.171]

Основной особенностью конструкции планетарных передач являются симметрично расположенные одинарные или сложные сателлиты, работающие параллельно и вращающиеся как относительно своих осей, так и вместе с ними относительно центральной оси. Отсюда вытекает ряд частных особенностей, учитываемых при расчете степень равномерности распределения нагрузки по сателлитам определение относительных чисел оборотов колес при расчете зубчатых зацеплений и подшипников обеспечение, кроме условий соосности, условия сборки и соседства при определении числа зубьев колес многосателлитных передач возможность циркуляции мощности в замкнутых контурах действие центробежных сил на узлы опор сателлитов у быстроходных передач односторонняя или двухсторонняя работа зубьев сателлитов в зацеплении с солнечным колесом и эпициклом даже при неизменном направлении вращения валов число полюсов зацепления при определении нагрузки в них и определении числа циклов нагружения разгрузка опор центральных колес благодаря уравновешиванию радиальных усилий при выборе коэффициента концентрации напряжений лучшее распределение нагрузки по длине зуба из-за меньшего изгиба валов, меньшей деформации картера и меньшего консольного действия сил при внутреннем зацеплении.  [c.123]

Деформация деталей. Вал сплошной т/ =0, с = = 48 мм. Зубчатое колесо выполнено без ступицы в виде диска. Принимаем, ориентируясь на делительный диаметр колеса, т/2 174мм. Модули упругости =/ , = = 2.1 10 Н/мм , коэффициенты ц, =Ц2 = (),3 (см. с. 95). Тогда  [c.216]

Коэ( )фициент Кщ учитьтает неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Зубья зубчатых колес могуч прирабатываться в результате повышенного местного изнашивания распределение нагрузки становится более равномерным. Поэтому рассматривают коэфс()ициенты неравномерности распределения нагрузки в на-ча. 1ьный период работы Кщ и после приработки Кщ  [c.18]

Точность изготовления и ее слияние на ка гество передачи. Качество передачи связано с ошибками изготовления зубчатых колес и деталей (корпусов, подшипников и валов), определяющих их взаимное расположение. Деформация деталей под нагрузкой также влияет на качество передачи. Основными ошибками изготовления зубчатых колес являются ошибка шага и формы профиля зубьев, ошибки в направлении зубьев относительно образующей делительного цилиндра.  [c.101]

Коэффициент концентрации нагрузки /Ср. Концентрация или неравномерность распределения нагрузки по длине зуба связана с деформацией валов, корпусов, опор и самих зубчатых колес, а также с погрешностями изготовления передачи. Поясним это сложное явление на примере, учитывающем только-прогиб валоь .  [c.108]

Несущая способность конических зубчатых передач с повышенным перекосом осей (от консольного расположения, недостаточной жесткости валов и корпусов) может быть несколько повышена даже по сравнению с передачами, имеющими круговой зуб, выполнением зубьев двояковыпуклыми и вогнутыми. Обе стороны зуба шестерни нарезают выпуклыми, а колеса — вогнутыми. Выигрыш получается вследствие того, что удельная жесткость пары зубьев не меняется по длине зубьен и пятно контакта при деформации валов не смещается.  [c.192]

Роликоподшипники. Роликовый радиальный подшипник с короткими роликами (рис. 17.7, а) предназначен для восприятия повышенных радиальных нагрузок. Грузоподъемность его на несколько десятков процентов выше грузоподъемности однорядного радиального шарикового. Подшипник легко разбирается в осеиом направлении, допускает некоторое осевое взаимное смещение колец, а потому удобен в случае больших температурных деформаций валов при необходимости осевой само-установки валов, например валов, несущих пгеиронные зубчатые колеса. Выполняются со нггямпованным (рис. 17.7,, i) или, при повышенных частотах вращения, с массивным (рис. 17,7, ж, и, к) сепаратором.  [c.343]

Волновая зубчатая передача (рис. 15.19) отличается от других зубчатых механизмов тем, что один ее элемент гибкое колесо претерпевает волновую деформацию, за счет которой происходит Г1ередача вращательного движения. Волновая зубчатая передача состоит из трех основных элементов гибкого зубчатого колеса I (рис. 15.19, а,д), жесткого колеса 2 и генератора волн Ь. Гибкое зубчатое колесо представляет собой тонкостенную оболочку. Один KObien ее соединен с валом и сохраняет цилиндрическую форму, на другом конце ее торца нарезан зубчатый конец с числом зубьев 2,. Этот конец оболочки деформируется на величину 2Ш(, генератором волн, введенным внутрь ее.  [c.427]


Смотреть страницы где упоминается термин Зубчатые Валы — Деформации : [c.203]    [c.4]    [c.237]    [c.237]    [c.252]    [c.312]    [c.179]    [c.630]    [c.685]    [c.81]    [c.242]    [c.105]    [c.162]    [c.180]    [c.210]    [c.244]   
Детали машин Том 3 (1969) -- [ c.113 ]



ПОИСК



Валы зубчатые

Валы зубчатые передач зубчатых передач цилиндрических Деформации 113 — Силы

Валы зубчатых передач — Коэфициент деформации

Волновые передачи зубчатые — Генераторы волн деформации оболочки к ведомому валу

Зубчатые Деформация изгибная валов

Коэфициент безопасности цепных деформации валов зубчатых передач

Продольная неравномерность распределения нагрузки, вызванная деформациями кручения вала и ступицы. . — Влияние формы ступицы на продольную неравномерность распределения нагрузки в зубчатых соединениях



© 2025 Mash-xxl.info Реклама на сайте