Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение усталостное (многоцикловое)

Малоцикловое нагружение сопровождается развитием общей или местной (в вершине надреза, трещины) пластической деформации, величина и закономерности накопления которой определяют условия перехода к предельному состоянию и контролируют характер разрушения материала (квазистатический, усталостный). Переход к усталостному многоцикловому разрушению сопровождается резким падением интенсивности предельной пластической деформации.  [c.237]


Дать четкое определение условий перехода от малоциклового усталостного разрушения к многоцикловому весьма затруднительно. Обычно в качестве характеристики такого перехода используется величина пластической (неупругой) деформации за цикл.  [c.40]

В последние годы в ряде работ [115, 229, 259] обосновывается возможность использования уравнений типа (1.11) и для описания закономерностей усталостного разрушения при многоцикловом нагружении.  [c.23]

В настоящее время для анализа условий многоцикловых (Л/—>п10 ) усталостных разрушений широко используют интерпретации кривых усталости и распределения напряжений применительно к зависимостям типа (6.1) — (6.4) в предположении упругого поведения материала.  [c.110]

Существование "физического" предела усталости. Принципиальные особенности усталости металлов обычно выявляют по характеру кривой усталостных испытаний в координатах амплитуда напряжений а—логарифм числа циклов до разрушения 1дЛ/ (кривая Веллера). По современным представлениям, в общем случае для металлов в зависимости от уровня амплитуды напряжений можно выделить два главных участка на кривой усталости (не считая переходной области и области отсутствия разрушений) область малоцикловой усталости (квазистатическое разрушение) и область чистой или многоцикловой усталости. Резкий пере-  [c.137]

Сделанная оценка не противоречит классическим представлениям о соотношении между периодом зарождения и ростом трещин в области многоцикловой усталости. Для гладкой поверхности на пороге усталости период роста трещины составляет до 10 % от общей долговечности образца. По мере возрастания концентрации нагрузки доля периода роста трещины относительно всей долговечности возрастает и может составлять 100 % при статическом надрыве материала. В нашем случае наработка лопатки составила 886 полетов при многоцикловом разрушении. Если предположить, что трещина зародилась естественным путем в лопатке, период роста трещины составляет около 35 %. Эта оценка минимум в 3 раза завышена по отношению к указанным выше известным данным о соотношении между периодом роста трещины и полной долговечностью. Следовательно, именно коррозионное растрескивание материала вызвало существенное снижение усталостной прочности лопатки (в несколько раз) на этапе зарождения усталостной трещины и привело к ее преждевременному разрушению.  [c.579]


Систематические исследования титановых лопаток ГТД позволили установить, что наиболее часто развитие разрушения в них происходит в области многоцикловой усталости, когда скорость роста усталостной трещины не превышает  [c.580]

Выполненные измерения шага линий и последующий их пересчет в число полетов показали, что длительность роста трещины в валу составила около 630 полетов ВС. К моменту разрушения наработка вала с начала эксплуатации составила 4333 полета. Следовательно, относительный период роста трещин в валу от дефекта материала составил (630/4333) 100 = 15 %. Полученная оценка относительного периода роста трещины согласуется с представлением о развитии разрушения в вале трансмиссии в области многоцикловой усталости. Более того, отсутствие несплошности в материале гарантирует более продолжительную эксплуатацию вала без возникновения в нем усталостной трещины, чем это имело место в рассматриваемом случае. Поэтому применительно к данной детали не было никаких оснований рекомендовать периодический контроль в эксплуатации с целью выявления трещин в валах. Достаточно было ограничиться рекомендациями по выявлению несплошностей в валах как на стадии их изготовления, так и в процессе ремонта, поскольку рассмотренный вал за время эксплуатации ремонтировали дважды.  [c.708]

Таким образом, из представленных данных следует, что распространение усталостных трещин в валиках насосов и в валах воздушных винтов от шлицев реализуется в области многоцикловой усталости. Нагруженность валиков настолько низка, что возникновение в них трещин в эксплуатации возможно только в результате первоначального повреждения материала по тем или иным причинам. Разрушение валов также является следствием нарушений в условиях сопряжения деталей в болтовом соединении, что приводит к возникновению усталостной трещины в болтовом стыке, а далее ее распространение происходит в валу.  [c.713]

Развитие трещины характеризовалось существенным окислением излома, отчетливыми, но нерегулярными усталостными линиями, а микрорельеф указывал на распространение трещины в области многоцикловой усталости, как и в случаях разрушений Ха 5-7. Однако нафужение детали в рассматриваемом сечении во всех случаях по зоне сварки отличалось от нагружения рычага.  [c.782]

Рассмотренные закономерности роста трещин в двух сечениях одного и того же элемента конструкции — основной стойке шасси самолета Ан-24 свидетельствуют о том, что длительность накопления усталостных повреждений и продолжительность роста трещин могут существенно различаться для разных сечений детали из-за различия в реализуемых механизмах разрушения области мало- или многоцикловой усталости. Сопоставление данных о росте трещин в эксплуатации и на стенде по программам, имитирующим эксплуатационное нагружение детали блоками нагрузок по схеме уборка-выпуск шасси, указывают на правомерность использования параметров рельефа излома в виде шага усталостных бороздок для оценки длительности роста трещин в количестве посадок ВС из условия одна бороздка — одна посадка.  [c.783]

Названные условия нагружения приняты как весьма общие и характерные для ряда ответственных узлов и деталей машин, когда осуществляется нерегулярное усталостное нагружение с кратковременными перегрузками. При этом уровень переменных напряжений, как правило, не достигает предела пропорциональности материала и соответствует величине предела усталости или несколько его превышает, в то время как перегрузки выводят материал за предел упругости. В этом случае разрушение может происходить и в многоцикловой области, и при малом числе циклов нагружения.  [c.57]

В условиях рассматриваемого типа нагружения проявляются особенности малоцикловой усталости, заключающиеся прежде всего, как отмечено выше, в возможности накопления в процессе циклических нагружений наряду с усталостными повреждениями и квазистатических. В указанном наиболее общем случае оценка накопления повреждений может быть выполнена в деформационной форме, что является традиционным для малоцикловой ветви кривой усталости [2—8] и обосновывается в ряде исследований также и для многоцикловой области [144, 210, 211], а расчет повреждений представляется возможным осуществить на основе деформационно-кинетических критериев разрушения.  [c.57]


Для вычисления циклической вязкости разрушения важно определить начало нестабильного роста усталостной трещины. Нестабильность роста усталостной трещины в области многоцикловой усталости характеризуется значительным возрастающим напряжением в зоне истоков трещины, не зависимым от уровня приложенного напряжения и исходной концентрации напряжений.  [c.109]

Рентгенографическое исследование металлов и сплавов в области многоцикловой усталости привело к самым разноречивым результатам. Три участка на кривой изменения ЫВ (где Ъ — текущая, а S — первоначальная ширина дифракционной линии (310) a-Fe) от числа циклов выявлено при усталостных испытаниях стальных образцов на кручение, изгиб, растяжение — сжатие [90] (рис. 17). Относительная ширина линии (310) a-Fe быстро увеличивается на начальной стадии испытания, стабилизируется на второй и вновь увеличивается перед разрушением. Три стадии относительного изменения ширины линии фиксируются только при разрушении образца, при напряжениях выше предела усталости. При напряжениях ниже предела усталости третьей стадии, предшествующей разрушению, не наблюдается.  [c.36]

Проблема усталости металлов может быть решена только в том случае, если будут разработаны достаточно надежные методы, позволяющие прогнозировать зарождение усталостной трещины, описать процесс ее развития и предсказать момент окончательного разрушения с учетом влияния основных конструктивных, технологических и эксплуатационных факторов. В большинстве выполненных исследований многоцикловой усталости металлов в качестве критерия разрушения принималось полное разрушение образца, что характерно для установок с прямым механическим нагружением, пли возникновение трещины определенных размеров, что характерно для электромагнитных и электродинамических и других установок, когда испытания проводятся в резонансном режиме.  [c.3]

Поэтому подходы линейной механики разрушения могут быть успешно использованы для исследования и прогнозирования усталостной прочности и долговечности металлов, которые могут быть использованы только для упругого напряженного состояния и многоцикловой усталостной прочности. В последние годы развивается нелинейная механика разрушения. Экспериментально показано, что скорость распространения трещин во всей области скоростей (10 —  [c.14]

С другой стороны, возросшие требования к повышению долговечности и надежности конструкций определяют потребность изучения усталостных свойств при больших значениях долговечности, соответствующих реальным числам циклов нагружения элементов конструкций до выработки установленного ресурса, которые для ряда элементов конструкций достигают 10 —10 циклов. При этом в связи с заметным рассеиванием характеристик сопротивления многоцикловому усталостному разрушению изучение усталостных свойств необходимо проводить в вероятностной постановке. Кроме того, переход к эксплуатации ответственных элементов конструкций по безопасному повреждению требует всестороннего изучения вероятностных закономерностей процесса развития усталостных трещин.  [c.26]

ИССЛЕДОВАНИЕ ДЕФОРМАЦИОННЫХ И ЭНЕРГЕТИЧЕСКИХ КРИТЕРИЕВ УСТАЛОСТНОГО РАЗРУШЕНИЯ МЕТАЛЛОВ ПРИ МНОГОЦИКЛОВОМ НАГРУЖЕНИИ  [c.47]

Основными конструктивными факторами, определяющими уровень сопротивления элементов конструкций усталостному многоцикловому разрушению, являются концентрация напряжений, размеры напрягаемых сечений и объемов. Повышение циклической несущей способности достигается улучшением конструктивных форм, понижающим концентрацию напряжений путем уменьшения кривизны поверхности более плавными очерта-  [c.151]

Указанные значения коэффициента Кт хорошо согласуются с нашими экспериментами при ленточном шлифовании многих конструкционных и высокопрочных сталей, титановых сплавов, твердых сплавов и ультрафарфора. Так, при обработке незакаленных и закаленных сталей, титановых сплавов, когда Кт 0,5, наблюдаем вязкое разрушение с образованием сливной стружки. При шлифовании же ультрафарфора и твердых сплавов (Кт 0,7) вид разрушения становится многоцикловым со значительной долей усталостного разрушения. После шлифования кругами (рис. 1.5, а) мало шлифовочных рисок, почти отсутствует направленная шероховатость. Съем припуска осуществляется поверхностным разрушением материала, имеется много сколов частиц материала. В основе рельефа поверхности ударно-абразивного изнашивания лежит замкнутая кратеровидная лунка, отделенная от соседних лунок перемычками. Примерно такой же рельеф поверхности получен Г. М. Сорокиным .  [c.20]

ДО разрушения конструктивного элемента аппарата. Наряду с механохимической повреждаемостью в процессе циклического нагружения имеет место усталостная (малоцик-повая и многоцикловая) повреждаемость.  [c.386]

В настоящее время различают мпогоцикловую и малоцикловую усталость. Согласно ГОСТ 23207 - 78 (Сопротивление усталости. Основные термины, определения и обозначения) многоцикловая усталость - это усталость материала, при которой усталостное повреждение или разрушение проштходит в основном при упругом деформировании, а малоцикловая усталость - усталость материала, при которой усталостное повреждение или разрушение происходит при упруго-пластическом деформировании (по ГОС Т 25.502 - 79 "Методы испытаний па усталость" при малоцикловой усталости максимальная долговечность до разрушения составляет условное число 5Т0 циклов).  [c.7]


В малоцикловой зоне (участок кривой AB D) при нагружении образца растяжением — сжатием можно выделить три характерные участка. На участках I и II разрушение носит квазистатический характер с образованием шейки в месте излома. На участке III на поверхности разрушения уже отчетливо можно выделить зону усталостного излома. Зона IV, соответствующая динамическому пределу текучести, является как бы границей между малоцикловой и многоцикловой (зона V) областями. Участок VI полной кривой усталости соответствует пределу выносливости.  [c.361]

Для определения работоспособности титановых сплавов при многоцикловом нагружении необходимо знать их усталостную прочность. При этом следует иметь в виду, что в литературе по усталостным свойствм титановых сплавов имеется много противоречивых сведений. Это, по-видимому, является результатом не только недостаточной изученности этих свойств, но и их своеобразием. Так, уже сейчас ясно, что точные данные по усталостному поведению титановых сплавов во многих случаях можно выяснить лишь на основании статистической обработки первичных данных, так как при усталостных испытаниях наблюдается повышенный разброс данных. Очень важен статистический подход при определении надежной работы крупных деталей машин при многоцикловом нагружении. Уникальное явление усталости титана —его чувствительность к состоянию поверхности. В частности, в последнее время выяснили, что при числе циклов до 10 трещины зарождаются в самом поверхностном слое, состояние которого полностью определяет уровень предела выносливости. При числе нагружений более 10 разрушение носит подповерхностный (подкорковый) характер, хотя типичное усталостное разрушение наблюдается при числе циклов нагружения по крайней мере до 10 ° [91]. Пренебрежение к финишным поверхностным обработкам титановых деталей, работающих на усталость, явилось причиной снижения их долговечности на начальном этапе внедрения титана в технике.  [c.137]

Полученные при исследовании кинетические кривые (рис. 7.28) показывают, что при наложении на выдержку около 1000 циклов малой амплитуды с частотой 150 Гц материал начинал проявлять чувствительность к бигармоническому нагружению уже при / niax < 20 МПа-м / . Этот результат совпадает с данными, представленными ранее (см. рис. 7.14). Число циклов низкой амплитуды оказывало сушественное влияние на величину продвижения трещины за блок нагружения. При этом блок нагружения по своим параметрам соответствовал условиям многоциклового вибрационного нагружения диска за ПЦН. Сопоставление фрактографических параметров излома при разных условиях нагружения показало, что при СРТ в пределах 10 м/цикл от циклов малой амплитуды на изломе формировались только фасетки ква-зихрупкого внутризеренного и внутрифазного разрушения материала, а усталостных бороздок в изломе не было. Бигармоническое нагружение при СРТ, когда материал проявлял чувствительность к циклам малой амплитуды, вызывало формирование преимуп1 ественно фасеточного отражающего пластинчатую щ + (3 ,)-структуру материала рельефа излома, на фоне которого имелись локальные  [c.384]

Начальный этап развития трещины в диске V ступени по межпазовому выступу был связан с формированием сглаженного рельефа без усталостных бороздок, что свидетельствовало о разрушении по механизму многоцикловой усталости. Далее имели место на длине около 1 мм до границы выявленной трещины блоки усталостных бороздок (рис. 9.44). Шаг блока составляет около 0,1-0,2 мм, а усталостные бороздки регулярно возрастают и убывают в блоке и колеблются в пределах 0,3-2,0 мкм. Характер развития трещины указывает на то, что ее развитие происходит на значительное расстояние за один цикл испытания в составе двигателя на стенде. При шаге бороздок 2,0 мкм развитие трещины реализуется в области малоцикловой усталости и свидетельствует о достижении ситуации, близкой к циклической вязкости разрушения материала.  [c.519]

Лопатки компрессоров низкого и высокого давления двигателей (КНД и КВД) изготавливают из сплавов ВТЗ-1, ВТ8 и ВТ9. Их повреждение в эксплуатации может происходить при различной наработке, поскольку большая часть случаев разрушения лопаток обусловлена попаданием посторонних предметов. Процесс роста трещины после нанесения на лопатки повреждений реализуется, как правило, в области многоцикловой усталости. Поэтому основными параметрами рельефа излома, по которым можно судить о длительности процесса роста трещины, являются усталостные макролинии. В зависимости от того, каким образом и сколько раз за полет лопатка подвергается кратковременному воздействию резонансных нагрузок, можно наблюдать различную геометрию усталостных линий, морфологию рельефа излома между линиями и последовательность формирования блоков усталостных линий на разных этапах подрастания трещины. Различия в морфологии рельефа излома имеют существенную неоднородность от лопатки к лопатке, поскольку сечение разрушения не имеет строгой упорядоченности относи-  [c.588]

Рельеф излома на мезоскопическом масштабном уровне в виде внутризеренных фасеток с ориентированными ступенчатыми структурами был типичным для области многоцикловой усталости. На различных участках излома имели место мезолинии усталостного разрушения. Это типичная ситуация для развития усталостной трещины  [c.608]

Представленные результаты анализа кинетики усталостных трещин в лопатках компрессоров и турбин двигателей свидетельствуют в первую очередь о том, что в пределах существующих ресурсов двигателей происходят разрушения лопаток только из-за их повреждений. Само распространение трещин определяется вибронагруженно-стью лопаток на резонансных или близких к таковым частотах и с этой точки зрения разрушение лопаток является многоцикловым, а в некоторых случаях и сверхмногоцикловым — развитие трещин от единичных циклов нагружения. Однако количество полетных циклов может составлять всего от нескольких десятков до нескольких сотен циклов. Для каждой лопатки разброс периода роста трещины может быть получен из-за того, что возникающие повреждения располагаются на разном расстоянии от основания лопатки, т. е. сечение развития трещины оказывается различным образом нагружено. Этот факт должен быть учтен при установлении периодичности эксплуатационного контроля повреждений лопаток в эксплуатации из-за попадания посторонних предметов в проточную часть двигателя.  [c.615]

При такой кинетике разрушения период развития многоцикловой усталостной трещины, рассчитанный но общему числу макролиний и блоков мезолиний, составляет около 190 полетов самолета для лопатки с максимальной наработкой на двигателе № А82У122108. Последняя проверка рабочих лопаток П1 ступени турбины этого двигателя по бюллетеню № 1043-БЭ проводилась за 74 ч до разрушения лопатки, что при средней продолжительности полетов за период после последнего ремонта двигателя в 2,6 ч составляет около 30 полетов. Из графика на рис. 2.25 видно, что 30 полетов до разрушения лопатки в момент ее проверки трещина в лопатке имела длину около 15-16 мм. Однако она не была выявлена при последнем контроле лопатки в то время, как опыт эксплуатации двигателей НК-8-2у показывает, что технология проверки  [c.619]

Распространение усталостных трещин в лопатках с формированием мезолиний свидетельствует о том, что лопатки подвергаются переменным нагрузкам с низкой амплитудой. Поэтому разрушение лопаток происходит р области многоцикловой усталости. В этой области разброс дан-  [c.626]

Развитие трещин во всех картерах являлось усталостным, с формированием усталостных линий, отражающих повторяющиеся от полета к полету вертолета однотипные режимы нагрз жения редукторов в районе перемычек (рис. 13.10). Очагом зарождения усталостной трещины в перемычке картера № 2 явилась острая кромка у отверстия под стыковочный болт. Запиловка, выявленная в ходе исследования на цилиндрической поверхности картера в зоне прохождения этой трещины, не оказывала влияния на ее зарождение. В очаге зарождения этой трещины отсутствовали дефекты материала. В направлении распространения трещины в изломе были сформированы мезолинии многоциклового усталосГного разрушения материала, свидетельствующие о регулярных сменах внешней нагрузки. Мезолинии сгруппированы в блоки, соответствующие нагружению картера за один полет, размером около 30 мкм. При глубине трещины 9 мм продолжительность роста трещины составила около 300 полетных циклов нагружения вертолета или 600 ч эксплуатации. Наработка картера № 2 после последнего ремонта составляла 960 ч, что указывает на отсутствие трещины в перемычке при проведении последнего ремонта.  [c.676]


Последовательность распространения трещины характеризуется блоками усталостных микролиний (рис. 15.15). Подрастание трещины, как и в предыдущих случаях применительно к осям и зонам сварки стоек, происходило при последовательном воздействии на материал серии нагрузок разного уровня, повторяющихся по характеру воздействия от полета к полету ВС (от посадки к посадке). Поэтому длительность роста трещины была оценена в количестве около 2000 посадок (см. рис. 15.14). Причем следует подчеркнуть, что сам процесс развития разрушения относится к области многоцикловой усталости, когда доминирующим является повреждение материала от низкоамплитудных нагрузок. Усталостные микролинии в этом случае характеризуют переходы от одного уровня переменных нагрузок к другому в пределах всего цикла нагружения детали за одну посадку.  [c.788]

Область многоцикловой усталости — область низких амплитуд и больших долговечностей. Процесс усталостного разрушения в общем случае (для отожженных металлов) состоит из четырех основных периодов I — инкубационного, связанного с накоплением искажений кристаллической решетки II — разрыхления, связанного с появлени-  [c.19]

Малоцикловая усталость в большинстве случаев связана с действием высоких напряжений, поэтому изломам присущи особенности строения, характерные для изломов циклической перегрузки или типично усталостных изломов в зонах, примыкающих к долому. Изломы малоцикловой усталости отличают многооча-говость и вследствие этого расположение зоны долома, близкое к центру сечения образца (при изгибе вращающегося образца), относительно малая длина усталостной трещины и т. д. Рассматриваемые изломы характеризуются наличием заметных следов пластической деформации, особенно на участке окончательного разрушения во всяком случае степень неполного соприкосновения половинок излома при приложении их друг к другу больше, чем у изломов многоцикловой усталости. В очаге, как правило, не наблюдается сильно сглаженной зоны, характерной для типично усталостных изломов. В зоне, соответствующей постепенному развитию разрушения, в ряде случаев наблюдаются радиальные рубцы или рисунок в виде шеврона. Наличие таких рубцов иногда заставляет сомневаться в усталостном происхождении излома. Расшифровке излома может помочь следующее обстоятельство линии шеврона при однократном нагружении не меняют своего угла поворота к поверхности листа, а при повтор-но-статическом нагружении постепенно поворачиваются до угла 60—90° к поверхности. Это происходит, по-видимому, вследствие постепенного перехода плоскодеформированного состояния в 7—349 97  [c.97]

В Институте проблем прочности АН УССР уделяется большое внимание разработке экспериментальных средств исследования усталости и неупругости металлов с целью использования их для разработки деформационных и энергетических критериев многоциклового усталостного разрушения.  [c.47]

Известно, что расстояние между полосами определяет перемещение трещины за один цикл. Следовательно, подрастание усталостной треш.ииы в данном случае происходит нелинейно и ускоряется перед дорывом. Результаты фрактографического анализа показывают, что усталостная трещина при малоцикловой усталости зарождается в теле зерен и характер ее распространения является внутризеренным. Следовательно, при малоцикловом нагружении конструкционной стали 15Г2АФДпс изменение характера макроразрушения связано с изменением характера микроразрушения на структурном уровне статическому разрушению соответствует внутризеренное распространение трещины, квазистатическому — смешанное, малоцикловому усталостному — внутризеренное. При этом следует отметить, что нет принципиального различия в характере разрушения стали 15Г2АФДпс при испытаниях в условиях малоцикловой и классической многоцикловой усталости в одном и другом случае при развитии усталостной трещины происходит внутризеренное разрушение [4].  [c.138]


Смотреть страницы где упоминается термин Разрушение усталостное (многоцикловое) : [c.401]    [c.132]    [c.385]    [c.17]    [c.127]    [c.146]    [c.21]    [c.423]    [c.670]    [c.711]    [c.15]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.5 , c.82 , c.83 , c.105 , c.112 , c.114 , c.118 , c.120 , c.121 , c.129 , c.174 ]



ПОИСК



Усталостная

Усталостное разрушение



© 2025 Mash-xxl.info Реклама на сайте