Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхностное турбулентное

Если фазы находятся в относительном движении, характер поверхностной конвекции становится турбулентным. Это выражается в том, что сокращения и растяжения поверхности раздела фаз происходят гораздо сильнее. Поток вещества, обусловленный такими изменениями поверхностного натяжения, интенсифицирует перенос целевого компонента через межфазную границу и вызывает последующее сильное его перемешивание внутри каждой фазы. Данное явление было названо поверхностной турбулентностью [5]. При больших значениях градиента концентрации целевого компонента у поверхности раздела фаз и значениях градиента поверхностного натяжения, близких к критическим, поверхностная турбулентность может иметь место вдоль всей межфазной границы при малых значениях градиента концентрации целевого компонента поверхностная турбулентность может наблюдаться лишь на части поверхности раздела.  [c.8]


Если основное сопротивление массопереносу сосредоточено в сплошной фазе, то появление поверхностной турбулентности приводит к увеличению скорости массопереноса в 3—4 раза. Если же основное сопротивление массопереносу сосредоточено в дисперсной фазе, поверхностная турбулентность может увеличить скорость массопереноса более чем на порядок [5].  [c.8]

Возникает сложная проблема определения реализующегося в действительности горизонтального масштаба периодических движений, а также их структуры. Эта проблема (упорядоченные структуры, возникающие в результате неустойчивости основного состояния) не составляет специфики только конвекции в горизонтальном слое, подогреваемом снизу. Аналогичная задача отбора надкритических движений возникает при исследовании других ситуаций, среди которых назовем устойчивость плоскопараллельных потоков и кругового течения Куэтта между вращающимися цилиндрами устойчивость поверхности раздела, в частности, поляризующихся жидкостей во внешних полях устойчивость фронта пламени различные виды поверхностной турбулентности и т. д.  [c.146]

На перепадах и водосливах происходит естественное аэрирование воды как за счет захвата ею атмосферного воздуха, так и вследствие поверхностной турбулентной диффузии кислорода из атмосферного воздуха в воду и т. п.  [c.215]

Внешние поверхностные силы — силы трения о стенки внутренние — силы вязкостного турбулентного взаимодействия.  [c.204]

Как известно, увеличение площади межфазной поверхности позволяет существенно повысить скорости тепло- и массообменных процессов. В системах газ—жидкость этого увеличения добиваются за счет интенсификации процессов дробления дисперсной фазы. Дробление пузырьков газа в жидкости может осуществляться как в ламинарном, так и в турбулентном потоке жидкости за счет взаимодействия между сплошной и дисперсной фазами [45]. Вязкие напряжения в первом случае или инерционные силы— во втором стремятся деформировать и разрушить пузырек газа. Капиллярные силы поверхностного натяжения полностью или частично компенсируют эти воздействия на пузырьки газа со стороны жидкости. Таким образом, дробление пузырька происходит пли не происходит в зависимости от соотношения между силами вязкого трения и поверхностного натяжения (в ламинарном потоке) либо между инерционными и поверхностными силами (в турбулентном потоке).  [c.123]


В разд. 4.2 отмечалось, что в турбулентном потоке жидкости на поверхность пузырька действуют два типа сил — силы поверхностного натяжения, стремящиеся сохранить форму поверхности пузырька, и инерционные силы, связанные с турбулентными пульсациями жидкости II стремящиеся разрушить межфазную поверхность. Энергия сил поверхностного натяжения для газового пузырька с радиусом Я и коэффициентом поверхностного натяжения о будет определяться величиной А-кЯ о, а энергия, необходимая для дробления пузырька газа турбулентным потоком жид-4  [c.135]

В соответствии с [50] будем предполагать, что функция распределения пузырьков газа по размерам зависит от отношения турбулентной энергии жидкости к поверхностной энергии пузырька газа  [c.135]

Влияние турбулентности на дробление струи жидкости исследовано в работе [539]. Показано, что турбулентность способствует укорачиванию струи до начала ее распыления. В ряде работ [539— 541] изучено влияние запаздывания измельчения струи по времени на устойчивость горения и выполнены основные эксперименты. Теория распыления тонких слоев жидкости, получаемых с помощью тангенциальных сопел, рассмотрена в работе [895]. Критерий устойчивости получен из условия баланса сил межфазного поверхностного натяжения и аэродинамических сил.  [c.145]

В последние годы проведен ряд исследований и достигнуты определенные успехи в решении указанной задачи. В частности, если в поток жидкости добавить ничтожные доли полимеров (например, 0,001—0,01 % полиакриламида) или поверхностно-активных веществ, то потери напора на трение могут уменьшиться на 60—80% [И]. Хотя механизм этого явления еще не вполне изучен, тем не менее одной из причин значительного снижения сопротивления можно считать резкое снижение турбулентных пульсаций вблизи стенок и увеличение толщины ламинарного подслоя при сохранении в нем линейного профиля скоростей.  [c.85]

Прямые методы измерения поверхностного трения применяют для жидких и газовых потоков при ламинарном, турбулентном, дозвуковом и сверхзвуковом обтекании поверхности в этом их достоинство. К недостаткам следует отнести конструктивную сложность и большой объем доводочных испытаний при настройке приборов. Кроме того, эти методы, как правило, неприменимы в потоках с продольным градиентом давления.  [c.206]

При значениях Ке, , > 1600 ламинарно-волновой режим течения пленки сменяется турбулентным. При этом так же, как и в обычных турбулентных потоках (например, в каналах), слой жидкости, непосредственно прилегающий к стенке, сохраняет черты ламинарного течения, а за пределами этого слоя пленки действует механизм турбулентного перемешивания. Это позволяет исключить из рассмотрения влияние волновых процессов, вязкости и поверхностного натяжения жидкости на касательные напряжения и связь между толщиной пленки и плотностью орошения. Анализ и результаты экспериментального изучения закономерностей течения тонких пленок показывают, что для свободно стекающей пленки можно записать равенство осредненных или локальных значений веса пленки и касательных напряжений на стенке в виде  [c.173]

При построении приближенных моделей необходимо учитывать несколько важных особенностей анализируемой задачи. Прежде всего паровой пузырек на стенке, несмотря на внешнее сходство, вовсе не аналогичен воздушному шару, привязанному за нитку ко дну сосуда с водой (хотя такая аналогия и кажется естественной). По существу у пузырька нет каких-либо механических связей с твердой стенкой, кроме поверхностного натяжения на линии контакта трех фаз. Ясно, что роль поверхностного натяжения совершенно ничтожна в случае крупных пузырьков, характерных для низких приведенных давлений (больше числа Якоба). Кроме того, поверхность пузырька легко изменяет свою форму локальный импульс давления (например, за счет турбулентных пульсаций), воздействующий на участок поверхности пузырька, не передается центру масс пузырька, но может изменить его форму. В экспериментах наблюдали как расположенный в жидкости вблизи стенки термометрический проволочный зонд свободно входит в паровой пузырек, не влияя на его эволюцию (фактически пузырек растет, не замечая малого в сравнении с его размером твердого препятствия). Ясно, что в случае с воздушным шариком ситуация совершенно иная.  [c.273]


В зависимости от соотношения объемных долей фаз, скорости смеси, ориентации и геометрии канала, направления течения (опускное, подъемное, горизонтальное), а также свойств жидкости и пара (в первую очередь поверхностного натяжения, плотности, вязкости) в канале устанавливаются различные структуры двухфазного потока. Знание структуры (режима течения) для двухфазных систем сопоставимо по важности с установлением границы ламинарного и турбулентного режимов течения однофазной жидкости. Но, к сожалению, классификация режимов течения двухфазной смеси не опирается ни на столь же убедительные эксперименты, как знаменитый опыт Рейнольдса, ни на внушительные теоретические ре-  [c.298]

Тогда очевидно, что новые слагаемые в уравнении Рейнольдса есть дополнительные напряжения поверхностных сил, возникающих из-за наличия турбулентности. Совокупность турбулентных напряжений так же, как и вязких напряжений (III.15), можно свести в таблицу, называемую тензором турбулентных напряжений,  [c.266]

Критерий начала аэрации получен на основе следующих теоретических соображений. Поток в начале быстротока характеризуется тем, что силы инерции значительно (в 10 раз и более) превышают силы сопротивления, поэтому на этом участке движение поверхностных слоев можно считать потенциальным. На поверхности раздела вода — воздух может возникнуть волновое движение в результате турбулентных возмущений, порождаемых вблизи дна и стенок и проникающих вплоть до свободной поверхности.  [c.246]

Струя жидкости, вытекающая через отверстие или насадок в газовую среду или в жидкость, с ней не смешивающуюся, испытывает действие массовых сил (например, инерции и тяжести), трения, поверхностного натяжения, а также сил давления, обусловленных турбулентным перемешиванием как в самой струе, так и в среде. Влияние каждой из действующих сил на характер движения струи и на ее последующее разрушение не одинаково для различных начальных условий истечения.  [c.346]

При переходе к волнообразному распаду с увеличением скорости истечения устойчивость ламинарного течения нарушается, поток постепенно переходит в турбулентный. Под действием стационарных сил инерции, трения, поверхностного натяжения и соизмеримых с ними переменных по величине и направлению пульсационных  [c.346]

Дальнейшее увеличение скорости истечения при прочих равных условиях приводит к возрастанию интенсивности турбулентного перемешивания. В этом случае пуль-сационные силы давления, зависящие от пульсации скорости, становятся существенно большими сил трения н поверхностного натяжения. Действие турбулентных пульсаций приводит к тому, что в любой момент времени кинетическая энергия любого конечного объема жидкости (моля) может оказаться большей запаса энергии сил поверхностного натяжения и вязкости, удерживающих моль в струе. Очевидно, что при таком соотношении сил моль будет выброшен из струи.  [c.347]

Пример 8.3. Рассчитать минимальную соответствующую началу турбулентного распыла скорость истечения струи воды через отверстие в топкой стенке диаметром о = 0,5 мм в воздух. Коэффициент поверхностного натяжения на границе вода — воздух а — = 0,073 Н/м, температура воздуха и воды = 20°С.  [c.358]

Область перехода или точка перехода характеризуется возникновением в пограничном слое интенсивных пульсаций скорости, давления, плотности (в сжимаемых средах) и т. п. Распределения скоростей по сечению в ламинарном и в турбулентном пограничных слоях, вообще говоря, резко отличаются друг от друга. Так же как и при турбулентных движениях в трубах, в турбулентном пограничном слое происходит интенсивное перемешивание макроскопических частиц жидкости в поперечном направлении, за счет этого в турбулентном пограничном слое происходит выравнивание средних скоростей. Вместе с этим прилипание на обтекаемых стенках приводит к появлению более резких градиентов скоростей вблизи стенок, что вызывает резкое увеличение поверхностных сил трения и соответственно сопротивления трения.  [c.265]

В работе [5] указывается, что одним из факторов, которые могут влиять на скорость полигонизации, является дислокационная структура, образующаяся при деформации. Следовательно) на основании изложенных выше данных можно предположить, что при обычном деформировании изгибом в тонком поверхностном слое монокристалла (20 мкм) протекает турбулентное скольжение, тогда как в объеме имеет место ламинарное скольжение.  [c.120]

Резонансные колебания тела человека и его отдельных сегментов наиболее четко проявляются при действии вибрации с частотами 1—30 Гц (рис, 4). Преимущественно в этой полосе частот расположены спектры вибрации разнообразных транспортных средств, самоходных строительных, дорожных и сельскохозяйственных машин. Возбуждение интенсивной вибрации в полосе частот 1—30 Гц главным образом обусловлено движением по неровным (случайным) профилям поверхностей (автомобильный и рельсовый транспорт), движением по поверхностным волнам (водный транспорт), движением в турбулентных слоях атмосферы (летательные аппараты). Локальные вибрации, как правило, имеют более широкий спектр частот, верхняя граница которого достигает нескольких килогерц.  [c.378]

При наличии поверхностного массообмена и турбулентном течении в трубе безразмерные координаты v+ и у+ не позволяют получить универсальный профиль скоростей. Графики и+=/(у+) — расходящиеся кривые, зависящие от параметра 6. Для расчета поправки на изменение толщины ламинарного подслоя в зависимости от Re и 0 на основании аппроксимации расчетных данных по методике [6.35] Т. М. Батищевой составлено уравнение  [c.157]


Взаимодействие нагретого газа с теплозащитными покрытиями обусловлено протеканием многочисленных и взаимосвязанных процессов. Теоретическое решение этой проблемы в общем случае должно основываться на решении системы дифференциальных уравнений, описывающих явление нестационарного тепломассопереноса в системе газ — тело. Этими уравнениями являются уравнения внешней газодинамики, уравнения ламинарного или турбулентного пограничных слоев в многокомпонентных реагирующих газовых смесях, уравнения нестационарной теплопроводности внутри многослойных теплозащитных покрытий, а также уравнения кинетики поверхностного взаимодействия.  [c.8]

Определенные особенности имеет расчет трения и теплообмена на шероховатой поверхности. Шероховатость поверхности может ускорить переход к турбулентному режиму течения и привести к увеличению поверхностного трения и интенсификации конвективного теплообмена. В переходной области теплообмен также усиливается. При анализе трения, введя так называемую песочную шероховатость, удалось исключить из рассмотрения форму элементов шероховатости. Отношение высоты эквивалентной песочной шероховатости к толщине ламинарного подслоя является параметром, характеризующим степень ее влияния на величину трения. Если высота шероховатости меньше толщины подслоя, она не влияет на трение. В этом случае поверхность считается гладкой. Когда высота шероховатости значительно превышает толщину ламинарного подслоя, определяющим становится сопротивление формы шероховатости при этом перестает зависеть от числа Re и определяется только высотой шероховатости. В промежуточной области зависит как от высоты шероховатости /г, так и от Re. С увеличением местного числа Маха влияние шероховатости на трение уменьшается.  [c.50]

Рис. 4-22. Влияние вдува в воздушный турбулентный пограничный слон на коэффициент поверхностного трения. Рис. 4-22. Влияние вдува в воздушный <a href="/info/485473">турбулентный пограничный слон</a> на коэффициент поверхностного трения.
Изменение коэффициента поверхностного трения при вдуве газов в турбулентный пограничный слой можно учитывать следующим выражением  [c.115]

Еще слабее проявляются специфические особенности механизма взаимодействия углерода со стеклом, т. е. механический унос частиц углерода, их поверхностное (гетерогенное) горение при турбулентном режиме течения в пограничном слое. Это, вероятно, связано с относительно высоким уровнем теплоотдачи в турбулентном слое при сохранении почти того же уровня сдвигающихся напряжений в пленке расплава, что и в ламинарном пограничном слое. При этом доля испарения в уносе массы быстро увеличивается. В этом случае отличия в эффек-  [c.282]

Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

Скорость движения малых пузырьков, по-видимому, определяется взякостью и поверхностным натяжением. Определяющим фактором для крупных пузырьков является соотношение между скоростью и радиусом и появление точки перехода к турбулентности (фиг. 3.22).  [c.142]

В других работах [1, 46] исследование механизма массопереноса и его расчет в турбулентной пленке жидкости при наличии газового потока или поверхностного натяжения проведено на основе решения уравнений переноса количесз ва движения и массы с учетом входных эффектов и при условии, что турбулентный перенос изменяется по длине пленки жидкости, причем поверхность пленки жидкости является искомой величиной. Получено общее выражение для коэффициента массоотдачи  [c.29]

При решении уравнения энергии для турбулентной струи в работах [ 16, 17, 20 допущен ряд неточностей, упрощающих данную постановку задачи, в частности пре-небрсгалось влиянием на эффективность теплоотдачи сил поверхностного натяжения и поперечной составляющей скорости, к тому же составляющая скорости находилась из гидравлических расчетов.  [c.70]

При Re,,,, = 5 -7 движение пленки ла.минарное, прн Re,,., > > 400 — турбулентное, а при промежуточных значениях—волновое. П. Л. Канина установил влияние сил поверхностного натяжения на ламинарное течение иленки, п))и котором случайные воз.мущения пр водили к волновому ее движению, Средняя толщина пленки оказалась меньше, что привело к увеличению коэффициента а на 21 % по сравнению с рассчитанным по формуле Нуссельта. Для вертикальных труб при лами 1арно-волновом течении а определяют по формуле (17.54), но при С 1,15. На горизонтальных трубах волновое и турбулент1юе течения пленки не образуются из-за . алой дл1 ИЬ пути, и расчет ведут по формуле (17.54).  [c.212]

Каверна, образованная за диском, при определенных числах Фруда имеет на большей части своей длины гладкую прозрачную поверхность (рис. VI. I). Однако это свойство существенно зависит от степени турбулентности потока. При повышении турбулентности потока (например, путем его искусственной турбулизации) на поверхности каверны, образованной за диском, появляются высокочастотные колебания — волны (рис. VI.2). На поверхности сферических и эллиптических кавитаторов есть пограничный слой, который вблизи точки отрыва каверны разрушается и служит источником возмущения поверхности каверны. На небольшом участке длины за точкой отрыва каверна имеет гладкую и прозрачную поверхность течения. Однако сразу же за этой областью появляется система поверхностных волн с амплитудой, возрастающей вниз по потоку. Ряд исследователей предполагает, что эти волны возникают вследствие роста неустойчивости отделенного пограничного слоя кавитатора.  [c.211]

При проектировании высокоскоростных летательных аппаратов возникаю две главные проблемы первая —определение поверхностного трения вторая —определение температуры обшивки. Сопротивление трения составляет значительную долю полного сопротивления летательного аппарата, поэтому неверный расчет сопротивления трения может привести к значительной ошибке в дальности его полета. Температура обшивки является решающим фактором при проектировании высокоскоростных летательных аппаратов. Обе проблемы обусловлены наличием пограничного слоя на внешней поверхности летательного аппарата. Этот пограничный слой может быть ламинарным переходным и турбулентным. В настоящей главе кодотко рассмотрены обе указанные проблемы как для ламинарного, так и для турбулентного пограничных слоев.  [c.198]


В то же время, преследуя краткость курса, нам пришлось опустить некоторые разделы, иногда включаемые в курсы гидравлики перенос потоком взвешенных частиц (влечение донных наносов и гидротранспорт), теорию турбулентных струй, течение двухфазных жидкостей (эргазлифты, движение пароводяных смесей), теорию трения при смазке, теорию поверхностных волн и др.  [c.8]

Существуют несколько режимов течения не очень тонких жидких пленок. Из них выделим ламинарное течение со спокойной поверхностью раздела фаз, ламинарное течение с поверхностными волнами, турбулентное течение и течение с поверхностным иопарением жидкости или конденсацией пара.  [c.103]

Авторы работы [107] предложили метод расчета предельной концентрации примесей, основанный на аналогии процессов переноса теплоты и массы в турбулентном двухфазном потоке. В соответствии с указанной предпосылкой предельная допустимая концентрация, исключающая выпадение примесей в виде твердой фазы, рассчитывается по известным значениям коэффициентов теплоотдачи в двухфазном потоке на всем протяжении парогенерирующего канала от начала поверхностного кипения до режима ухудшенной теплоотдачи. Авторы [107] показали, что расчетные и опытные значения предельной концентрации удовлетворительно согласуются в широком диапазоне изменения режимных параметров.  [c.331]

Равновесие жидкометаллического объема, удерживаемого на опоре в виде выпуклого мениска, возможно только при достижении в каждой точке его объема динамического равновесия плотности всех объемных сил (ЭМС, гравитационных, инерции, вязкого и турбулентного трения) и внутреннего напряжения жидкости. На наружных границах расплава в балансе участвуют также поверхностные силы, создаваемые поверхностым натяжением металла, окисными пленками, воздействием шлакового покрова и т.п.  [c.24]

В ИПХТ-М может наблюдаться ряд дополнительных физических явлений, отражающихся на рассчитываемых величинах. Наиболее существенны следующие наличие контактного электрического сопротивления между расплавом и прилегающей к нему поверхностью тигля Лк > турбулентный характер течения с зонами существенно разной завихренности МГД-неустойчивость, вызывающая, в частности, появление вертикальных складок на поверхности ( рифы ), отражающихся на выделении энергии кавитация, усиливаемая наличием сжимающих ЭМС и влияющая на поле скоростей поверхностные явления (образование пленок окислов, поверхностное натяжение), оказьшающие влияние на конфигурацию мениска и рифов.  [c.78]

Престон. Определение турбулентного поверхностного трения при помощи трубок rbiTo. - Реф. жури. Механика, 1955, вьш. 6 (34), с. 64.  [c.170]

Топливо, проходя по спиральным канавкам, получает вращательное движение. Возникающие внутри потока центробежные усилия способствуют быстрому распадению струи после её выхода из сопла. Однако сопла подобных конструкций в современных моделях применяются редко. Последнее объясняется низким коэфициентом <р истечения сопла и относительно малым проникновением струи в сжатый воздух. Сопла этого типа не улучшают качества распыливания даже при повышенных давлениях в ЗиО—500 кг1смК Силы аэродинамического сопротивления газовой среды возрастают с увеличением скорости движения топлива, относительной скорости среды, в которую впрыскивается топливо, плотности воздуха и величины лобовой поверхности струи. Внутренние же силы обусловливаются главным образом поверхностным натяжением топлива. Наравне с этим также должны быть учтены те радиальные возму щения (при выходе из соплового отверстия), которые можно вызвать в обычном сопле при турбулентном потоке топлива, либо применением специальной конструкции распылителя, при истечении из которого значительно усиливаются радиальные составляющие, увеличивающие конус.распыла.  [c.239]


Смотреть страницы где упоминается термин Поверхностное турбулентное : [c.9]    [c.27]    [c.213]    [c.214]    [c.347]    [c.515]    [c.49]    [c.210]   
Аэродинамика (2002) -- [ c.95 , c.96 , c.98 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте