Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кривая растяжения (сжатия)

С этим обстоятельством связаны и характерные особенности кривых растяжения-сжатия.  [c.10]

Кривые усталости материала по контактным напряжениям подобны кривым усталости по напряжениям изгиба, растяжения — сжатия и другим (см. курс Сопротивление материалов и рис. 8.39). Здесь так же, как и при других напряжениях, имеется точка перелома кривой усталости при числе циклов N но и соответствующий предел вы-  [c.104]


Кривые растяжения коротких болтов, на упругость которых влияет деформация головки и резьбовой части, а также болтов с упругими элементами нелинейной характеристики определяют экспериментально. Растягивающую силу прикладывают через упругие элементы. Экспериментальную кривую наносят на заготовку диаграммы (рис. 314, е) и через точку т встречи с линией Р проводят вертикали тп, а через точку п - линию Ьс сжатия под углом р к оси абсцисс. Ордината точки Ь представляет собой Р .  [c.457]

Отдельно должен быть рассмотрен изгиб с растяжением (сжатием) кривого бруса.  [c.338]

Здесь по осям координат отложены не абсолютные значения предельных напряжений, а их отношение к пределу текучести при одноосном растяжении (сжатии). Из этой диаграммы видно, что опытные точки располагаются на некоторой кривой СКАОВ. Это свидетельствует о том, что в отличие от предыдущих диаграмм здесь ни одно из напряжений не играет доминирующей роли.  [c.226]

Современная испытательная машина обычно снабжена прибором для автоматической записи диаграммы растяжения — сжатия. Это дает возможность сразу после испытаний получить вычерченную в определенном масштабе кривую Р=/(Д/).  [c.52]

При сложном напряженном состоянии такую простую зависимость, как диаграмма растяжения — сжатия, в общем случае мы не имеем. Однако в случае простого нагружения в условиях сложного напряженного состояния существует единая универсальная кривая упрочнения (см. рис. 11.12). На рис. 11.1 на примере испытания тонкостенной трубки показаны различные пути простого на-  [c.250]

Уравнения (16.1.6) заменяют при разгрузке уравнения (16.1.4), тогда как уравнение (16.1.3), естественно, всегда сохраняет силу. В записи условия, при котором справедливо (16.1.6), содержится нечто большее, чем только закон разгрузки, при повторной нагрузке материал будет деформироваться упруго до тех пор, пока октаэдрическое напряжение не достигнет величины То, от которой производилась разгрузка. При дальнейшем нагружении зависимость То — у о следует по продолжению первоначальной кривой и уравнения (16.1.4) снова вступают в силу, продолжая действовать так, как если бы разгрузки и повторной нагрузки не было. Подчеркнем еще раз, что нри реверсировании нагрузки, т. е. при смене растяжения сжатием или после изменения направления крутящего момента мы можем снова выйти в пластическую область. Здесь этот вопрос пока не обсуждается.  [c.535]

Справочное пособие содержит основные сведения по сопротивлению материалов с элементами строительной механики, теории упругости и пластичности. Приводятся данные для расчета стержней на растяжение-сжатие, сдвиг, кручение, для расчета статически определимых и статически неопределимых балок и рам на прочность и жесткость. Рассматривается работа стержней в условиях сложного сопротивления, кривых брусьев, толстостенных труб, тонкостенных стержней, резервуаров, пластинок и оболочек.  [c.2]


Рис. 127. Кривые долговечности образцов сплава ВТ5-1 с амплитудой суммарной деформации е при жестком симметричном нагружении растяжение—сжатие Рис. 127. Кривые долговечности образцов сплава ВТ5-1 с амплитудой <a href="/info/219114">суммарной деформации</a> е при жестком <a href="/info/39302">симметричном нагружении</a> растяжение—сжатие
При испытании на изгиб и растяжение-сжатие стальных стандартных образцов (по ГОСТ 2860—65) допускается определять абсциссу точки перегиба условной кривой усталости б (JVq) по формуле  [c.79]

При испытаниях на циклическое кручение, а также изгиб и растяжение-сжатие при получении разрушающего напряжения Ор> 500 МН/м2 (50 кгс/мм ) уже нельзя пользоваться номограммой, представленной на рис. 43. В этом случае ордината горизонтального участка или предел выносливости соответствующих условных кривых усталости б (о ), абсцисса точки перегиба ветвей кривых усталости (Л о) и характеристика наклона левой ветви условной кривой усталости (/Сб) определяются по результатам испытаний аналогичных образцов или деталей машин с учетом влияния на указанные характеристики конструктивных и технологических факторов и масштабного эффекта.  [c.83]

Аналитические зависимости между а и Кд при растяжении-сжатии и изгибе учитывают циклическую вязкость материала и градиент напряжений у поверхности надреза [44]. Зависимость величины/С от Од с уменьшением радиуса надреза имеет максимум. Восходящая часть кривой Kg=f(ag) может быть аппроксимирована уравнением Кд =Од V [132], которое справедливо при радиусе надреза рн> рПред =о,1-т-0,Змм (в зависимости от испытуемого материала). Параметр v —величина постоянная для данного материала и может служить критерием чувствительности материала к концентрации напряжений. Он характеризует снижение напряжений в образце в условиях пластической деформации и зависит от пластичности материала.  [c.121]

Приведенные кривые модулей релаксации и зависимости напряжений от деформаций при постоянной скорости деформирования были получены для растяжения, сжатия и изгиба образцов из эпоксидной смолы на рис. 2 соответствующие сжатию кривые построены по данным работы [69]. Впоследствии те же авторы [70] построили приведенные кривые для композитов с матрицей из эпоксидной смолы и включениями в виде стеклянных шариков, или параллельных стеклянных волокон, или пузырьков воздуха (пенопласт) при всех указанных выше видах нагружения.  [c.118]

Следует отметить, что Си после РКУ-прессования может показывать и относительно низкую пластичность при растяжении (10%) [326]. По-видимому, это связано с высокой долей малоугловых границ зерен присутствующих в образцах после определенных режимов РКУ-прессования. В работе [61] испытывали Си со средним размером зерен 210 нм при сжатии. Испытание проводилось при комнатной температуре с начальной скоростью деформации 1,4 X 10 с Ч Было также обнаружено, что деформационные кривые для Си с различным размером зерен различаются по форме. Типичными особенностями кривой деформации сжатием в случае наноструктурной Си являются высокое напряжение течения, равное 390 МПа, значительное начальное деформационное упрочнение в узком интервале степеней деформации (примерно 5%) на начальной стадии деформации, практически полное отсутствие деформационного упрочнения на последующей стадии деформации. Напряжение течения на второй стадии составило около 500 МПа. В то же время пластичность наноструктурной Си была высока. Образцы при сжатии не разрушались даже после максимальной деформации, которая в данном эксперименте равнялось 83%.  [c.185]

Рассмотрим боропластик на эпоксидном связующем. Поведение волокон бора вплоть до разрушения можно считать линейным. Кривая а(е) при растяжении отвержденной эпоксидной смолы как самостоятельного материала показана на рис. 7.15. На рис. 7.13—7.15 приведены расчетные кривые деформирования при растяжении, сжатии и сдвиге композиту  [c.279]


Важным с научной и прикладной точек зрения является распространение деформационной теории на режимы циклического упругопластического нагружения. В работе [139] обоснована возможность использования теории малых упругопластических деформаций для повторного нагружения за пределами упругости, когда осуществляется нагружение, близкое к простому, в условиях периодической смены направления нагружения на противоположное. Существенным при этом оказывается наличие единой диаграммы, предполагающей конечную связь между соответствующими компонентами напряжений и деформаций как для исходного, так и циклического деформирования. Экспериментально показано, что при различных видах однопараметрических пропорциональных нагружений, охватывающих достаточно контрастные случаи напряженных состояний (растяжение—сжатие, сдвиг—сдвиг), подтверждается наличие единой кривой статического и циклического деформирования при интерпретации в интенсивностях напряжений и деформаций [62, 63]. Независимость в указанных испытаниях диаграмм деформирования от вида напряженного состояния дает основание предположить возможность  [c.106]

Анализ кривых циклического деформирования исследуемой Ст. 50 позволяет заключить, что материал как в случае циклического сдвига, так и растяжения — сжатия является циклически анизотропным со стабилизирующейся за 10—20 циклов нагружения шириной петли гистерезиса (рис. 2.4.2, а).  [c.109]

Длительные статические испытания с получением кривых ползучести, длительной прочности и пластичности проводятся на специально модернизированных установках рычажного типа с максимальным усилием 5 тс. Используются образцы, принятые к испытаниям на растяжение — сжатие. Так же как и при длительных циклических испытаниях, применяется нагрев пропусканием тока. Деформации измеряются поперечным деформометром с записью на однокоординатном самописце. Введенная система автоматической регистрации позволяет достоверно оценить накопление деформаций ползучести также и в условиях кратковременных опытов (порядка часа и менее).  [c.234]

Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]

Многочисленные эксперименты показали, что при появлении в образце магистральной усталостной трещины форма сигнала, возбуждаемого в катушке при циклическом растяжении—сжатии образца в постоянном магнитном поле, существенно изменяется. На кривой появляются изломы (ступеньки),  [c.135]

В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

Испытание на усталость чаще всего осуществляют на вращающемся об разце (гладком или с надрезом) с приложенной постоянной изгибающей нагрузкой, На поверхности образца, а затем и в глубине, по мере развития трещины, нагрузка (растяжение — сжатие) изменяется по синусоиде или другому закону. Определив при данном напряжении время (число циклов) до разрушения, наносят точку на график и испытывают при другом напряжении. В результате получают кривую усталости (сплошная линия) (рис. 63). На этой кривой мы видим, что существует напряжение, которое не вызовет усталостного разрушения, это так называемый <гпредел выносливости (ff-i> r ). При напряжениях ниже ст деталь может работать сколь угодно долго. Но это может быть не всегда необходимо и даже нецелесообразно, так как слишком малы допустимые напряжения (apa6o4< r-i) и большие получаются сечения. В этом случае берут напряжения, которые больше о-ь и заранее известно, что через какое-то время деталь разрушится от усталости (поэтому до разрушения ее надо заменить). Это характеризует случай так называемой ограниченной выносливости. При таких напряжениях работают, например, железнодорожные рельсы. Существенно важно вовремя снять рельс с пути, чтобы избе- кать поломки и крушения поезда.  [c.83]

В зависимости от свойств материала в процессе циклического упруго пластического деформирования пределы текучести (пропорциональности) и форма кривых деформирования могут изменяться. Так, для большого количества металлов и сплавов при растяжении образца напряжением, превышающим предел текучести (пропорциональности), при последующей разгрузке и реверсивном деформировании, т. е. при сжатии, предел текучести (пропорциональности) оказывается ниже исходного. Это явление, шзвапное эффектом Бау-шингера, наблюдается не только при растяжении — сжатии, но и при других видах напряженного состояния.  [c.619]


Эксперименты показывают, что диаграмма усталостной прочности для сдвига заметно отличается от прямой линии, свойственной растяжению— сжатию, и имеет вид кривой, представленной на рис. 476. Поэтому действительные значения коэффициента запаса оказываются несколько ббльшими, чем те, которые дает расчет по формуле (13.11).  [c.406]

В сборнике представлены задачи на все основные разделы курса сопротивления материалов растяжение-сжатие, сложное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, сложное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное дегютвие нагрузок. Общее количество задач около 900. Некоторые задачи снабжены решениями или указаниями.  [c.239]

Кривая одноосного растяжения малоуглеродистой стали с разгрузкой испытуемого образца (рис. 58) показывает, что остаюч-деформация измеряется отрезком ОО. Пластическая деформация начинает проявляться на участке АВ и происходит без увеличения нагрузки. На участке ВС происходит упрочнение материала, поэтому угол наклона касательной к кривой ВС и к оси абсцисс tg р называют модулем упрочнения. Упрочнение имеет направленный характер, т. е. материал меняет свои механические свойства и приобретает деформационную анизотропию, при этом пластическая деформация растяжения ухудшает сопротивляемость металла при последующем его сжатии (эффект Ба-ушингера). Как видно из приведенной кривой, растяжение малоуглеродистой стали при пластических деформациях нагруженного и разгруженного образца значения деформаций для одного и того же напряжения . в его сечении не является однозначным. Методы теории пластичности, наряду с изучением зависимости между компонентами напряжений и деформаций, возникающих в точках тела, определяют величины остаточных напряжений и деформаций после частичной или полной разгрузки дetaли, а также напряжения и деформации при повторных нагружениях.  [c.96]

В малоцикловой зоне (участок кривой AB D) при нагружении образца растяжением — сжатием можно выделить три характерные участка. На участках I и II разрушение носит квазистатический характер с образованием шейки в месте излома. На участке III на поверхности разрушения уже отчетливо можно выделить зону усталостного излома. Зона IV, соответствующая динамическому пределу текучести, является как бы границей между малоцикловой и многоцикловой (зона V) областями. Участок VI полной кривой усталости соответствует пределу выносливости.  [c.361]

Пособие содержит материал, относящийся к разделам растяжение, сжатие, сдвиг, геометрические характеристики плоских фигур, кручение, плоский поперечный изгиб, сложное сопротивление прямых брусьев, продольный изгиб, энергетический метод расчета улругих систем, кривые брусья, толстостенные трубы и динамическое дайствие сил.  [c.3]

Для проведения подобного испытания изготовляют специальный образец из испытуемого материала. Чтобы можно было фавннть результаты различных опытов, применяют образцы стандартной, подобной друг другу формы (на рис. 118 юображен стандартный цилиндрический образец). Растяжение образца производится на специальных машинах, снабженных прибором для автоматической записи диаграммы растяжения-сжатия. Это дает возможность фазу получить вычерченную в определенном масштабе кривую Р = / (Д/)- Типичная диаграмма растяжения для образца, выполненного из малоуглеродистой стали, показана на рис. 119.  [c.146]

Рис. 123. Кривые долговечности образцов сплава ВТ5-1 в зависимости отамплиту-ды пластической деформации Ае при жестком симметричном нагружении растяжение-сжатие (7, 2 —см. на рис. 127) Рис. 123. Кривые долговечности образцов сплава ВТ5-1 в зависимости отамплиту-ды <a href="/info/1487">пластической деформации</a> Ае при жестком <a href="/info/39302">симметричном нагружении</a> растяжение-сжатие (7, 2 —см. на рис. 127)
А. Методика обработки при изгибе и растяжении-сжатии при Ор 500 МН/м (50 кгс/мм ). В процессе испытания ведется протокол, куда заносится характеристика образца и испытательной машины, фиксируются условия н результаты испытаний. Пользуясь номограммой рис. 42 по величине разрушающего напряжения Стр, устанавливают значения (предел выносливости условной усталостной кривой б) JVq (число циклов, соответствующее точке пересечения наклонной и горизонтальной нетвей усталостной кривой б) и (напряжение, соответствующее долговечности в 10 циклов). Указанные величины заносят в таблицу.  [c.78]

Для проведения изотермических испытаний при активном нагруншнии с регистрацией диаграмм деформирования и основных механических характеристик статической прочности и пластичности материалов, а также осуществления циклических испытаний при мягком и жестком нагружении с получением диаграмм циклического деформирования и кривых усталости в Институте машиноведения используются установки собственной конструкции растяжения — сжатия механического типа с максимальной гру-зоспособностью 10 тс. Они обладают широким диапазоном скоростей перемещения активного захвата (частота циклического  [c.233]

Возможность иопользования эпергетической теории прочности для пересчета результатов испытаний, проведенных при различных видах напряженного состояния, впервые показана В. Н. Кузнецовым. Сравнивали результаты исследований стали 12Х18Н9Т при двух- и одноосном растяжении-сжатии. Несмотря на то, что опыты были проведены в несколько различающихся условиях, соответствующие кривые 2 и <3 (рис. 83,а) расположены в узкой полосе разброса. Впоследствии вывод о справедливости энергетической гипотезы прочности был подтвержден результатами испытания трех марок сталей при совместном действии осевой и сдвигающей нагрузок (Н. Д. Соболев, В. И. Егоров) — рис. 83,6. При этом показано, что теоретическое отношение энергетической теории прочности Дт=0,577 До достаточно хорошо подтверждается экспериментом Дт/Ло=0,572 0,574 0,585 здесь Ат — размах касательных напряжений. Подобные результаты получены С. И. Тайра, Г. А. Туликовым.  [c.146]

В работе проведены исследования изменения эффективного значения выходного сигнала от напряженности постоянного магнитного поля и амплитуды циклических напряжений при симметричном цикле растяжение — сжатие. Результаты, полученные на низкоуглеродистой стали Э12, представлены на рис. 3. Кривая 1 (случай очень малой амплитуды циклических напряжений) представляет собой, согласно (12), как легко можно убедиться из рис. 2, кривую изменения дВ1до от поля при Остах = 0, т. е. тангенс угла наклона касательной к кривым, представленным на рис. 2 в точке о = 0. Сравнение кривой 1 на рис. 3 с кривой магнитострикции также показывает, что они связаны термодинамическим соотношением (1). Имеющиеся два максимума на кривой 1 (рис. 3) расположены там, где производная от магнитострикции по полю имеет максимальное абсолютное значение. При электромагнитоакустическом методе возбуждения и приема ультразвука, как известно, кроме механизма пондермоторного взаимодействия в ферромагнетиках существенный вклад вносят магнитострикция (при возбуждении) и магнитоупругий эффект (при приеме ультразвука). Амплитуда ультразвукового сигнала, обусловленная вкладом только последних двух явлений, должна изменяться с полем, согласно (1) и (12), так же, как и кривые на рис. 3, т. е. иметь два максимума.  [c.130]


Появление изломов на кривой сигнала, возбуждаемого при циклическом растяжении — сжатии ферромагнетика в магнитном поле, можно объяснить следующим образом. При смыкании и размыкании поверхностей трещины (при Р 0) происходят скачкообразные изменения эффективного сечения, воспринимающего силовую нагрузку (рис. 3, в) на величину 5тр. Это приводит к тому, что скорость изменения напряжений в опасном сечении при смыкании и размыкании трещины терпит скачок (рис. 3, (3), а так как выходной сигнал пропорционален величине dajdt, то этот скачок (излом) наблюдается и на осциллограмме выходного сигнала (см. рис. 2).  [c.136]

Одна из характерных кривых изменения температуры образца с числом циклов, измеренная таким способом, представлена на рис. 4, б. Резкий подъем температурной кривой, соответствующий развитию микротрещины, начался за 50 ООО циклов (50 мин) до разрыва (точка У), в то время когда излом на кривой возбуждаемого сигнала появился за 23 ООО циклов до разрыва (точка 2). Как было показано, излом на кривой становится заметным для такой схемы измерений при длине трещины 3—5 мм (глубина л 1 мм). Температурный метод в данном случае более чувствителен, так как сигнализирует о приближающемся разрушении значительно раньше. Однако метод обнаружения усталостной трещины по появлению изломов на кривой сигнала, возбуждаемого в измерительной катушке при циклическом растяжении — сжатии образца в постоянном магнитном поле, имеет свои преимущества сравнительная простота, бесконтактность, возможность контроля деталей сложной формы, нет необходимости знать начальный уровень сигнала, так как в основу положено не количественное изменение какой-либо величины, а качественное существенное изменение формы сигнала, которое происходит только при наличии трещины и не может возникнуть по другим причинам. Достигнутая чувствительность не является предельно возможной для данного метода, ее увеличение возможно за счет компенсации начального сигнала, вызванного циклическим нагружением образца без трещины.  [c.140]


Смотреть страницы где упоминается термин Кривая растяжения (сжатия) : [c.60]    [c.311]    [c.103]    [c.344]    [c.185]    [c.630]    [c.105]    [c.114]    [c.147]   
Теория и задачи механики сплошных сред (1974) -- [ c.250 ]



ПОИСК



Кривая деформирования материала при одноосном растяжении и сжатии

Кривые деформации при растяжении и сжатии

Плоские кривые стержни Расчет кривого стержня на растяжение (сжатие)

Растяжение (сжатие)



© 2025 Mash-xxl.info Реклама на сайте