Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проектирование геометрические формы

Макетный метод проектирования Геометрическая форма, размеры моделей Горная фафическая документация Виды и комплектность  [c.282]

МАКЕТНЫЙ метод ПРОЕКТИРОВАНИЯ. ГЕОМЕТРИЧЕСКАЯ ФОРМА, РАЗМЕРЫ МОДЕЛЕЙ  [c.1704]

Плоскости можно применять при проектировании геометрической формы резцов, зуборезных гребенок, зуборезных резцов, д.ая изготовления прямозубых колес, торцовых поверхностей дисковых инструментов (дисковых фрез, круговых фасонных резцов и др.).  [c.106]


Поверхности вращения можно применять при проектировании геометрической формы дисковых н цилиндрических насадных инструментов, круглых фасонных резцов, элементов базирования и крепления концевых н хвостовых инструментов, осевого инструмента (сверла, зенкеры, развертки, протяжки, прошивки).  [c.106]

Чертеж общего вида (код ВО)—документ, определяющий конструкцию изделия, взаимодействие его составных частей и поясняющий принцип работы изделия. В учебном проектировании чертеж общего вида включает элементы Теоретического чертежа , определяющего геометрическую форму изделия и координаты расположения составных частей, Габаритного чертежа , содержащего упрощенное изображение изделия с габаритными, установочными и присоединительными размерами, и Монтажного чертежа , содержащего данные для установки изделия на месте применения.  [c.388]

Буксование наступает при перегрузках, когда не соблюдается условие (11.1) Ffгеометрической формы и качества поверхности катков выводит передачу из строя. Поэтому при проектировании следует принимать достаточный запас сцепления и не допускать использования фрикционной передачи в качестве предохранительного устройства от перегрузки. Применение самозатягивающихся нажимных устройств, как правило, устраняет буксование.  [c.216]

При геометрическом проектировании геометрические модели применяются для описания геометрических свойств объекта конструирования (формы, расположения в пространстве) решения геометрических задач (позиционных и метрических) преобразования формы и положения геометрических объектов ввода графической информации оформления конструкторской документации.  [c.37]

Конструкторский аспект связан с реализацией результатов функционального проектирования, т. е. с определением геометрических форм объектов и их взаимным расположением в пространстве.  [c.16]

Кинематические пары во многом определяют работоспособность и надежность машины, поскольку через них передаются усилия от одного звена к другому в кинематических парах, вследствие относительного движения, возникает трение, элементы пары находятся в напряженном состоянии и в процессе изнашивания. Так, например, при работе механизма ДВС, изображенного на рис. 2.1, а, изнашиваются гильза цилиндра и поршневые кольца, коренная А и шатунная В шейки коленчатого вала / и т. д. Поэтому правильный выбор вида кинематической пары, ее геометрической формы, размеров, конструкционных и смазочных материалов имеет большое значение при проектировании машин.  [c.19]


Задача конструирования элемента включает этапы генерации вариантов, конструирования каждого варианта в отдельности, сравнительного анализа вариантов и выбора конечного варианта. Выбор технологических параметров при объединении процессов конструкторского и технологического проектирования в САПР можно отнести к технологическим задачам. Генерируемые варианты элемента в основном отличаются друг от друга геометрическими формами и материалом.  [c.166]

Для проектирования системы катодной защиты от коррозии вначале нужно определить исходные данные, в первую очередь сопротивление электролита, площадь поверхности, нуждающейся в защите, и необходимую плотность защитного тока. Площадь защищаемой поверхности можно взять из конструкторских чертежей, причем необходимо учитывать геометрические формы конструкции. В случае шпунтовых стенок для получения эффективной длины фактическую длину нужно умножить на коэффициент формы (обычно составляющий 1,3—1,5).  [c.344]

Проектирование рекомендуется начинать с определения геометрической формы и размеров аппарата с учетом технической возможности изготовления его элементов из выбранных марок фторопластов. На этой стадии нередко встречаются затруднения в конструктивном решении корпусных и нагруженных элементов, поскольку выбор форм и размеров ограничен. Однако, когда необходима и экономически оправдана новая конструкция, ее следует создавать, используя современные методы переработки фторопластов.  [c.99]

Всесторонние исследования, проведенные с целью выявления величин и характера возмущений, действующих на градуируемое изделие на роторном стенде, показали влияние отклонений геометрической формы, податливости, дебаланса, непостоянства передаточного числа конструктивных элементов P на точность воспроизводимых ускорений. Детально рассмотрены также возмущающие воздействия со стороны электродвигателя и системы управления, ряда других конструктивных и эксплуатационных факторов. В результате сформулированы следующие основные требования к проектированию P градуировочных стендов а) конструктивно P целесообразно выполнять в виде единого, удобного в монтаже функционального модуля б) в качестве валов P следует использовать шпиндельные узлы точных металлообрабатывающих станков или им подобные конструкции в) вращение шпинделей нужно осуществлять непосредственно от регулируемого электродвигателя без промежуточных зубчатых н иных передач г) муфта, соединяющая шпиндель с электродвигателем, должна вносить минимально возможный уровень возмущений в скорость ротора д) ротор в сборе необходимо статически и динамически отбалансировать, уровень собственных вибраций P должен быть минимальным.  [c.147]

Движение теплоносителя в активной зоне ядерных реакторов является, как правило, турбулентным. Процессы, связанные с турбулентностью, сравнительно легко поддаются решению только в некоторых простых случаях. При решении же задач гидродинамики и теплообмена в активной зоне трудность описания турбулентного потока усугубляется сложностью геометрических форм элементов активной зоны, неравномерным характером энерговыделения и необходимостью определения локальных характеристик. Эти обстоятельства потребовали применения комплексного расчетно-экспериментального подхода к решению задач и создания новых методов (приближенное тепловое моделирование, учет анизотропности турбулентного обмена в сложных каналах, модель пористого тела и т. п.) с широким применением ЭВМ. На наш взгляд, только комплексный подход позволит получить наиболее полное представление о сложных процессах гидродинамики и теплообмена в активных зонах реакторов и создать надежные расчетные рекомендации. Диапазон теплогидравлических расчетов весьма широк от инженерных оценок по приближенным формулам до численных расчетов на математических моделях с помощью ЭВМ в зависимости от стадии проектирования ядерного реактора и степени изученности тепло-физических процессов.  [c.7]

Унификация, применение в конструкциях различных станков, машин и оборудования стандартных деталей, узлов и отдельных механизмов дает возможность не только значительно сократить сроки проектирования изделий, но и организовать их массовое, а следовательно, и наиболее экономичное производство. Степень унификации металлорежущих станков показана в табл. 9. Важнейшим направлением технического прогресса является непрерывное повышение эксплуатационных качеств изделий машиностроения и металлообработки, т. е. их точности, надежности и долговечности. Обеспечение точности изготовления изделий металлообработки в пределах определенных допусков, соблюдение точности геометрических форм зависят в первую очередь от точности и надежности работы станка, а также от точности, надежности и правильности геометрических форм инструмента.  [c.114]


Поскольку основным техническим средством автоматизации проектирования являются цифровые вычислительные машины, оперирующие (пока) только с информацией, представленной в цифровой форме, то главной задачей теории автоматизированного проектирования на ее начальной стадии является разработка методов представления различной конструкторской информации, в том числе и информации о геометрических формах и взаимном положении элементов конструкций, в цифровой форме, а процессов конструирования — в виде операций над числами.  [c.24]

Для преобразования информации, заданной в форме внешнего языка, на внутренний язык необходимы специальные программы-трансляторы. В настоящей главе рассматривается внутренний язык автоматизированной системы проектирования, являющийся основой для разработки методов и алгоритмов автоматизированного проектирования. Основным содержанием этого языка является разработка методов представления в цифровой форме различной конструкторской информации, в том числе и информации о геометрических формах и структурах машиностроительных изделий, а также формальное представление всех процессов и задач машиностроительного проектирования только в виде операций над числами и числовыми кодами.  [c.52]

Несмотря на то, что перед разработкой технологических процессов проводится анализ технологичности детали, при проектировании токарной операции на станках с ЧПУ рекомендуется дополнительно проанализировать ее технологичность. При этом обращается внимание на унификацию элементов детали, упрощение геометрической формы, обеспечение жесткости при обработке.  [c.236]

Конструкторский аспект связан с реализацией результатов функционального проектирования, т. е. с определением геометрических форм объектов и их взаимным расположением в пространстве. Описание геометрий объекта проектирования является сложным и громоздким процессом. Для некоторых объектов проектирования представление изделия может быть обеспечено при помощи классификатора, в - других — при помощи специальных языков.  [c.199]

Требуемая геометрическая форма упругого элемента создается штамповкой, вытяжкой, гибкой, навивкой. При проектировании  [c.19]

При проектировании сложных наружных протяжек профиль наружной поверхности разбивают на ряд элементарных простейших участков, для обработки которых рассчитывают и конструируют секции, входящие в комплект наружной протяжки. Секции наружных протяжек в зависимости от геометрической формы элементарного участка разделяют на следующие типы плоские, угловые, пазовые, фасонные и др.  [c.332]

В целях создания удобств и сокращения затрат труда человека, создающего на базе ППП конкретную конфигурацию САПР, большое количество программ из групп 1—3, инвариантных относительно базовых конструкций штампов, объединены в подсистему Вход . Последняя производит контроль входных данных, используемых при проектировании штампов, преобразование их к виду, удобному для последующего решения задач по проектированию штампов, выполняет расчет размеров рабочих участков пуансонов и матриц, подготавливает данные для вычерчивания операционного чертежа исходной штампуемой детали. Эта подсистема используется без изменений при создании САПР различных конфигураций, предназначенных для проектирования разделительных штампов базовых типовых конструкций. Исходными для реализации программ этой подсистемы являются сведения о геометрической форме штампуемой детали, ее размерах, данные о расположении размеров на чертеже, сведения о схеме раскроя заготовки, штампуемом материале, указания о желаемом варианте конструкции штампа  [c.401]

Качество поковок определяет точность их геометрических форм и размеров, механические свойства, структуру и отсутствие поверхностных и внутренних дефектов. Получение высококачественных поковок зависит от правильной разработки их чертежей, проектирования и выполнения технологического процесса ковки, а также от организации работы технического контроля, в задачу которого входит не только выявление, но и предупреждение брака.  [c.491]

Выкружки, отверстия, галтели и другие концентраторы напряжений в казенниках орудий. Методы испытаний с помощью двух- или трехмерных фотоупругих покрытий, а также с помощью хрупких покрытий являются основными средствами экспериментального проектирования для получения оптимальных конструктивных форм сложных деталей, которые, например, встречаются в клиновых затворах н в затворах поршневого типа. Эти методы позволяют проводить качественное и количественное сравнение концентраторов различных геометрических форм.  [c.311]

ЕСКД. Макетный метод проектирования. Геометрическая форма, размеры моделей.  [c.96]

Винтовые поверхности можно применять при проектировании геометрической формы винтовых канавок спиральных сверл, винтовых протяжек, рабочей части резьбообразующего инструмента, передней и задней к,1нерхностеи зуборезных червячных фрез и др.  [c.106]

Геометрический синтаз заключается в конкретизации геометрических свойств проектируемых объектов и включает в себя охарактеризованные выше задачи оформления конструкторской документации, а также задачи позиционирования и синтеза поверхностей и траекторий. К задачам позиционирования относятся задачи взаимного расположения в пространстве деталей заданной геометрической формы, например задачи выбора баз для механической обработки детален сложной формы, синтез композиций из заданных деталей и т. п. К синтезу поверхностей и траекторий относятся задачи проектирования поверхностей, обтекаемых потоком газа или жидкости или направляющих такой поток (крыло самолета, корпус автомобиля, лопатка турбины), синтеза траектории движущихся рабочих органов технологических автоматов, синтеза профилей несущих конструкций и др.  [c.72]


Существенным аспектом при проектировании сварных соединений является учет геометрической формы оболочковых конструкций и месторасположения сварных соединений при выборе их параметров. Это объяснясггся анализом напряженного состояния оболочковых конструкций различных геометрических форм (см. рис. 2.1) и влиянием параметра двухосности в стенке конструкций на гтрочность сварных соединений. Указанные моменты не нашли должного отражения в литературе при разработке соответствующих рекомендаций по выбору оптимать-ных параметров сварных соединений.  [c.88]

В статье рассматриваются проблемы моделирования нестационарных турбулентных течений в неподвижных элементах гидромашин на базе модельного эксперимента, получение на стадии проектирования оптимальных геометрических форм неподвижных элементов гвдромашин, обеспечивающих снижение динамических  [c.103]

Теперь вспомним, что волновое движение гибкой нити мы представили в виде двух компонент движения — кажущегося покоя и поступательного движения нити как абсолютно твердого тела. Значит, при проектировании на ось X бегущей волны па гибкой нити мы получим функцию рзс, совпадающую с той, которую мы получили бы проектированием на ось х поступательно движущейся абсолютно жесткой нити, геометрическая форма которой совпадает с формой бегущей волны на нити. Значит, график Рд. бегущей волны па гибкой нити совпадает с графиком р поступательно движущейся вдоль оси х абсолютно жесткой нити той же формы. График р . сложного волнового движения деформируемого тела совпал с графиком простого (неволнового) движения абсолютно твердого тепа неизменной формы Использование этого обстоятельства позволяет строить эпюру волнообразно движущегося тела чисто геометрическим способом, т. е. лишь на основе внешнего вида волны и скорости ее движения, не интересуясь характером движения и траекториями частиц при волновом движении. Последнее особенно ценно потому, что характер движепия частиц тела, совершающего волновое движение, является наиболее сложной и малоизученной стороной волнового движепия деформируемых тел.  [c.81]

Оптимальным вариантом рационального подхода к созданию изделия с точки зрения художественного конструирования должен быть следующий порядок группа в составе заказчика, инженера и эргономиста разрабатывает техническое задание на изделие, т. е. создает и отбирает оптимальный вариант принципиальной схемы изделия группа в составе — эргономиста, художника-конструктора и инженера-конструктора конкретизирует схему геометрической формы изделия, т. е. устанавливает степень соответствия между изделием и психофизиологическими и антропометрическими возможностями и особенностями человека и увязывает принципиальную схему решения геометрической формы изделия с конструктивно-технологическими возможностями рабочего проектирования и изготовления группа в составе инженера-конструктора, технолога, художника-кон-структора и эргономиста отрабатывает рабочие чертежи изделия и осуществляет контроль за его изготовлением.  [c.16]

До настоящего времени автоматизация загрузки применялась в массовом производстве металлических изделий сравнительно простой геометрической формы. Для таких изделий созданы отечественные конструкции АБЗОУ, в литературе даны руководящие материалы по их расчету и проектированию [1—4, проведены глубокие научно-исследовательские работы по разработке теории автоматической загрузки (Н. И. Камышный, В. Ф. Прейс, М. В. Медвидь, В. А. Повидайло).  [c.90]

Изучение статистических закономерностей, связывающих масштабы и параметры турбулентных гидроупругих колебаний потока в элементах турбомашин с геометрическими формами этих элементов и с гидродинамическими характеристиками квазистацио-нарного потока, позволит рассчитать на стадии проектирования ожидаемый спектр турбулентных пульсаций для конкретных условий течения жидкости в турбомашине. Б связи с тем, что для первых двух диапазонов спектра турбулентных пульсаций его энергия зависит от граничных условий течения и от числа Rey усредненного потока, появляется возможность направленного воздействия на спектр энергии с целью минимизации уровней турбулентных пульсаций в этих диапазонах спектра и уменьшения гидроупругого воздействия потока на элементы конструкции турбомашины. Регулирование спектров энергии турбулентных  [c.76]

Разберем основные приемы разметки и проектирования осей монтируемого оборудования. Вести разметку от стен и потолка помещения не рекомендуется, так как последние Имеют отклонения от правильной геометрической формы. Поэтому разметку производят, взяв за основание какую-либо ось, и от Нее уже раз,-мечают все другие оси. Основную ось приходится размечать от той или иной стены.  [c.234]

Конструкция отливки Компактность и оптимальная геометрия отливки Наличие простых геометрических форм. Минимально возможные габариты. Минимально допустимая толщина стенок. Проектирование открьпых внутренних полостей или соединение смежных полостей окнами. Конструирование отливок с учетом правила вписанных окружностей  [c.380]

Проблемы внброзащиты возникают практически во всех областях современной техники, н их решение существенно опирается на специфику системы или реализуемого ею динамического процесса. Выбор законов движения исполнительных органов машин, механизмов, реализующих эти движения, геометрических форм деталей и конструкций, вида их сопряжений и механических характеристик, материалов и способов обработки наряду с функциональными требованиями должен отвечать требованиям вибронадежности и вибробезопасности. Изложению методов рационального проектирования и настройки машин посвящены в значительной мере т. 3 и частично т. 4 справочника. Однако только указанных методов, как правило, оказывается недостаточно и тогда необходимо прибегнуть к использованию более общих подходов, зачастую связанных с введением в конструкцию специальных вибро-защитных устройств и систем. Этим вопросам и посвящено главным образом содержание т. 6.  [c.9]

Конструкцию, удовлетворяющую допущениям (пп. 1, 2, 3), будем называть равнопрочной, если она спроектирована так, что разрушение 1т. е., нарушение условий (1)—(6)] начинается в ней одновременно во всех точках конструкции (или же, если последнее невозможно, в максимально большой части конструкции). В такой конструкции весь материал работает равномерно и для заданного материала условие равнопрочности является также условием минимальной массы конструкции. Иначе говоря, конструкции минимальной массы суть равнопрочные конструкции . Указанное требование, предъявляемое к конструкции при ее проектировании, будем называть принципом равнопрочности. Этот принцип сводится к принципу равнонапряженности лишь в простейших случаях последний применяли для расчета формы сосудов давления, навитых из волокон, арок, дисков и др. Заметим, что минимум-макс, получаемый на основании принципа равнопрочности, будет условным или локальным в зависимости от исходных геометрических параметров конструкции. Поэтому необходимо стремиться к использованию этого принципа в проектировании на наиболее ранней стадии и в наиболее общих геометрических формах.  [c.8]


Очевидно, что в такой конструкции материал работает наиболее равномерно и для заданного материала равнопрочность является также необходимым условием минимального веса конструкции. Указанное требование, предъявляемое к материалу при его проектировании, будем называть принципом равнопроч-ности. Этот принцип сводится к принципу равнонапряженности лишь в простейших частных случаях последний применялся для расчета формы сосудов давления, навитых из волокон [125, 139]. Заметим, что минимум веса, получаемый на основании принципа раЕнопрочности, вообще говоря, будет условным или локальным в силу зависимости от исходной геометрии конструкции. Поэтому необходимо стремиться к использованию принципа в проектировании на как можно более ранней стадии и в наиболее обш.их геометрических формах.  [c.78]

В период установивщегося режима работы химико-технологической системы (зо1на II — период постоянной интенсивности отказов) отказы носят характер случайных явлений и проявляются в результате неявных причин. Относительно коррозионных разрущений — это спокойный период при условии стационарного технологического режима процесса (постоянный состав сырья, строгое соблюдение технологического регламента ит.д.). Следует особо подчеркнуть, что все мероприятия по защите от коррозии, разработанные на стадии проектирования, в период эксплуатации должны быть контролируемыми, что не всегда соблюдается на производстве. Эффективность антикоррозионных мероприятий во время всего периода эксплуатации необходимо проверять в условиях, определяемых выбранными конструктором геометрическими формами аппарата или коммуникации, их местоположением и устройством.  [c.189]

Исходными для проектирования являются данные о геометрической форме и размерах детали, требуемых размерах перемычек между деталями, технологических ограничениях, точности расчета, варианте укладки, размерах имеющихся листов. Форма и размеры исходной детали описываются на геометрическом языке ИНКАНЭЛ-2А.  [c.395]

С помощью технологического классификатора определяются и заносятся в бланк-задание на автоматическое проектирование данные об особенностях геометрической формы и размерах детали в целом, типовых элементов ее наружного и виутреииих контуров, типовых простраиствеииых элементов, влияюи нх на расчет развертки. Описываются такие элементы ( юрмы детали, как рельефы, отбортовки, подрезы, ребра жесткости и пр. Типовые конфигурации деталей и их элементов, приведенные в классификаторе, разделены на следующие группы  [c.398]


Смотреть страницы где упоминается термин Проектирование геометрические формы : [c.143]    [c.72]    [c.187]    [c.174]    [c.551]    [c.96]    [c.220]    [c.340]   
Защита от коррозии на стадии проектирования (1980) -- [ c.206 , c.207 ]



ПОИСК



Формы геометрические



© 2025 Mash-xxl.info Реклама на сайте