Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели и алгоритмы геометрического проектирования

Модели и алгоритмы геометрического проектирования  [c.242]

Таким образом обобщенный алгоритм процессов проектирования систем АЛ позволяет в условиях функционирования САПР АЛ реализовать следующие функции определение принципа функционирования системы АЛ на базе оценки геометрической модели обрабатываемой детали, материала, требуемых характеристик по точности обрабатываемых поверхностей и отверстий, видов обработки с планом всех возможных относительных движений заготовки и инструментов на технологическом оборудовании определение  [c.110]


Математические модели конструктивных элементов по аналогии с моделями ЭМП на стадии расчетного проектирования целесообразно разрабатывать в двух вариантах быстрые и медленные. Это объясняется тем, что многие элементы для проверки ограничений требуют выполнения большого объема расчетов. Например, при конструировании вала необходимо вести расчеты на прочность и деформацию, определять крутильные и изгибающие колебания, уровень шумов и вибрации, усилия, передаваемые на подшипники, и т. п. Многие из этих расчетов ведутся достаточно точно с помощью громоздких алгоритмов, использующих теоретические методы моделирования и требующих большого машиносчетного времени. Поэтому при оптимизации геометрических размеров элемента следует пользоваться упрощенными (быстрыми) моделями, а для выбранного конечного варианта провести поверочные расчеты с помощью более точных (медленных) моделей.  [c.167]

Математическое обеспечение позволяет после формирования исходных данных формализовать внешние связи инструмента (станок, технологический процесс, деталь и пр.), внутренние связи (материал инструмента, геометрические параметры, основные размеры) и составить математическую модель проектирования в целом в виде алгоритма и детальной структурной схемы.  [c.40]

Геометрические модели. В алгоритмах геометрического проектирования фигурируют геометрические объекты, являющиеся исходными данными, промежуточными и окончательными результатами конструирования. Детали и узлы конструкции имеют самые разнообразные геометрические характеристики. Например, поверхность детали характеризуется микрогеометрией (шерохова-тостькз поверхности, отклонением формы, размеров) и  [c.36]

Как было (угмсчено в первой главе, в курсе начертательной геометрии рассматривается два типа отношений между геометрическими фигурами позиционные и метрические. Соответственно этому решаются два типа задач. Изучение теории и алгоритмов решения позиционных задач в трехмерном расширенном евклидовом пространстве направлено на развитие "пространственного мыпьтсния учащихся для дальнейшего чтения и составления чертежей трехмерных объектов как на бумаге, так и на экранах дисплеев. Некоторые из них (построение касательных плоскостей, соприкасающихся поверхностей) имеют непо-среаственпое значение и составляют основу при составлении математических моделей технических форм в процессе их автоматизированного проектирования и воспроизведения на оборудовании с числовым программным управлением.  [c.99]


Давая обобщенную характеристику типовых расчетных задач, рещае-мых в конструировании ЭМУ, следует отметить, что большинство этих задач (за исключением тепловых, деформационных расчетов и проектных расчетов размерных цепей) имеют достаточно простые алгоритмы решения и могут быть выполнены на ЭВМ с малыми затратами времени. Значительная часть конструкторских расчетов носит характер проверок проектных решений, принимаемых на предыдущих этапах проектирования. Поэтому целесообразно обеспечить конструктора оперативными расчетными данными непосредственно в процессе его работы с геометрическими моделями проектируемых объектов.  [c.189]

В щироком смысле слова к математическому обеспечению ALS-технологий можно отнести математические методы и алгоритмы, используемые в автоматизированных системах проектирования, производства и логистики на разных этапах жизненного цикла изделий. Так, для понимания моделей, выраженных средствами прикладных протоколов STEP, требуются определенные знания в области математического обеспечения соответствующих приложений. В первую очередь среди приложений следует назвать конструкторское проектирование в маншностроении, а основу его математического обеспечения составляют модели и методы геометрического моделирования, включая методы визуализации и преобразования 3D и 2D моделей. Кроме того, в приложениях используются разнообразные методы анализа и оптимизации проектных и управленческих рещений.  [c.191]

Для автоматического распознавания объектов и анализа обстановки вблизи робота разработаны два метода. Первый метод основывается на вычислении признаков видимых объектов, инвариантных по отношению к преобразованиям их изображения, связанным с изменением ракурса восприятия и проектированием трехмерных объектов на плоскость изображения. Этот метод получил название метода инвариантного распознавания [38, 116]. В основе второго метода лежат алгоритмы логического описания классов распознаваемых объектов (режим обучения) с последующим логическим анализом изображения реальной обстановки (режим принятия решений). Описание этого логикоаксиоматического метода распознавания содержится в работах [9, 108, 119, 123]. Результаты распознавания используются для целеуказания объектов, подлежащих манипулированию или транспортировке, а также для уточнения геометрической модели окружающей робота среды. При построении модели среды (в частности, модели препятствий) существенно используется также информация от ультразвуковых датчиков ближнего и дальнего действия.  [c.211]

Для получения наглядных изображений в перспективе или аксонометрии исходным материалом для описания объекта проектирования и кодирования информации является эскиз или чертеж, содержащий параметры геометрических элементов объекта, привязанных к координатным осям. На рис. XIV.11 и Х1У.12 приведены примеры машинных изображений, выполненные в перспективе. Для построения перспективного изображения павильона используются его ортогональные проекции (рис. XI1I.11,а), которые предназначены для кодирования информации и формирования в запоминающем устройстве (ЗУ) ЭВМ модели объекта. Алгоритм построения перспективного изображения и программа соответствуют схеме перспективного преобразования координат (рис, Х1П.11,б). Эта программа, введенная в ЭВМ и дополненная подпрограммой устранения невидимых линий павильона, позволяет получить искомое изображение (рис. Х1П,11,в).  [c.409]


Смотреть страницы где упоминается термин Модели и алгоритмы геометрического проектирования : [c.268]   
Смотреть главы в:

Основы теории и проектирования САПР  -> Модели и алгоритмы геометрического проектирования



ПОИСК



Алгоритм

Алгоритм модели

Алгоритм проектирования

Модели проектирования ЭМП

Модель геометрическая



© 2025 Mash-xxl.info Реклама на сайте