Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отверстия большие Обработка глубокие — Сверление

Сверление глубоких отверстий (длина отверстия больше пяти диаметров) производят на специальных горизонтально-сверлильных станках. При обработке глубоких отверстий спиральными сверлами происходит увод сверла и разбивание отверстия затрудняются подвод смазочно-охлаждающей жидкости и отвод стружки. Поэтому для сверления глубоких отверстий применяют сверла специальной конструкции. Смазочно-охлаждающая жидкость подается в зону резання и вымывает стружку через внутренний канал сверла.  [c.318]


Наиболее совершенным видом сверл для глубокого сверления отверстий большого диаметра является пустотелое сверло. При использовании такого сверла в стружку превращается лишь кольцеобразная часть удаляемого металла, внутренняя же часть остается целой и после окончания сверления ее удаляют в виде цилиндрического стержня. Специальные сверла этого вида (рис. 77, в) состоят из головки со вставными ножами для вырезания кольцевого паза в сплошном металле и трубы (трубчатого стержня), которая соединяется с головкой сверла при помощи резьбы. Такие виды специальных сверл применяют при обработке на горизонтально-сверлильных станках больших пустотелых валов, длинных шпинделей станков и т. п.  [c.180]

Валы с центральными отверстиями. Штампованные поковки для валов с центральными отверстиями выполняются сплошными, поэтому отверстие в таких валах получают глубоким сверлением, которое производят после предварительного обтачивания на центрах наружных поверхностей вращения и подготовки шеек под зажим в патроне и под люнет. Для отверстий длиной /, не превышающей пятикратного диаметра отверстия I 5й, применяют спиральные сверла для отверстий длиной I 5с( применяют сверла для глубокого сверления одностороннего или двустороннего резания в зависимости от диаметра отверстия. Для отверстий большого диаметра (й > 80 мм) применяют головки для кольцевого сверления. Как сверление, так и последующая обработка центрального отверстия производятся обычно на станках для глубокого сверления. Для чистовой обработки центрального отверстия применяют зенкеры и развертки или расточные резцовые головки в зависимости от предъявляемых требований и диаметра отверстия. Последующая обработка наружных поверхностей производится с базированием по отверстию для этого применяются пробки или крестовины, снабженные центровыми гнездами. В целях достижения наибольшей конечной точности обработки по концентричности наружных поверхностей относительно отверстия рекомендуется последующие операции проводить без смены пробок.  [c.411]

Механизация перемещения задней бабки. При обработке отверстий сверлом, зенкером и другими инструментами, закрепляемыми в пиноли задней бабки, подача инструмента осуществляется почти всегда вручную. Она обычно бывает меньше нормальной —допустимой прочностью сверла, что объясняется опасением токаря сломать сверло, сообщив ему чрезмерную большую подачу. Сверление отверстий большого и небольшого диаметров, но глубоких — утомительно для рабочего. Небольшая модернизация станка, показанная на рис. 270, обеспечивает возможность обработки отверстия с равномерной и наибольшей допустимой подачей и устраняет утомляемость рабочего.  [c.364]


Станки для глубокого сверления, называемые иногда токарно-сверлильными, предназначены для обработки глубоких отверстий, т. е. таких, глубина которых больше 10 диаметров сверления. В настоящее время в машиностроении иногда приходится обрабатывать отверстия, длина которых доходит до 10—20 м. Такие глубокие отверстия обрабатывать значительно труднее, чем обычные отверстия, особенно тогда, когда требуется высокая точность и чистота обработки.  [c.63]

Основным параметром крутильных колебаний является их амплитуда. При обработке глубоких отверстий замерить амплитуду крутильных колебаний сложно (особенно при глубоком сверлении отверстий малого диаметра). Поэтому при сверлении и растачивании используют косвенные измерения замеряют с помощью динамометра величину и амплитуду колебаний суммарной осевой силы Ро и суммарного крутящего момента При известных размерах инструмента и данных о тарировке измерительной системы можно по значению М вычислить амплитуду крутильных колебаний головки. На рис. 5.8 приведена осциллограмма крутильных колебаний инструмента при сверлении отверстия диаметром 22,5 мм. На осциллограмме записаны крутящий момент и осевая сила Рд. Исследования глубокого сверления отверстий малого диаметра показывают, что процесс глубокого сверления становится неустойчивым и не может продолжаться дальше, если амплитуда колебаний А крутящего момента больше его среднего значения М .ср- В связи с этим в качестве критерия для оценки устойчивости процесса принимают амплитуду А колебаний и считают процесс устойчивым, если А <. Л1 . ср.  [c.120]

Чем меньше диаметр отверстия и больше его длина, тем труднее просверлить отверстие в центре детали. При сверлении глубоких отверстий происходит увод сверла — отклонение его от оси вращения детали, даже если перед сверлением сделана наметка центра. Увод сверла при сверлении зависит от многих факторов главные из них следующие несимметричная заточка сверла, закрепление сверла со смещением относительно оси вращения, притупление сверла во время сверления, неоднородность материала обрабатываемой детали, продольный изгиб сверла при сверлении и др. При проектировании технологического процесса обработки эти особенности сверления необходимо учитывать.  [c.104]

Обработка отверстий в валах и шпинделях. Радиальные отверстия в валах и шпинделях в зависимости от их точности обрабатываются сверлением, зенкерованием и развертыванием, как правило, на вертикальносверлильных станках. Осевые отверстия большой длины сверлят специальными сверлами для глубокого сверления. При большом диаметре отверстий (например, в полых шпинделях) проводят их растачивание после заточки возможно и внутреннее шлифование. Отверстия во. фланцах валов и шпинделей обрабатывают на радиально-сверлильных или агрегатных станках, или с использованием многошпиндельных головок.  [c.756]

Наиболее сложной при обработке отверстий является операция сверления сплошного материала. В данном случае на инструмент действуют большие силы резания, но конструкция его должна обеспечить отвод большого количества стружки. Для этого на инструменте выполняют глубокие канавки, что уменьшает его жесткость и прочность (рис.7.7). В настоящее время для сверления отверстий в сплошном материале применяют спиральные сверла (с 19-го века). Однако при обработке глубоких отверстий, при глубине более 10 диаметров, спиральные сверла не могут обеспечить выход стружки, поэтому приходится применять специальные сверла (ружейные, пушечные), в которых выход стружки обеспечивается подачей жидкости под большим давлением.  [c.83]

В тяжелом машиностроении большие трудности вызывает обеспечение режимными картами технологии. Обыкновенно режимные карты выдаются только на детали, трудоемкость обработки которых превышает несколько часов. В этом деле незаменимую услугу оказывает типовая технология. Так, на наиболее повторяемые работы составляются режимные карты, которые выдаются в цеха один раз и при каждом заказе не повторяются. Например, на Уралмаш-заводе при сверлении и растачивании глубоких отверстий в роторах, валках холодной прокатки разработаны типовые нормативы по определению количества проходов, инструмента, а также времени в зависимости от диаметра и длины обработки.  [c.39]


Для улучшения и ускорения отделочных операций в последние годы находит распространение суперфиниширование поверхностей и обкатка роликом. После создания инж. В. Г. Рожковым пневматического привода для суперфиниширования этот метод стал широко применяться не только на токарных, карусельных, но и на расточных станках. Он находит применение даже при обработке отверстий диаметром 100 мм на станках глубокого сверления. Суперфиниширование обеспечивает чистоту поверхности 10—14 классов. В некоторых случаях выгодна обкатка роликами. У деталей из незакаленных сталей, чугуна и цветных металлов можно получить 8—9 класс чистоты с производительностью в 3—5 раз бэль-шей, чем при точении и шлифовании, а 10—И класс с производительностью в 5—6 раз большей, чем при доводке суперфинишем. Так, на Уралмашзаводе впервые взамен ручной шабровки внедрена накатка роликами направляющих станин металлорежущих стан-  [c.98]

Обработка деталей первой группы возможна только на токарных станках, а их внутренние поверхности обрабатываются на станках глубокого сверления или на расточных при большо диаметре отверстия. К телам вращения, обрабатываемым в патроне, относятся бандажи, втулки, фланцы, кольца и др. Эта группа деталей может обрабатываться па токарных и карусельных станках. При выборе токарного или карусельного станка надо учитывать их стоимость, число оборотов и мощность станка.  [c.142]

Сверление ступенчатых отверстий начинать с большего диаметра для сокращения времени обработки и облегчения вывода стружки. При сверлении глубоких отверстий следует выводить сверло первый раз после глубины сверления, равной (3—4) d, второй — после (2—2,5)d, третий — после (1—l,5)d. Меньшие значения указаны для стали, большие — для цветных сплавов.  [c.71]

Полости гидравлических и пневматических цилиндров большой длины обрабатываются на станках глубокого сверления. По мере увеличения отношения длины отверстия к его диаметру падает жесткость борштанги и затрудняется получение высоких классов чистоты. Для таких отверстий раскатывание является незаменимым способом чистовой обработки.  [c.151]

Так как глубокое сверление и растачивание отверстий в цилиндрах преимущественно производится при больших диаметрах, то в основном используется метод наружного отвода стружки. Инструмент для обработки отверстий по этому методу должен состоять из комплекта борштанг соответствующих диаметров, головок и набора режущих пластин или резцов.  [c.274]

Сверление осевых отверстий в колонне может быть осуществлено по одному из двух методов либо с наружным отводом стружки, либо с внутренним. Как тот, так и другой способ сверления глубоких отверстий находит применение в заводской практике. Сверление отверстий ведется при сравнительно низких скоростях резания, так как станки предназначены для обработки тяжелых деталей и поэтому не могут быть использованы для работы на больших числах оборотов.  [c.290]

Станки для глубокого сверления (называемые иногда токарно-сверлильными) предназначены для обработки отверстий, глубина которых больше 10 диаметров сверления. Шпиндель расположен горизонтально. Главное вращательное движение сообщается шпинделю (заготовке), движение подачи (поступательное)—режущему инструменту. Один конец заготовки крепится в патроне, другой — поддерживается люнетом режущий инструмент крепится в заднем суппорте.  [c.570]

В последнее время для сверления глубоких отверстий применяют спиральные сверла с прокатанными отверстиями для подвода охлаждающей жидкости непосредственно к режущим кромкам (см. рис. 213,6). Эти сверла, по сравнению со сверлами без отверстий, имеют повышенную стойкость, так как жидкость, попадая в зону резания, обеспечивает охлаждение режущих кромок. Кроме того, охлаждающую жидкость подают под давлением, облегчая удаление стружки и устраняя периодическое извлечение сверла из обрабатываемого отверстия для удаления стружки. Это увеличивает производительность станка. Применение таких сверл особенно эффективно при обработке отверстий на автоматах и автоматических линиях. Стойкость таких сверл в три— девять раз больше стойкости обычных спиральных сверл.  [c.408]

Обработка отверстий без снятия стружки производится калибровкой с помощью выглаживающих прошивок (дорнов) и шариков, а также раскаткой. Образование отверстий в сплошном металле с точностью 4-го и 5-го классов и шероховатостью Нг= 20 160 мкм достигается сверлением. При сверлении отверстий на сверлильных станках вращается инструмент, при сверлении на токарных станках, а также на станках для глубокого сверления обычно вращается заготовка, так как в этом случае увод сверла от нужного направления оси отверстия будет меньше. Применение направляющих кондукторных втулок также уменьшает увод сверла. При сверлении отверстий диаметром больше 30 мм в сплошном материале применяют последовательно два сверла меньшего и большего диаметра с целью уменьшения осевой силы и предотвращения значительного увода сверла. Сверла бывают спиральные, перовые, центровочные, для глубокого сверления и специальные. Для глубокого сверления применяют сверла особой конструкции (рис. 92, а).  [c.133]

Достаточно хорошее качество отверстия получается при сверлении с вращением детали и сверла (обработка на токарных многошпиндельных автоматах и специальных станках), при этом для исключения заедания сверла и облегчения подачи охлаждающей жидкости желательно производить ступенчатое сверление, т. е. несколькими сверлами с перепадом по диаметрам на 0,3—0,5 мм. Более точное сверление глубоких отверстий с получением прямолинейной оси производят ружейными или пушечными сверлами, а при обработке больших диаметров отверстий — расточными блоками.  [c.118]


Станки для глубокого сверления (токарно-сверлильные) предназначены для сверления и рассверливания отверстий, длина которых во много раз превосходит их диаметр. Конструкция станков зависит от длины и диаметра обрабатываемого отверстия, длины и массы заготовки, а также от масштаба производства. Станки могут быть одно- и двусторонними, т. е. предназначенными для обработки отверстий с одной или с обеих сторон одновременно. В станках для сверления отверстий малого диаметра при длине не свыше 1000 мм вращается обрабатываемая заготовка (рис. 143, в). Большие, тяжелые заготовки остаются во время обработки неподвижными, а инструмент (специальное сверло и борштанга с расточными резцами) получает вращение и осевую подачу (рис. 143, г).  [c.206]

Анализ теплового баланса зоны обработки. Особую остроту проблема обеспечения стабильности заданного качества поверхностного слоя деталей, полученных обработкой резанием, приобретает при изготовлении их в условиях стесненного тепломассопереноса (например, при глубоком сверлении, особенно маломерных отверстий спиральными сверлами, резьбо- и зубонарезании, обработке фасонных поверхностей, любых видах обработки резанием заготовок из труднообрабатываемых материалов, имеющих, как правило, низкие теплофизические свойства). Эти операции отличаются затрудненным доступом СОЖ в зону обработки и отвода стружки, большими затратами на работу трения в контакте инструмента с заготовкой и неэффективным теплоотводом вглубь обрабатываемого или инструментального материала.  [c.247]

Образование огранки на поверхности глубоких отверстий, получаемых сверлением или растачиванием при обработке инструментами как с определенностью, так и без определенности базирования, отмечают многие исследователи [26, 29, 59, 651. Установка на корпусе головки дополнительных жестких направляющих с зазором либо одной упругой (подпружиненной) направляющей не исключает образования огранки. Огранку могут вызывать дефекты поверхности отверстия, обработанного при заправке инструмента. Развитие огранки в отверстии происходит постепенно, но по форме и шагу она быстро стабилизируется, возрастая в дальнейшем лишь на значение А перепада радиуса по впадинам и выступам. Огранка часто образуется при наличии разбивки заправочного отверстия, причем чем больше разбивка , тем раньше появляется огранка и тем большую величину она имеет. В большинстве случаев грани располагаются по винтовой линии, но могут быть расположены и параллельно оси отверстия. В зависимости от условий обработки число граней может быть как четным, так и нечетным, и колеблется в широких пределах (от 3 до 23). При кольцевом сверлении огранка наблюдается на поверхностях отверстия и стержня. В том случае, когда калибрующие вершины, образующие поверхности отверстия и стержня, располагаются  [c.163]

Глубокие отверстия (/ 5D), как правило, должны быть изготовлены по 2—3 классам точности и 6—8 классам чистоты, сохранять прямолинейность оси отверстия, соосность отверстия н наружной поверхности. Обработка их вызывает большие затруднения и требует применения специальных. сверл и точных станков (токарных, расточных и других), на которых обрабатываемая деталь вращается, а сверло имеет только поступательное движение. Для глубокого сверления применяют обычные винтовые сверла двустороннего резания и специальные сверла одностороннего резания. Конструкция сверла должна обеспечить принудительную подачу охлаждающей жидкости к режущим кромкам, свободный отвод стружки, достаточную жесткость, хорошее базирование по стенкам отверстия и др. Специальные сверла не стандартизованы, они изготовляются по нормалям машиностроения.  [c.170]

При обработке глубоких и точных отверстий сверление разбивают между двумя НЛП тремя позиц.ия.мй с преследующим проходом отверстия зенкером и разверткой на всю длину. Ступенчатое отверстие выгодно обрабатывать сначала сверлом большего диаметра, а затем меньшего диаметра. Таким образом, общая длина прохода делится между несколькими позициями.  [c.344]

Технология сверления. Глубокое сверление с внутренним отводом стружки производится на специальных глубокосверлильных или модернизированных универсальных станках. Поступающие на операцию сверления заготовки должны иметь подрезанные торцы без выщербин, раковин и центровых отверстий. Это необходима для получения минимального начального увода оси и исключения поломок инструмента на выходе из заготовки. Для предотвращения интенсивных колебаний заготовок при вращении непрямолинейность их оси не должна превышать 0,15 мм при lid до 20 и 0,25 мм при Ijd от 20—40, где I — длина заготовки, мм, d — ее наружный диаметр, мм. При длине заготовок с Ijd > 20 применяют люнет, поддерживающий среднюю ее часть, при большей длине — число опор заготовки (люнетов) определяется с учетом соображений, изложенных в п. 4.4. Наладка станка на операцию, включая и выверку заготовки, производится в соответствии с рекомендациями, изложенными в п. 4.5. В случае применения маслоприемника с конической расточкой (см. рис. 1.7) на конце заготовки выполняется конический поясок, которым она центрируется в маслоприемнике и тем самым этот конец ее совмещается с ТОТС, и, кроме того, надежно обеспечивается уплотнение от проникновения СОЖ, подводимой под большим давлением. Рекомендуется применять СОЖ марки МР-3 (ТУ 38-10188—75), температура СОЖ должна поддерживаться в пределах 30—50 °С. Допускается применять и другие марки СОЖ, рекомендуемые при обработке глубоких отверстий. Расход и давление СОЖ выбираются в соответствии с рекомендациями,  [c.202]

Низкая жесткость сверл обуславливается наличием канавок для отвода стружки и значи--тельной их длиной. Большая длина сверл вызвана необходимостью крепления инструмента за пределами обработанного отверстия, что связано с удлинением крепежной части и с увеличением общей длины сверла. В технологической системе сверло является наиболее слабым и определяющим жесткость элементом, что следует учитывать при назначении режимов резания. В связи с указанным особенно больщие трудности возникают при сверлении глубоких отверстий, для обработки которых следует применять специальные сверла.  [c.193]

Выбор метода обработки, вообще говоря, зависит от толщины материала и от требуемого коэффициента формы. Высокий коэффициент формы может быть получен при прямом сверлении. В металлах толщиной до 1 мм данным методом получаются отверстия диаметром 20-25 мкм. При плотности мощности излучения 10 -10 Вт/см можно делать и меньшие отверстия, но эти отверстия на выходе сходятся на конус [248]. При прямом сверлении разброс по размеру отверстия составляет обычно 10% его диаметра. Сверление отверстий диаметром выше 50-100 мкм производится чаще всего методом контурной резки. Этот метод позволяет получать глубокие отверстия, но, естественно, с малым коэффициентом формы. Шероховатость кромки обработки определяется распределением интенсивности в пятне фокусировки, степенью стабильности оси диаграммы направленности и точностью перемещения луча сканирующим устройством. При многопроходном сканировании поверхность реза выравнивается и полируется. Разумеется, если необходимо сделать большое количество микроотверстий за единицу времени, первый метод удобнее, но он требует более высоких мощностей. Если высокая точность необязательна, то для подачи излучения ЛПМ на заготовку можно использовать оптические световоды [237]. Качество отверстия при волоконном сверлении близко к качеству обычных механических методов обработки.  [c.239]


Эти сверла имеют передний угол Т = О ч- 7°, задний угол а = 8 ч- 16, угол 2 р = 118 ч- 150°, фаску / = 0,5 ч- 1,5 мм. При сверлении незакаленных сталей рекомендуется применять твердый сплав марки Т15К6 или ВК8, при сверлении закаленных сталей — Т15К6, при обработке чугунов — ВК8. Обратная конусность на длине пластинки, в зависимости от диаметра сверла, рекомендуется в пределах 0,03—0,15 мм. В целях увеличения жесткости сверл с пластинками твердых сплавов их корпусы следует изготовлять из легированной стали (рекомендуется сталь 9ХС), обеспечивающей после термической обработки твердость 7 — 0 ч- 50 (для сверл с цилиндрическим хвостовиком на всей длине корпуса) и твердость R . = = 56 ч- 62 (для сверл с коническим хвостовиком на участке от начала рабочей части до шейки) хвостовик должен иметь твердость R . = = 30 ч- 45. С той же целью повышения жесткости сердцевина твердосплавных сверл делается большей по сравнению с обычными спиральными сверлами из быстрорежущей стали. Для сверл нормальной длины с прямыми и винтовыми канавками под углом наклона до 20° сердцевина должна утолщаться равномерно в направлении к хвостовику на 1,4—1,8 мм на 100 мм длины, а для сверл увеличенной длины с крутыми винтовыми канавками (ш = 60°) это утолщение составляет 2—4,5 мм (в зависимости от диаметра сверла в пределах 6—30 мм). Сверла с крутыми винтовыми канавками целесообразно применять при сверлении глубоких отверстий в заготовках из чугуна, так как крутая спираль способствует лучшему отводу сыпучей стружки надлома.  [c.271]

Станки для глубокого сверления, оснащенные САУ [37]. Опе-рация сверления является одной из самых распространенных операций. В отличии от обычного сверления глубокое сверление отличается большой трудоемкостью и низкой производительностью. Последнее объясняется необходимостью обработки с малой скоростью резания, которая лимитируется сгойкостью спиральных сверл из быстрорежущей стали и плохими условиями охлаждения, а также малой величиной подачи, ограничиваемой прочностью и продольной устойчивостью сверла. Кроме того, для удаления стружки требуется периодически выводить сверла из отверстия. Число выводов обычно превышает отношение длины отверстия к его диаметру. Так, на одной из операций сверления отверстия диаметром 2 мм на глубину 67 мм число выводов сверла 552  [c.552]

Станки для глубокого сверления могут быть одно- и двухсто-ронни.ми. В первом случае обработка отверстия производится с одной стороны, а во втором — с двух сторон одновременно. В зависимости от размеров диаметра сверления, длины и диаметра заготовки и пр. существует большое разнообразие в конструкциях станков для глубокого сверления.  [c.63]

При работе ручными пневматическими и электрически ,т машинами не рекомендуется давать сверлу большую подачу, т. е. сильно нансимать на него. При сверлении глубоких отверстий сверло следует чаще вынимать для очистки его от стружки. При сверлении стали, латуни и легких сплавов обязательно применять охлаждающие жидкости. Сверление отверстий производят по разметке и по кондукторам. Точность обработки по разметке лежит в пределах 5-го класса, а при сверлении по кондуктору достигает 4-го класса. Шероховатость поверхности дол-  [c.217]

Вибрационное сверление глубоких отверстий диаметром 25. .. 35 мм в коррозионно-стойких и жаропрочных сталях проводили специальными сверлами двухстороннего резания с наружньпи подводом СОТС и внутренним отводом стружки сверлами, изготовленными из быстрорежущей стали Р18 (2ф = 130°, у = 5°). Не-жесткость системы изменяет кинематику процесса обработки. Так, например, при подаче на оборот So = 0,1 мм выход режущих кромок сверла из обрабатываемого материала происходит при размахе колебаний, задаваемых вибротоком, 2А = 0,2 мм, что в 4 раза больше, чем это следовало бы ожидать при абсолютно жесткой системе.  [c.353]

Токариая обработка и доводка сложных и крупных ответственных деталей с большим количеством переходов по 2-му классу точности обработка длинных валов и винтов при помощи нескольких люнетов, глубокое сверление и расточка пушечными сверлами и другими специальными инструментами Обработка деталей, требующих точного соблюдения расстояний между центрами эксцентрично расположенных отверстий или мест обточки Нарезание двух- и трехзаходной прямоугольной, полукруглой, пилообразной и трапецеидальной резьб  [c.23]


Смотреть страницы где упоминается термин Отверстия большие Обработка глубокие — Сверление : [c.114]    [c.139]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.174 ]



ПОИСК



Обработка Обработка отверстий

Обработка глубоких отверстий

Обработка сверлением

Отверстие большое

Сверление

Сверление 445 — 447 глубокое

Сверление и обработка отверстий

Сверление отверсти

Сверление отверстий



© 2025 Mash-xxl.info Реклама на сайте