Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия граничные для идеальной жидкости

Мы ул<е неоднократно ссылались на то обстоятельство, что очень большие числа Рейнольдса эквивалентны очень малой вязкости, в результате чего жидкость может рассматриваться при таких R как идеальная. Однако такое приближение во всяком случае непригодно для движения жидкости вблизи твердых стенок. Граничные условия для идеальной жидкости требуют лишь исчезновения нормальной составляющей скорости касательная же к поверхности обтекаемого тела компонента скорости остается, вообще говоря, конечной. Между тем, у вязкой реальной жидкости скорость на твердых стенках должна обращаться в нуль.  [c.223]


Что касается нормальной составляющей скорости, то па стенке равна нулю уже в силу граничных условий для идеальной жидкости.  [c.426]

Отличие граничных условий для идеальной жидкости (щ = 0) от реаль-  [c.289]

Граничное условие на свободной поверхности для идеальной жидкости, как и для вязкой, имеет вид  [c.101]

Граничные условия на твердых поверхностях для идеальной жидкости существенно иные, чем для вязкой, так как отсутствует прилипание частиц к твердым поверхностям и жидкость скользит вдоль стенки. Граничным условием в этом случае служит непроницаемость границы, что для неподвижной стенки означает равенство нулю на ней нормальной составляющей скорости жидкости  [c.108]

Для решения системы (III.41) следует задать граничные условия. При наличии же локальных составляющих ускорения, т. е. для нестационарного потока, необходимы и начальные условия. Они задаются так же, как и для идеальной жидкости, в виде распределения скоростей во всей рассматриваемой области в момент времени t = О, т. е. функциями и х, у, z, 0) v (х, у, г, 0) и  [c.73]

Граничные условия для идеальной жидкости Wn — 0) отличаются от условий для реальной вязкой жидкости  [c.309]

Для определения подъемной силы необходимо найти циркуляцию скорости по профилю. Однако величина циркуляции не входит ни в основные уравнения, ни в граничные условия и в идеальной жидкости, чисто теоретически, может выбираться произвольно. Примером этому служит задача об обтекании окружности, рассмотренная в разд. 4.2. Неопределенность в выборе циркуляции снимается постулатом Жуковского—Чаплыгина. Рассмотрим обтекание крыла с абсолютно острой задней кромкой (рис. 4.9). Величина циркуляции, как выяснено Б разд. 4.2, влияет на положение задней критической точки, в которой поток сходит с обтекаемого тела.  [c.69]

Общей формой граничного условия на твердой поверхности для идеальной жидкости служит равенство нулю нормальной составляющей скорости  [c.35]

Упомянутые здесь виды граничных условий не исчерпывают все возможные случаи. Своеобразные краевые условия возникают, например, на поверхностях разрыва, отделяющих рассматриваемую часть жидкости от других частей той же (или другой) жидкости. Так, например, если жидкость граничит с пустотой (или с воздухом), то во всех точках свободной поверхности [уравнение последней пусть будет F x, у, Z, i) = 0], кроме условия (12.6), должно выполняться для идеальной жидкости условие  [c.65]


В дальнейшем мы будем под п понимать направление внешней нормали к контуру С. Таким образом для части контура получилось то же самое граничное условие, которое имеет место для идеальной жидкости.  [c.637]

Граничные условия могут быть нескольких видов [126]. Для идеальной жидкости граничное условие на поверхности 5 движущегося в ней тела состоит в равенстве нормальных к составляющих скоростей частиц жидкости и граничной поверхности  [c.11]

Если уравнения в безразмерной форме, начальные и граничные условия одни и те же для двух течений, то эти течения подобны между собой. В этом случае числа Рейнольдса и Струхаля для двух течений одинаковы. Для идеальной жидкости подобие вьшолняется, если обеспечено геометрическое подобие обтекаемых тел.  [c.67]

Уравнение Лапласа необходимо дополнить граничными условиями для идеальной жидкости. На твердой границе г должно выполняться условие непроницаемости, которое в рассматриваем случае имеет вид (см. рис. 4.1)  [c.71]

К уравнениям движения надо добавить граничные условия, которые должны выполняться на ограничивающих жидкость стенках. Для идеальной жидкости это условие должно выражать собой просто тот факт, что жидкость не может проникнуть за твёрдую поверхность. Это значит, что на неподвижных стенках должна обращаться в нуль нормальная к поверхности стенки компонента скорости жидкости  [c.18]

Поскольку пристеночный слой тонкий, то при решении ураВ нений (24,12] с целью определения движения в основной массе жидкости следовало бы взять в качестве граничных условий те условия, которые должны выполняться на поверхности тела, т. е. равенство скорости жидкости скорости тела. Однако решения уравнений движения идеальной жидкости не могут удовлетворить этим условиям. Мол<но потребовать лишь выполнения этого условия для нормальной к поверхности компоненты скорости жидкости.  [c.126]

При отсутствии теплопередачи между твердой стенкой и жидкостью граничное значение перпендикулярной к стенке компоненты Vn тоже обращается в нуль. Граничные условия jx — 0 и v = О (ось X направлена по нормали к поверхности) эквивалентны условиям Vsx = 0 и v = 0. Другими словами, в этом случае мы получим обычные граничные условия идеальной жидкости для Vj и вязкой жидкости — для v .  [c.718]

Отсюда не следует, что всякое решение уравнений Навье—Стокса будет давать соответствующее решение уравнений идеальной жидкости, если в нем положить V = 0. Дело в том, что в решении дифференциальных уравнений входят граничные условия, которые существенно различны для вязкой и идеальной жидкостей.  [c.99]

На поверхности цилиндра г = Ь п и, распределения скоростей, как известно из 2 гл. 7, характерен для потенциального течения в поле одиночного плоского вихря идеальной жидкости. Следовательно, в рассматриваемом случае движения вязкой жидкости поле скоростей является потенциальным. При этом граничные условия для вязкой жидкости, состоящие в прилипании частиц жидкости к твердой поверхности.  [c.335]

Дальнейшие упрощения уравнений (8-56) можно произвести, отбрасывая малые члены. При этом основной исходной предпосылкой является допущение, что вязкостные и инерционные члены имеют один и тот же порядок малости. Если бы мы пренебрегли инерционными членами, то получили бы уравнения ползущего течения, пригодные только при малых числах Рейнольдса. Если же полностью отбросить вязкостные члены, то получим уравнения идеальной жидкости, решения которых не могут удовлетворять граничным условиям на твердых поверхностях (условиям прилипания). В связи с этим, стремясь получить уравнения, пригодные для пограничного ламинарного слоя при больших числах Рейнольдса, мы должны удержать как вязкостные, так и инерционные члены. Произведем оценку порядка их величины, принимая во внимание известный уже факт малости относительной толщины пограничного слоя Ых, из которого следует, что и . Введем  [c.361]


Очевидно, что после обращения движения или, что то же самое, просто при изучении движения жидкости относительно неподвижных тел все силы и внутренние напряжения останутся неизмененными. Согласно принципу Галилея — Ньютона такое обращение с сохранением всех силовых взаимодействий можно делать всегда для любой модели жидкости. В случае вязкой жидкости из-за условия прилипания необходимо после обращения движения двигать трубу вдоль ее образующих, если при абсолютном движении труба была неподвижной. В идеальной жидкости такое движение трубы никакого влияния на движение жидкости не оказывает, поэтому при обращении движения трубу можно сохранять неподвижной. В вязкой жидкости влияние граничных условий прилипания на стенках трубы конечной длины существенно проявляется в обычных случаях только вблизи стенок трубы, и поэтому для обтекания  [c.70]

Начальные и граничные условия. Начальные условия для задачи о движении вязкой несжимаемой жидкости не отличаются от таковых для случая идеальной жидкости. В обоих случаях должно быть задано в начальный момент /= О распределение скорости во всей рассматриваемой области.  [c.515]

Таким образом, величина q оказывается не только газодинамической функцией, но и геометрической, позволяющей решать задачи, связанные с одномерным течением идеальной жидкости в каналах произвольной формы. Алгоритм решения этих задач зависит от граничных условий и будет рассмотрен несколько позднее на конкретных примерах. Здесь же отметим, что поскольку в критическом сечении удельный расход достигает максимального значения, критический расход также является максимально достижимым при заданных начальных параметрах. Его величина определяется уравнением расхода, записанным для критического сечения  [c.64]

Для получения конкретных решений при интегрировании системы уравнений (22) должны быть использованы граничные, а в случае нестационарного движения и начальные условия. Вспомним, что в идеальной жидкости основное граничное условие на омываемой жидкостью твердой поверхности заключалось в непроницаемости поверхности и в связи с этим в совпадении нормальных к поверхности составляющих скоростей частиц жидкости и точек самой поверхности. В случае вязкой жидкости это граничное условие заменяется условием прилипания частиц жидкости к твердой стенке. Это означает отсутствие как нормальной к твердой поверхности относительной скорости между частицами жидкости и близлежащими точками поверхности, так и касательных составляющих относительной скорости, т. е. отсутствие скорости скольжения жидкости по поверхности.  [c.364]

Такое поле может одинаково существовать как в идеальной, так и в вязкой жидкости. В самом деле, движение это безвихревое, а следовательно, повсюду вокруг вихревой линии 2 = 0 уравнения вязкой жидкости при этом не отличаются от уравнений идеальной жидкости, а единственное граничное условие F —о при г —оо одинаково выполняется в обоих случаях. Разница лишь в том, что в идеальной жидкости, где нет диссипации энергии за счет работы сил внутреннего трения, такой вихрь не диффундирует в толщу всего объема жидкости и может сохраняться бесконечно долго, поддерживая указанное установившееся круговое движение частиц без притока энергии извне в вязкой же жидкости для поддержания такого движения необходимо сообщение энергии от источника завихренности, например от вращающегося в жидкости тонкого цилиндра, а если такой источник исчезнет, то постепенно затухнет и движение жидкости.  [c.432]

Итак, принимая предположение (1.2) об отсутствии вихрей в какой-либо области, мы получаем соотношения (1.3), (1.4) и (1.5), которые имеют место как раз для движения идеальной несжимаемой жидкости в этой области при отсутствии вихрей, т. е. распределение скоростей и давлений в той области, где движение вязкой и несжимаемой жидкости предполагается безвихревым, не будет зависеть от коэффициента вязкости. Если бы при этих условиях можно было удовлетворить граничному условию прилипания к твердым стенкам, то вопрос о возможности безвихревого движения вязкой несжимаемой жидкости решался бы положительно. Но легко убедиться в том, что решения, отвечающие потенциальному движению идеальной жидкости, не удовлетворяют в то же время условию прилипания частиц к границам, за исключением особых случаев. К таким особым случаям относится, например, чисто циркуляционное течение идеальной жидкости вокруг круглого цилиндра, в котором все линии тока будут окружностями, охватывающими заданный контур круга. В идеальной жидкости все точки контура неподвижны, и имеет место скольжение частиц жидкости вдоль контура с одной и той же скоростью. Для случая вязкой несжимаемой жидкости надо предположить, что цилиндр вращается.  [c.101]

Представим себе, для простоты, что тело движется в идеальной жидкости прямолинейно и система координат неподвижно с ним связана. Предположим, что движение жидкости, вызванное телом, потенциально и потенциал скоростей есть однозначная функция координат. Граничные условия (на поверхности тела и в бесконечности) и условие однозначности потенциала скоростей полностью определяют потенциал, а следовательно, и поле скоростей, т. е. определяют D как функцию координат и времени. Величина v должна быть при этом в каждой точке пропорциональна скорости движения тела V. В самом деле, при изменении V граничные условия и уравнение Лапласа для потенциала скоростей будут удовлетворены, если потенциал скоростей изменится пропорционально V но тогда v также изменится  [c.313]


Причем Фл, так же как и р, удов-летворяет уравнению Лапласа и, следовательно, может рассматриваться как потенциал скорости усредненного по толщине слоя течения. Поэтому, если для функции Фл (т. е. для давления р) создать граничные условия такие же, как для исследуемого потенциального потока идеальной жидкости, то мы должны получить при течении в щели распределение скоростей и сетку течения такими же, как для идеальной жидкости. Опыт полностью подтверждает этот вывод. Течение описанного типа было исследовано Хил-Шоу (1898 г.) и применено им для визуального изучения потенциальных потоков. Схема прибора Хил-Шоу показана на рис. 153. На таком приборе путем подкращивания струек легко воспроизвести линии тока, которые затем графически могут быть дополнены эквипотенциалями.  [c.300]

Это различие связано с иными граничными условиями. Для твердых тел на границе непрерывно смещение, для идеальных жидкостей—нормальная компонента вектора смещения (напомним, что акустическне волны в жидкости являются продольными). Различаются также и выражения для непрерывных на границе нормальной компоненты напряжений в 5//-волнах и давления для продольных волн в жидкости, если они записываются через смещения.  [c.193]

Таким образом, задача о движении несжимаемого гелия II сводится к двум задачам обычной гидродинамики для идеальной и для вязкой жидкостей. Сверхтекучее движение определяется уравнением Лапласа с граничным условием для нормальной производной dtpsldn, как в обычной задаче  [c.722]

К решению которого и сводится задача построения плоскопараллельного потенциального потока идеальной несжимаемой жидкости. При этом используется граничное условие непроницаемостн для жидкости твердой границы обтекаемого тела IV = О, т. е. равенство нулю около стенки нормальной к ней составляющей вектора скорости.  [c.96]

Дальнейшие упрош,ения уравнений (8.65) можно произвести, не учитывая малые члены. При этом основной исходной предпосылкой является допуш,ение, что вязкостные и инерционные члены имеют один и тот же порядок малости. Если бы мы пренебрегли инерционными членами, то получили бы уравнения ползущего течения, пригодные только при малых числах Рейнольдса. Если же полностью отбросить вязкостные члены, то получим уравнения идеальной жидкости, решения которых не будут удовлетворять граничным условиям на твердых поверхностях (условиям прилипания). Поэтому, стремясь получить уравнения, справедливые для пограничного ламинарного слоя при больших числах Рейнольдса, необходимо в них учитывать как вязкостные, так и инерционные члены. Произведем оценку их порядка, принимая во внимание, что относительная толщина пограничного слоя Ых является малой величиной и, следовательно, u,j м. Введем следующие обозначения (рис. 8.21) и , Uy — проекции скорости (y = Uj. y=fi — продольная составляющая скорости на границе пограничного слоя I — характерный продольный размер (например, хорда обтекаемого профиля) б — толщина пограничного слоя. Сразу можно опеределить порядок основных величин х у б, Uj L/. Порядок производных, входящих в систему  [c.329]

Интетралыгое уравнение энергии. можно получить из уравнения (1-54) путем интегрирования его по толщине слоя или из условия баланса энергии для элементарного объема потока жидкости в по-гранично.м слое. Для идеального газа можно получить из уравнения (1-54) различные формы интегрального уравнения энергии в зависимости от того, какая из величин —р, р или Т исключается из уравнения (1-54) с по.мощыо уравнения (1-15). Если уравнение (1-54) с граничными условиями  [c.32]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]

Для решения этой, в общем виде весьма сложной нелинейной системы уравнений в частных производных необходимо еще знать начальные и граничные условия задачи. Укажем, что в своей общей постановке вопрос об условиях существования и единственности решения составленной системы уравнений до сих пор не решен. Соответ-сгвующие условия обычио указываются в каждом отдельном случае. Отметим лишь одну характерную физическую особенность движения жидкостей и газов с внутренним трением. ]Лри обтекании неподвижного твердого тела вязкой жидкостью обращается в нуль не только нормальная компонента скорости (условие непроницаемости, имеющее место и в идеальной жидкости), но также и касательная компонента (условие прилипания жидкости к стенке или отсутствия скольжения жидкости по стенке).  [c.479]


Смотреть страницы где упоминается термин Условия граничные для идеальной жидкости : [c.289]    [c.324]    [c.722]    [c.210]    [c.301]    [c.227]    [c.23]    [c.507]    [c.533]    [c.534]   
Техническая гидромеханика (1987) -- [ c.100 ]



ПОИСК



Граничные условия

Граничные условия вязкой жидкости идеальной жидкости

Жидкость идеальная

Условия граничные (краевые) в идеальной жидкости

Условия граничные для вязкой идеальной жидкости



© 2025 Mash-xxl.info Реклама на сайте