Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концевой вихрь

При рассмотрении начальной кавитации крыла конечного размаха учитывают особенности ее возникновения и развития па различных участках поверхности крыла и за крылом на поверхности крыла, удаленной от кромок на кромке крыла в концевых вихрях.  [c.7]

Концевые вихри 13—140 — Концевые потери 13—140  [c.188]

Концевые вихри образуются вблизи краёв лопаток вследствие разности давлений на вогнутой и выпуклой сторонах лопатки. В крайних сечениях изолированного крыла вследствие отсутствия преграды воздух перетекает от вогнутой поверхности, на которой имеется избыточное давление, к выпуклой поверхности, где получается разрежение (фиг. 14). Аналогичные явления возникают на концах лопаток турбомашин. Перетекание пара происходит не только через радиальный зазор (если лопатки не свя-  [c.140]


Фиг. 14. Образование концевых вихрей а—вогнутая поверхность 5-выпуклая поверхность I крыло 2 — ло-патка 3— корпус 4 — радиальный зазор. Фиг. 14. Образование <a href="/info/140532">концевых вихрей</a> а—<a href="/info/206627">вогнутая поверхность</a> 5-<a href="/info/206635">выпуклая поверхность</a> I крыло 2 — ло-патка 3— корпус 4 — радиальный зазор.
Наличие концевых вихрей вызывает в лопаточном аппарате с бандажом уменьшение угла выхода потока у концов лопаток и увеличение этого угла на некотором расстоянии от концов лопаток.  [c.140]

Вихревое движение формируется также у концов лопаток в зоне вторичных течений. Вблизи спинки и торцевых поверхностей канала, зарождаясь в углах, существуют два концевых вихря. Снижение температуры торможения, термодинамической температуры и статического давления создает необходимые условия для  [c.75]

Анализируя амплитудно-частотные характеристики на рис. 3.17, следует иметь в виду, что приемное отверстие малоинерционного датчика статического давления было размещено на плоских (торцевых) стенках канала и при этом, естественно, фиксировались пульсации давлений, возникающие в угловых зонах между плоскими стенками и лопатками, а также вблизи плоских стенок. Здесь возникает сложное пространственное движение в пограничных слоях, перетекающих в направлении к спинке профиля, обтекающих угловые зоны и взаимодействующих с концевыми вихрями, которые, как известно, вызывают интенсивное  [c.100]

В сложном периферийном движении участвует жидкая фаза (капли и пленки), причем дисперсность и количество влаги г/о оказывают решающее влияние на дополнительные концевые потери. Мелкие капли легко вовлекаются в периферийные течения, участвуют в формировании вихревых шнуров и пленок на плоских стенках, ограничивающих решетку по высоте, а также у концов лопаток. Поскольку фазовые переходы генерируют специфическую конденсационную турбулентность (см. 3.2), можно предположить, что в зоне концевых вихрей интенсивность пульсаций параметров будет максимальной (см. рис. 3.17), в особенности вблизи состояния насыщения.  [c.117]

Особенно интенсивное накопление пленки и капель происходит в периферийных участках межлопаточных каналов. Пленки движутся вдоль спинки и вогнутой поверхности к вершине лопаток и здесь участвуют во вторичных течениях насыщают влагой периферийные концевые вихри, приводят к увеличению толщин пленок на внутренней поверхности бандажей и генерируют при этом крупные капли, фиксируемые в экспериментах за рабочей решеткой (см. рис. 5.6 и 5.7, а). Следовательно, концентрация влаги у периферии создает повышенные потери кинетической энергии в этой зоне. Учитывая температурные поля поверхности лопатки вблизи  [c.168]


Вихри возникают и при движении жидкости в пограничном слое на стенках колеса из области повышенного давления на напорной стороне лопасти в область пониженного давления на всасывающей стороне смежной лопасти. Это приводит к образованию вторичных токов и так называемых концевых вихрей (рис. 30,6). Возникновение этих вихрей в известной мере ана  [c.90]

Присоединенным вихрям, циркуляции которых определяют подъемную силу крыла конечного размаха, соответствуют свободные вихри, сходящие с крыла и образующие его след. Нагрузка лопасти наиболее сильно изменяется в ее концевой части. Поэтому завихренность в следе несущего винта концентрируется в спиралеобразные концевые вихри, расположенные под винтом. В отличие от крыла лопасть проходит очень близко от собственного следа и от следов предшествующих лопастей. Близость следа оказывает значительное влияние на распределения индуктивных скоростей и нагрузки лопасти. Вихревая теория представляет собой исследование работы несущего винта, в котором на основе законов гидродинамики, определяющих движение и воздействие завихренности (формула Био — Савара, теоремы Кельвина и Гельмгольца), рассчитывается индуцируемое следом винта поле скоростей и, в частности, распределение индуктивных скоростей по диску винта. В простейшем варианте вихревой теории использована схема активного диска. Это означает, что не учитывается дискретность самого винта и его следа, связанная с конечным числом лопастей, а завихренность непрерывно распределяется по пространству, занятому следом. При этих условиях задача может быть решена аналитически, по крайней мере для вертикального полета ). Если рассматривать ту же схему течения, что и в импульсной теории, то вихревая теория должна, конечно, дать такие же результаты. Однако вихревая теория лучше, чем импульсная, пригодна для обобщений схемы течения (например, учета неравномерности нагрузки на диск), так как она связана с рассмотрением местных, а не обобщенных характеристик.  [c.83]

При постоянной вдоль лопасти циркуляции (соответствующей равномерной нагрузке) свободные вихри сходят в след только с корня и конца лопасти. Концевой свободный вихрь скручивается в спираль, так как скорость его элементов складывается из скорости вращения лопасти и осевой скорости потока через диск винта (рис. 2.12). На висении осевая скорость целиком обусловлена индукцией следа. Сбегающие с каждой лопасти концевые вихри образуют систему входящих одна в другую спиралей. Можно считать, что корневые вихри прямолинейны и располагаются вдоль оси винта (если пренебречь наличием неоперенной части). При положительной силе тяги несущего винта направления вращения в вихрях таковы, что корневой вихрь и осевые составляющие концевых спиральных вихрей индуцируют закрутку следа в направлении вращения винта, а трансверсальные составляющие концевых вихрей (вихревые кольца) индуцируют внутри следа осевую скорость, противоположную по направлению силе тяги. Таким образом, система вихрей следа вызывает скорости, которые определяются, как показано выше, условиями сохранения осевого количества движения и момента количества движения.  [c.85]

В современных вихревых теориях задачу определения индуктивных скоростей, нагрузок и аэродинамических характеристик несущего винта решают численно, используя сложные схемы следа. К таким схемам относятся представление следа дискретными концевыми вихрями и зачастую даже схемы, учитывающие деформацию свободных вихрей. Поэтому современные теории имеют практическое значение только при использовании быстродействующих цифровых ЭВМ. Хотя численные решения в принципе ближе к действительности, чем классические, попытки усовершенствовать на их основе расчет аэродинамических характеристик несущего винта на режиме висе-ния оказались нелегкими. Часто усовершенствование заключается лишь в небольшом, но важном уточнении, но чтобы его найти, нужно использовать более подробную схему течения, которая требует тщательного исследования. Однако многие сложные явления, связанные с аэродинамикой несущего винта, еще недостаточно выяснены, а другие явления трудно исследовать. Кроме того, усовершенствование расчетной схемы должно быть совместным, т. е. должно затрагивать одновременно аэродинамическую, динамическую и конструктивную схемы несущего винта. В методах расчета аэродинамических характеристик винта на висении был достигнут определенный прогресс, но и теперь эти методы имеют ряд недостатков. Подробное  [c.98]


Рис. 4.6. Форма концевых вихрей в следе несущего винта (без учета деформаций, вызванных индукцией самих вихрей). Рис. 4.6. Форма <a href="/info/140532">концевых вихрей</a> в следе <a href="/info/109852">несущего винта</a> (без учета деформаций, вызванных индукцией самих вихрей).
Начнем со случая постоянной нагрузки на диск, что соответствует циркуляции, постоянной по длине лопасти, так что имеется лишь два продольных вихря — концевой и комлевый (см. разд. 2.7.2). Пренебрегая поджатием струи, будем считать, что система вихрей представляет собой круговой цилиндр, отходящий вниз от диска винта. Спиралевидные концевые вихри образуют на цилиндре слой, который удобно представить непрерывно распределенными вихревыми кольцами, к которым из условия сохраняемости вихрей добавляют слой прямолинейных вихрей, располагающихся вдоль образующих цилиндра, а также комлевый вихрь на оси цилиндра. Параллельные оси цилиндра вихри не дают нормальной к плоскости диска индуктивной скорости, которая, таким образом, определяется лишь вихревыми кольцами интенсивности у.  [c.470]

Наиболее характерны для системы вихрей винта концентрированные концевые вихри. При работе винта как на осевых режимах, так и на режимах полета вперед лопасть регулярно проходит вблизи концевого вихря, сошедшего с предыдущей лопасти. При этом вихрь индуцирует около нее большие по величине скорости, что приводит к сильному изменению действующих на лопасть аэродинамических нагрузок. В этом причина появления высших гармоник нагружения лопасти, существенно влияющих на шум винта, вибрации и летные свойства вертолета. Расчет деформаций вихрей в поле индуцируемых ими  [c.651]

На режиме висения концевой вихрь до подхода следующей лопасти успевает лишь ненамного сместиться вниз и к оси винта. Поэтому вихрь приближается к концевой части лопасти, а расстояние между ними мало. В результате сильно изменяется нагрузка на конце лопасти, что оказывает заметное влияние на аэродинамические характеристики винта на режиме висения (см. также разд. 2.7.4). При полете вперед вихревой след винта уносится потоком, так что концевые вихри перемещаются вдоль всего диска винта, а не остаются лишь вблизи концевых сечений лопастей. Взаимодействие лопастей с вихрями происходит главным образом на боковых частях диска винта, где вихри оказываются в непосредственной близости от лопастей. Поэтому на режиме полета вперед индуктивные скорости распределяются по азимуту крайне неравномерно, что порождает высшие гармоники нагрузок, амплитуды которых велики. Таким образом, при полете вперед неоднородность поля индуктивных скоростей существенно влияет на нагрузки, вибрации вертолета и шум винта. Довольно велико влияние этого поля и на первую гармонику нагрузки, а следовательно, и на эффективность циклического управления винтом. С изменением режима полета влия-  [c.652]

Были опробованы различные модели вихревого следа. Интенсивные концевые вихри хорошо описываются с помощью прямолинейных вихревых отрезков, имеющих вязкое ядро конечных размеров (см. разд. 10,8), причем криволинейная форма вихревых нитей хорошо описывается ломаной из прямолинейных отрезков, соответствующих изменению азимута на 15—30°, Модель следа, в которой пелена вихрей, сходящих с внешней части лопасти, сворачивается в концевой вихрь, используется почти всеми авторами некоторые различия возникают при описании ядра вихря с целью устранения особенности индуктивной скорости в центре вихря. Моделирование же пелены продольных и поперечных вихрей, сходящей с внутренних сечений лопасти, отличается разнообразием. Эта часть пелены влияет гораздо слабее, чем концевые вихри, что открывает большие возможности выбора удовлетворительной по точности модели. Чаще всего применяется модель пелены в виде сетки дискретных вихрей, т. е. прямолинейные отрезки вихря используются, для моделирования не только концевых вихрей, но и пелены вихрей, сходящих с внутренних сечений лопасти (рис. 13.4). Такая модель пелены соответствует ступенчатому изменению циркуляции присоединенных вихрей лопасти как по радиусу, так и по ази-  [c.655]

Рис. 13.7. Модель системы вихрей несущего виита, включающая линейный концевой вихрь и прямоугольные вихревые площадки, описывающие внутреннюю пелену. Рис. 13.7. <a href="/info/731703">Модель системы</a> <a href="/info/203087">вихрей несущего</a> виита, включающая линейный <a href="/info/140532">концевой вихрь</a> и прямоугольные <a href="/info/143449">вихревые площадки</a>, описывающие внутреннюю пелену.
В работе [S.47] представлен метод расчета переменных скоростей протекания и гармоник аэродинамических нагрузок несущего винта, включающий расчет свободного движения элементов вихревого следа (рассмотренный в следующем разделе). Концевые вихри описываются ломаной из прямолинейных вихревых  [c.668]

Применение вспомогательных поверхностей. Повышению аэродинамического качества летательного аппарата, улучшению характеристик его устойчивости и управляемости спссобствует применение некоторых вспомогательных поверхностей на отдельных элементах конструкции. К числу их относятся аэродинамические гребни (рис. 1.12.2), представ.яяющие собой небольшие выступы на верхней поверхности крыла, параллельные продольной оси летательного аппарата. На каждой консоли располагается несколько таких гребней. Их назначение состоит в том, чтобы воспрепятствовать перетеканию пограничного слоя вдоль размаха крыла и уменьшить срыв потока с его боковых кромок. Этой же цели служат и концевые шайбы (рис. 1.12.2), установленные у этих кромок. Как и гребни, они способствуют улучшению обтекания, что проявляется в меньшем воздействии на крыло концевых вихрей. В результате снижается индуктивное сопротивление, возрастает аэродинамическое качество.  [c.105]


Решетки турбин часто работают в нерасчетных условиях, т. е. при изменяющихся углах входа потока, числах Маха и Рейнольдса и т. д. Представленная на рис. 3.3, а схема расположения возможных зон конденсации в межлопаточных каналах сопловых решеток не сохраняется при изменении геометрических и режимных параметров. Так, при увеличении относительного шага лопаток давление и температура вблизи минимального сечения падают, а за выходной кромкой растут. Можно предположить, что в таких решетках основная масса мелких капель возникает вблизи спинки, а роль вихревых кромочных следов в процессе конденсации оказывается менее значительной. Существенные изменения угла входа потока также приводят к иному механизму конденсации. В зависимости от угла входа ао при обтекании входных кромок возникают диффузорные участки и отрывы пограничного слоя, генерирующие вихревое движение. Одновременно при изменении углов входа потока меняется интенсивность концевых вихревых шнуров. Если углы входа меньше расчетного (ао<аор), интенсивность концевых вихрей возрастает и, наоборот, при ао>оор—падает. В первом случае (рис. 3.3, б) конденсация происходит в трех вихревых шнурах в двух концевых и в вихре, расположенном на входной кромке IV. Во бтором — основное значение имеет переохлаждение в вихре на входной кромке (рис. 3.3, б). При нерасчетных углах входа возможно появление отрывных областей на спинке в косом срезе V. Опыты подтверждают, что в таких областях возникает наиболее интенсивная конденсация.  [c.76]

Переход к крупным каплям сопровождается значительным возрастанием концевых потерь по сравнению с потерями при перегретом паре для решеток С-9012А. Физически этот результат легко объясним возрастают потери кинетической энергии. на трение в периферийных движениях пленок, а также в концевых вихрях, несущих крупнодисперсную влагу. Распределение коэффициентов потерь по высоте решетки подтверждает интенсификацию вторичных течений в потоке влажного пара.  [c.117]

Г/(2яг) = Г/(рЛОг). При постоянной циркуляции присоединенных вихрей след состоит только из концевых и корневых вихрей, причем в предельном случае бесконечного числа лопастей заходящие одна за другую концевые спирали образуют вихревую пелену на границе следа, имеющую осевую и трансверсаль-ную составляющие. Погонная циркуляция осевой составляющей полены из концевых вихрей равна v = r/(2n i), где Ri — радиус следа. Вихревые линии образуют (в соответствии с теоремой Гельмгольца) непрерывные кривые, каждая из которых состоит из корневого вихря, радиального присоединенного вихря на диске и осевой составляющей пелены из концевых вихрей. Вследствие спиральной формы концевых вихрей трансверсальная составляющая завихренности сохраняется в следе и в предельном случае бесконечного числа лопастей. Можно считать, что эта завихренность состоит из вихревых колец. Погонная циркуляция у вихревых колец равна Г/h, где h — расстояние, на которое след перемещается за время одного оборота винта. Связывая h с осевой скоростью на границе следа, получим h — 2nv/Q, так что y = T/ pAv).  [c.87]

Дженни, Олсон и Лендгриб [J.10] сравнили несколько методов расчета аэродинамических характеристик на режиме висения а) простые формулы с равномерной скоростью протекания и постоянным коэффициентом сопротивления, б) элементно-импульсную теорию, в) вихревую теорию Голдстейна — Локка, г) численное решение с неравномерной скоростью протекания без учета и с учетом поджатия следа (в последнем случае структура следа была заранее задана по экспериментальным данным). Обнаружилось, что классические методы и численное решение без учета поджатия следа завышают величину потребной мощности на висении, причем ошибка возрастает с увеличением нагрузки лопасти Сг/а (а также с увеличением концевого числа Маха и коэффициента заполнения и уменьшением крутки). Ошибки были объяснены тем, что не учтено под-жатие спутной струи или, другими словами, не принята во внимание действительная форма концевых вихрей. На нагрузку лопасти сильное влияние оказывает концевой вихрь, сходящий с предыдущей лопасти, т. е. нагрузка в значительной степени зависит от положения этого вихря по радиусу и вертикали относительно лопасти. Влияние вихря заключается в увеличении углов атаки внешних (для вихря) сечений лопасти и уменьшении углов атаки внутренных сечений. При умеренных (0,06 Ст/о 0,08) и больших нагрузках лопасти вихрь может вызвать срыв в концевой части, а значит, ограничить достижимую нагрузку концевой части и увеличить ее сопротивление, снизив тем самым эффективность несущего винта. Так как в концевой части лопасти нагрузка максимальна, аэродинамические характеристики винта в сильной степени зависят от характера обтекания концевых частей, а следовательно, от небольших изменений положения вихря (а также изменений профиля и формы лопасти в плане). Эффекты сжимаемости тоже играют важную роль, так как число Маха на конце лопасти максимально. Если бы сжимаемость воздуха и срыв не сказывались, влияние концевых вихрей на распределение нагрузки было бы еще сильнее, но эти факторы действуют взаимно исключающим образом. Если поджатием следа пренебречь, то все сечения лопасти становятся внутренними для вихря и он нигде не увеличивает углов атаки. При использовании схемы распределенной по следу завихренности или даже более простых схем влияние концевых вихрей вообще нельзя оценить. Таким образом, уточнение формы следа является решающим моментом в усовершенствовании методов расчета амодинами-ческих характеристик винта на режиме висения. Положение концевого вихря по радиусу и вертикали относительно следующей лопасти, к которой он подходит очень близко, имеет  [c.99]

Теория элемента лопасти представляет собой распространение теории несущей линии на вращающееся крыло. В линеаризованной вихревой модели пелена вихрей состоит из спиральных продольных вихрей, тянущихся за каждой лопастью. В случае невращающегося крыла деформациями вихревой пелены и сворачиванием концевых вихрей обычно -можно пренебречь, поскольку элементы вихрей уносятся вниз по потоку и удаляются от крыла. Вращающаяся же лопасть, напротив, постоянно приближается к элементам пелены вихрей, сходящих с лопасти винта, идущей впереди рассматриваемой. Поэтому модель пелены вихрей, используемая для расчета индуктивных скоростей на лопасти, должна быть более детальной и точной, чем в случае крыла. Сходящие с концов лопастей участки вихревой пелены быстро сворачиваются в концевые вихревые жгуты, которые лучше описываются вихревой нитью, чем пеленой вихрей. Для многих режимов полета требуется учитывать деформации концевых вихревых жгутов, вызываемые созданными этими жгутами индуктивными скоростями, так как без этого не удается произвести достаточно точный расчет нагрузок. В излагаемых далее простых способах расчета индуктивной скорости используется схема активного диска. Это позволяет определять среднюю индуктивную скорость по закону сохране ния количества движения.  [c.430]

Лопасть несущего винта вертолета обычно имеет большое удлинение, так что это условие применимости теории несущей линии соблюдается практически всегда. Однако для справедливости такой теории необходимо еще одно, более тонкое требование, а именно — резкие изменения местных условий обтекания не допускаются. Это условие для лопасти несущего винта обычно не выполняется, несмотря на большое- удлинение. Имеются важные случаи нарушений указанного условия во-первых, при обтекании концевых сечений лопастей и, во-вторых, при обтекании участков лопасти, к которым приближаются концевые вихри. Конечно, вблизи конца крыла на небольшом участке нагрузка тоже всегда резко падает до нуля. Однако в случае лопасти винта, где из-за больших скоростей вращения концевые сечения существенно более нагружены, градиент изменения подъемной силы вблизи конца особенно велик, и даже небольшие изменения нагрузок вследствие пространственности обтекания оказываются важными. На некоторых режимах полета лопасти подходят очень близко к концевому вихрю, сходящему с впереди идущей лопасти. В таких случаях индуктивные скорост и весьма резко изменяются по длине лопасти, и теория несущей линии существенно завышает соответствующие нагрузки. Таким образом, для описания ряда важных явлений обтекания лопастей винта теория несущей линии должна быть несколько модифицирована. Требуемые поправки могут быть как весьма простыми (например, введение коэффициента концевых потерь), так и весьма сложными (например, переход к теории несущей поверхности при расчете характеристик винта).  [c.431]


Таким образом, расчет неоднородного поля KOpo xefi протекания основывается на определении скоростей, индуцируемых дискретным элементом вихревой пелены. Ниже дается вывод формул для скоростей, индуцируемых вихревой линией или поверхностью. Прежде всего будет рассмотрена прямолинейная вихревая нить, что позволит изучить ряд общих черт поля индуцируемых вихрями скоростей. Вихревая нитв конечной интенсивности представляет собой предельный случай, когда поле вихрей конечной суммарной интенсивности сконцентрировано в трубке бесконечно малого поперечного сечения. Вблизи вихревой нити поле скоростей имеет особенность, причем скорости стремятся к бвсконечности обратно пропорционально расстоянию до нити. В реальной жидкости вследствие влияния вязкости эта особенность отсутствует, ибо диффузия вихрей превращает нить в трубку малого, но конечного поперечного сечения, называемую ядром вихря. Скорость принимает максимальные значения на некотором расстоянии от оси вихревой трубки, которое можно принять в качестве радиуса ее ядра. Поскольку лопасти несущего винта часто проходят очень близко к концевым вихрям от впереди идущих лопастей, ядро вихря играет важную роль в создании индуктивных скоростей на лопастях несущего винта, и существование такого ядра следует учитывать при описании распределения вызываемой винтом завихренности. Радиус ядра концевого вихря составляет примерно 10% длины хорды лопасти. Экспериментальных данных о размерах ядра концевого вихря очень мало, особенно для случая вращающейся лопасти.  [c.489]

Вибрации вертолета с частотами, кратными NQ, вызваны высшими гармониками нагрузок на несущем винте. Источники этих нагрузок — след винта и эффекты срыва и сжимаемости на больших скоростях полета. На режиме висения вибрации вер-— толета невелики вследствие почти полной осевой симметрии его обтекания. Единственным возбудителем высокочастотных гармоник нагрузок является небольшая асимметрия, вносимая влиянием фюзеляжа и других винтов. На малых скоростях полета (при 0,1) обычно наблюдается резкое увеличение вибраций, обусловленное большой неравномерностью поля индуктивных скоростей. Аэродинамическое сопротивление вертолета на малых скоростях невелико, поэтому наклон ПКЛ также мал, и концевые вихри лопастей остаются вблизи диска винта. Характеристика режима полета все же достаточно велика, поэтому лопасти проходят вблизи концевых вихрей предшествующих лопастей. Такое взаимодействие вихрей и лопастей приводит к сильному росту высших гармоник аэродинамических нагрузок, которые передаются через втулку и создают вибрации. Вибрации вообще увеличиваются в случаях, когда вихревая система находится вблизи диска винта, например на режимах торможения или снижения. Для увеличения скорости полета ПКЛ наклоняется вперед, что создает пропульсивную силу при этом вихри уносятся потоком от диска винта, и вибрации, вызванные влиянием вихрей, уменьшаются. На больших скоростях полета вибрации вновь возрастают в основном в результате увеличения высших гармоник нагрузок, вызванного эффектами срыва и сжимаемости. Максимальная скорость полета вертолета часто ограничивается именно этими вибрациями.  [c.638]

На вутренней части лопасти циркуляция присоединенных вихрей в направлении комля плавно уменьшается до нуля. При этом с лопасти сходит пелена продольных свободных вихрей, направление вращения которых обратно концевому вихрю. Поскольку градиент изменения циркуляции присоединенных вихрей по радиусу невелик, сходящий с комля лопасти вихревой жгут обычно существенно слабее концевого жгута и более диф-фундирован. Если циркуляция присоединенного вихря изменяется по азимуту (при периодическом изменении нагрузок лопасти на режиме полета вперед или при переходном движении), с внутренней части лопаг-ти сходит и пелена поперечных вихрей. Элементы продольных и поперечных вихрей переносятся с местной скоростью потока воздуха, причем интенсивность в процессе такого переноса сохраняется постоянной. Скорость переноса вихрей слагается из скорости невозмущенного потока и скорости, индуцируемой самими вихрями пелены. При этом можно считать, что пелена вихрей переносится вниз (по нормали к плоскости диска винта) со скоростью, равной сумме средней индуктивной скорости и нормальной к диску винта составляющей скорости невозмущенного потока ). На режиме полета вперед эта составляющая скорости образуется при наклоне диска винта, а на осевых режимах она равна скорости полета. Принимается, что перенос элементов пелены назад (параллельно плоскости диска винта) происходит лишь со скоростью невозмущенного потока. Индуцируемые вихрями скорости существенно деформируют вихри при их движении. При этом на режиме полета вперед с каждой лопасти сходят скошенные назад спиралевидные деформирующиеся и перекручивающиеся вихри. Их форма на режимах висения и полета вперед рассмотрена в разд. 2.7.1 и 4.2.  [c.651]

Выше обычно принималось, что индуцированная вихрями скорость протекания постоянна по диску или в крайнем случае изменяется линейно. Однако в действительности поле индуктивных скоростей весьма неоднородно, ибо условия постоянства скорости (постоянная циркуляция и очень большое число лопастей) ) для реального винта не выполняются. Распределение индуктивных скоростей определяется в основном дискретными концевыми виxpямI , сходящими с лопастей. При работе винта спиралевидные концевые вихри проходят в непосредственной близости от диска винта, периодически оказываясь вблизи лопастей. В частности, как на режиме висения, так и при полете вперед каждая лопасть близко подходит к концевому вихрю, сошедшему с предыдущей лопасти. Как уже отмечалось в разд. 10.8.1, скорость вращения в прямолинейном диффундирующем вихре по удалении от его центра сначала растет, а затем падает, причем максимум скорости имеет место на расстоянии, равном радиусу ядра вихря. Таким образом, концевые вихревые жгуты создают в зоне движения лопастей крайне неоднородное поле скоростей.  [c.652]

ОТНОСЯТСЯ к одним и тем же условиям полета (характеристика режима [i = 0,25, нагрузка на лопасть Сг/о = 0,12, сопротивление вертолета f/A —0,0 5). Индуктивные скорости определялись без учета деформации системы вихрей. При расчете движения лопасти не учитывались ее крутильные деформации и деформации цепи управления, которые при рассмотренном сильном нагружении существенно влияют на распределение нагрузок (см. гл. 16). Зависимости коэффициента протекания Я-пкл через плоскость концов лопастей от азимута при ряде значений радиусов приведены на рис. 13.8, а распределение пкл по диску винта показано на рис. 13.9. Для сравнения отметим, что полученное по теории количества движения среднее значение коэффициента протекания Я,пкл равно 0,034, причем индуктивная скорость ki составляет 0,024, а скорость протекания цапкл вследствие наклона диска равна 0,010. Коэффициент протекания больше в задней части диска винта и меньше в передней. Вблизи азимутов = 90 и 270° имеют место резкие изменения индуктивной скорости, связанные с приближением к лопасти концевого вихря, сошедшего с впереди идущей лопа-  [c.659]

СИЛОЙ, которая, согласно нестационарной теории профиля, в свою очередь зависит от движения лопасти и величины циркуляции. Поэтому уравнение махового движения лопасти позволяет связать коэффициенты гармоник циркуляции с коэффициентами махового движения, что замыкает определяющую их систему уравнений. Решение ищется методом последовательных приближений, а индуктивные скорости подсчитываются при заданной циркуляции. После этого вычисляются коэффициенты гармоник нагрузки и махового движения, что позволяет уточнить циркуляцию. Процедура повторяется до достижения сходимости приближений. Поскольку высшие гармоники индуктивных скоростей в основном зависят от структуры вихревого следа, в качестве первого приближения можно использовать среднее для заданной силы тяги значение циркуляции. Миллер обнаружил, что гармоники нагрузок сильно зависят от шага винтовых поверхностей, и предположил, что для расчета влияния концевого вихря, приближающегося к лопасти, требуются нелинейная вихревая теория и представление лопасти несущей поверхностью. Он ввел также концепцию полужесткого следа, каждый элемент которого имеет вертикальную скорость, равную скорости протекания в соответствующей точке диска винта в момент схода этого элемента с лопасти.  [c.665]

При использовании схемы свободного следа предварительно находились нагрузки для жесткого следа. По полученным таким образом значениям интенсивности присоединенных вихрей определялась деформированная форма концевых вихрей. После этого для новой формы вихрей вычислялись индуктивные скорости и аэродинами1 ские нагрузки. Поскольку форма свободного следа мало зависит от деталей изменения циркуляции присоединенного вихря, дальнейшие приближения обычно не требуются. Анализ экспериментальных аэродинамических нагрузок несущего винта показывает, что нагрузки на стороне наступающей лопасти максимальны, когда сошедший с впереди идущей лопасти вихрь впервые приближается к следующей лопасти. С ростом if) во время прохождения лопасти вблизи вихря эта нагрузка уменьшается. В работе [J.30] установлены причины такого снижения нагрузок, которые состоят в следующем. При сближении внешнего вихря и лопасти происходит изменение его свойств, в частности может произойти резкое увеличение (распухание) ядра вихря. Кроме того, внешний вихрь взаимодействует со сходящими с лопасти продольными вихрями, которые объединяются с внешним вихрем в результате диффузии. Причиной снижения вызванных внешним вихрем нагрузок может быть и местный отрыв потока вследствие больших радиальных градиентов давления на лопасти. Эти эффекты моделировались в работе [S.47] путем увеличения ядра вихря при его встрече с лопастью и распространения такого распухания ядра вверх по потоку. Оказалось, что введение вызванного лопастью и распространяющегося вверх по потоку распухания вихря достаточно для удовлетворительного расчета аэродинамических нагрузок. Переход к схеме несущей поверхности приводит к существенному снижению расчетных нагрузок, вызванных приближающимися к лопасти вихрями, но этого оказывается все же недостаточно для того, чтобы такие нагрузки хорошо согласовывались с экспериментальными. Нужно заметить, что описанный выше способ  [c.670]



Смотреть страницы где упоминается термин Концевой вихрь : [c.76]    [c.117]    [c.183]    [c.100]    [c.100]    [c.110]    [c.263]    [c.650]    [c.654]    [c.655]    [c.656]    [c.657]    [c.657]    [c.658]    [c.662]    [c.663]    [c.669]   
Кавитация (1974) -- [ c.623 ]



ПОИСК



Вихрь

Продолжение циркуляции крыла концевыми вихрями



© 2025 Mash-xxl.info Реклама на сайте