Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подшипники Элементы — Конструкция

В Справочник включены новые главы Редукторы , Гидравлические и пневматические устройства , Электрооборудование . Расширены справочные сведения но машиностроительным материалам, конструктивным элементам, технологичности конструкций, стандартным и нормализованным деталям, подшипникам, разъемным и неразъемным соединениям, а также по расчету передач и пружин. Углубление содержания справочника достигнуто частичной заменой менее нужных справочных данных более требуемыми, расширением качественных показателей материалов, деталей, комплектующих изделий. Как и в предыдущем издании, таблицы, иллюстрации, и расчеты сопровождаются минимальным пояснительным текстом. Отсутствуют теоретические выводы формул, они даются в виде, удобном для непосредственного пользования. Из ГОСТов и нормалей приводятся только данные, наиболее часто используемые конструкторами. Сведения для особо подробных и более точных расчетов, а также редко требующиеся в практике конструирования, могут быть получены из дополнительных источников, указанных в соответствующих главах.  [c.6]


Объектом исследования были вкладыши подшипников скольжения с бронзовой втулкой, имеющие одинаковые геометрические параметры и отличающиеся тем, что один из них был сделан жестким сплошным, а другие — составными, с упругими элементами различной конструкции (рис. 1).  [c.77]

Для устойчивости элемент помещается в тонкостенную металлическую гильзу, засыпается керамическим порошком и герметизируется замазкой. В зависимости от действительных условий изготовляются чувствительные элементы специальных конструкций от сосредоточенной обмотки небольшой длины для измерения температуры подшипников до обмотки, растянутой на несколько метров, для измерения средней температуры нефти в резервуарах. К чувствительному элементу припаиваются соединительные медные провода, которые электрически  [c.139]

Общие Сведения. Цилиндрические подшипники отличаются простотой конструкции и технологии их изготовления, высокой прочностью и износоустойчивостью при действии значительных радиальной, осевой и комбинированной нагрузок. Они работоспособны при низких и средних частотах вращения, в условиях вибрации и ударов. Основной их недостаток высокий (например, по сравнению с подшипниками качения) момент сопротивления вращению. По этой причине цилиндрические подшипники обычно применяют в качестве опор механизмов и устройств, не оказывающих определяющего влияния на точность приборов. По осям подвеса чувствительных элементов приборов цилиндрические подшипники устанавливают только при использовании специальных мер снижения момента трения.  [c.530]

Поверхности металлических конструкций под подшипники приводного вала, редукторы, натяжные и поворотные устройства должны располагаться в одной горизонтальной плоскости отклонение от горизонтальности указанных элементов металлических конструкций допускается до 3 мм.  [c.693]

Барабаны и блоки при ТО очищают (протирают), осматривают, проверяют их крепление и смазывают. При осмотре проверяют также состояние креплений каната, подшипников, крышек, втулок и других элементов сборочной единицы. Местные повреждения гребней нарезки барабанов могут быть исправлены на месте наплавкой. Заварка трещин в местах перехода от тела к фланцам (барабаны с многослойной навивкой) не рекомендуется. При уменьшении толщины стенки более чем на 20% ее начального размера барабан подлежит замене. При осмотре блоков проверяют крепление их осей, состояние подшипников, реборд и ручьев. С особым вниманием нужно осматривать уравнительные блоки о подшипниками скольжения (старые конструкции), так как имелись случаи поломки их осей вследствие износа. Эксплуатация блоков с трещинами и отколами реборд не допускается. При ТО барабанов и блоков смазывают подшипники, а также зубчатое соединение барабана с передаточным механизмом.  [c.288]


Схемы и конструкции направляющих поступательного движения, применяемых в приборостроении, отличаются большим разнообразием. Элементы их конструкций не стандартизованы, а сами направляющие не выполняются в виде автономной конструкции — узла прибора. В этом их отличие от направляющих вращательного движения (гл. 15), для которых широко используются стандартизованные подшипники качения, опоры на камнях и т. д., а подшипниковые узлы зачастую являются автономными узлами конструкции прибора.  [c.456]

Расчет основных элементов внутренней конструкции подшипников с короткими цилиндрическими роликами приведен ниже [19, 97].  [c.72]

Охлаждение. Очень часто оно решает режим смазки и возможности работы подшипников. Элементы, определяющие его система охлаждения (естественное, принудительное), способ охлаждения (теплопроводностью, излучением, конвекцией, смыванием поверхностей свежим маслом), расход масла, проходящего между поверхностями, затем расположение конструкции и характеристики окружающей среды, температура, теплоемкость, коэффициенты передачи и т.д.  [c.33]

Примером деталей с полной унификацией (стандартизацией) по взаимозаменяемости являются подшипники качения. Действительно, у них унифицированы все показатели размерной взаимозаменяемости (посадочные и присоединительные размеры, нормы точности) и определена несущая способность - значения допускаемой динамической и статической грузоподъемностей. Что касается элементов внутренней конструкции подшипников (конструкции сепараторов, профиля поперечного сечения поверхностей качения колец), то они не связаны жестким регламентом, совершенствуются и видоизменяются при необходимости.  [c.402]

В ряде случаев база заготовки и база оснастки подвижны (установка на центра, использование при обработке подвижных и неподвижных люнетов, шлифование на башмаках, сверление и растачивание отверстий с использованием инструментов одностороннего резания и т.п.). При такой установке наследуются отклонения формы и расположения участка поверхности, служащего базой, причем эта база заготовки может сама являться и обрабатываемой поверхностью. В любом случае отклонение в положении заготовки или оснастки переменно во времени. Степень переноса, наследования исходных отклонений определяется здесь условиями обработки, характеристикой (например, жесткостью) элементов системы и принятой схемой базирования (расположением опорных точек). Все эти варианты установки являются специальными и здесь не рассматриваются. Использование при обработке заготовок схемы базирования с поверхностями опор (подшипников), принятых в конструкции изделия, может оказаться эффективным для повышения точности. Примером тому может служить операция шлифования отверстия в шпинделе токарного станка с базированием по шейке под подшипник.  [c.31]

Датчики механических величин. Некогерентные ВОД механических величин используют, главным образом, изменение интенсивности света, распространяющегося в системе передающий ВС — контролируемый объект — приемный ВС, при изменении положения любого из этих элементов. Примеры конструкций таких ВОД приведены на рис. 12.1. По существу, все эти датчики измеряют перемещение, но к нему сводится много других величин. Так, если в приведенные схемы ввести упругие элементы, то они могут служить датчиками давления, микрофонами, виброметрами. Простейшие схемы (12.1, о, б) предельно просты и дешевы, и благодаря применению световодов обеспечивается большая гибкость в их применении [18]. Они с успехом используются для дистанционной диагностики турбин, подшипников, контроля положения ответственных объектов (например, высоковольтных выключателей). При использовании специальных масок или меток, нанесенных на контролируемый объект, может определяться его скорость, осуществляться контроль числа оборотов, причем в цифровой форме.  [c.210]

На рис. 9.3 изображены конструкции разъемных корпусов для подшипников скольжения. При разъемных корпусах применяют два вкладыша. Их выполняют без буртиков, с одним и с двумя буртиками (рис. 9.4). Размеры конструктивных элементов (мм) толщина стенки вкладыша Й=(0,08.... ..0,10) й 4- 2,5 где с1 (мм) — диаметр цапфы вала Л = (1,0... 1,2) 6 /г 0,65. На наружной поверхности вкладышей около буртиков иногда делают канавки по ГОСТ 8820—69 (табл. 7.6).  [c.133]


На следующем этапе (эскизное проектирование) выполняются проектировочные расчеты, позволяющие приближенно определить размеры основных деталей (шестерен, валов, муфт и др.) и сделать эскизный чертеж проектируемого устройства. Размеры некоторых элементов деталей (например, обода, диска, ступицы зубчатого колеса, литого или сварного корпуса и т. д.) можно определить по рекомендациям, составленным на основе опыта проектирования подобных конструкций. На параметры многих деталей машин (подшипники, муфты, смазочные устройства и др.) имеются ГОСТы, ознакомление с которыми и применение — одна из важных задач курсового проектирования.  [c.6]

Примечание. Резинокордные элементы придают муфтам повышенные упругие и компенсирующие свойства. Упругие свойства характеризуются углом закручивания при номинальном значении момента (см. таблицу). Допускаемые угловые перекосы валов составляют 5...6°, а радиальное и осевое смещения — до 10 мм. Дополнительные силы и изгибающие моменты, появляющиеся при таких перекосах валов, малы, ими можно пренебречь при расчете валов и подшипников. В конструкции муфты предусмотрена возможность удаления оболочки без снятия ступиц.  [c.419]

Сборка агрегата сложна. Проверка и регулировка осевых зазоров, в частности торцовых зазоров между крыльчатками и тыльными поверхностями диафрагм, затруднительна, особенно потому, что на всех стадиях сборки, вплоть до заключительной, вал зафиксирован только в оДном подшипнике. Выдержать правильные зазоры можно ил и с помощью специальных приспособлений, или повышением точности выполнения осевых размеров элементов конструкции.  [c.9]

Способ монтажа тесно связан с системой креп.тения подшипников, с конструкцией и расположением элементов, фиксирующих подшипники на валу и в корпусе (рис. 482). Система а крепления подшипников допускает применение только способа 1, система б — способа 2, система в — способа 3, системы г, д — способов 2 и 3. Конструкция е допускает применение любого из трех способов.  [c.522]

При разработке конструкций дополнительные элементы кинематических пар вводят для того, чтобы уменьшить давление и износ контактируемых поверхностей за счет перераспределения реактивных сил и увеличения размеров элементов кинематических пар (например, рис. 2.18,г). Особое внимание уделяется уменьшению деформаций под действием заданных сил путем установки дополнительных подшипников.  [c.44]

Это можно проиллюстрировать на примере вала /, образующего со стойкой 2 вращательную пару (рис. 2.19). Если вместо простой вращательной пары (рис. 2.19, а) вал установить на двух опорах, вводя в конструкцию дополнительные элементы (рис. 2.19,6), то прогиб вала в точке С под действием силы F может быть уменьшен. Например, для вала по схеме, изображенной на рис. 2.19,в, прогиб в точке С (при а = Ь) уменьшается в 8 раз по сравнению с консольной установкой вала (рис. 2.19,а). Число избыточных локальных связей в кинематической паре, способствуя уменьшению податливости конструкции, может оказаться вредным в случае изменения температурного режима работы, при деформации стойки, при отклонениях размеров, формы и расположения поверхностей элементов кинематической пары. В статически неопределимых системах избыточные локальные связи могут вызывать дополнительные усилия и перемещения. Поэтому число избыточных локальных связей приходится уменьшать. Так, если для вала правый подшипник выполнить сферическим плавающим, то число связей будет уменьшено (рис. 2.19,в).  [c.44]

Варианты схем машин представлены на рис. 73—75. Элементы конструкции считаются абсолютно жесткими, подшипники А, В — точечными, ось ротора бесконечно тонкая, совпадающая с осью вращения. Рабочие колеса принимаются однородными дисками. Через l, С2, Сз на рисунках обозначены центры масс колес, через О], Oj,  [c.111]

Для снижения методической погрешности при использовании моделей средних значений важно осуществить рациональное условное деление конструкции ЭМУ на отдельные элементы, либо увеличить число таких разбиений. Но в последнем случае метод приближается к методу сеток и становится громоздким, в то время как практически важно получение высокой точности расчетов при ограниченной дискретизации. При умелом применении схем замещения методическая ошибка в сравнении с методом сеток составляет обычно не более 5 % даже при ограниченной степени дискретизации. По крайней мере, это заметно меньше, чем погрешности от неточности задания входной информации. При выборе числа разбиений важен и характер решаемой задачи. При грубой оценке показателей поля возможна упрощенная схема замещения с пятью-шестью укрупненными телами (ротора в целом, объединенных обмотки и пакета статора и т.д.). Если необходим анализ изменения осевой нагрузки на подшипники, то особо подробно должны быть представлены тела, входящие в замкнутую размерную цепь их установки, а остальные элементы могут рассматриваться укрупненно. При анализе относительных температурных деформаций требуется наиболее детальная дискретизация ЭМУ, особенно для элементов, имеющих различные коэффициенты линейного расширения. Здесь ТС, например, должна содержать не менее 15—20 тел.  [c.127]

Оценка предельной быстроходности по скоростному параметру базируется на примерной пропорциональной зависимости тепловыделения и износа подшипников от линейной скорости вращения нагруженных элементов подшипника. Принимается, что dmn = onst для каждого типа подшипника при определенной конструкции и материале сепаратора. В связи с тем, что для стандартных ПК эти факторы можно считать постоянными, появилась возможность определить примерные предельные значения ЫщП.], которые зависят от типа подшипника, материала и конструкции сепаратора  [c.415]


Недостаточная жесткость опорных конструкций заводских стендов является одной из причин нестабильности установочных баз. При заводской сборке узлы и корпусные детали турбин в определенной последовательности устанавливают на опорные конструкции стенда. При этой установке меняются нагрузки, приходящиеся на центровочные элементы и конструкции стенда. Это приводит к изменению взаимоположения выверенных и отцентрованных ранее узлов и к перераспределению реакций опор агрегатов. Наблюдения, проведенные на испытательных стендах некоторых турбинных заводов (ЛМЗ, НЗЛ, ТМЗ), показали, что деформации центровочных элементов и самих конструкций стендов достигают значительных величин. Так, на одном из стендов ЛМЗ при сборке турбины ВПТ-50-3 было обнаружено проседание поперечного ригеля стенда под средним подшипником на величину 1,5 мм. На графике (рис. 53) показаны характер и величины деформаций фундаментной рамы газотурбинной компрессорной установки ГТН 9-750 (общий вес 230 т), возникших при сборке на испытательном стенде и зафиксированных при помощи гидростатического уровня от внешнего независимого репера. Как видно из графика, с момента установки на стенд общей рамы до закрытия верхних половин цилиндров точки, находящиеся на верхнем поясе рамы, опускаются на величину от 0,38 до 0,84 мм. При этом максимальный перелом (смещение оси расточки в точках 3 VI 4 относительно линии, соединяющей крайние точки кривой прогиба) достигает 0,38 мм.  [c.108]

Для облегчения настройки приспособления на рабочее усилие под торцы элементов 6 установлены упорпые подшипники, а в конструкцию приспособления  [c.541]

В масло не больше, чем на высоту зуба или витка. Однако при расположении червяка под колесом уровень масла не должен быть выше центра нижнего элемента качения (шарика, ролика) подшипников червячного вала это необходимо для уменьшения потерь в подшипниках и упрощения конструкции уплотнения. В случае, если при этом условии червяк оказывается непогруженным в масло, на него следует ставить кольца с лопастями (см. рис. 21.5), которые при вращении червяка забрасывают масло на червячное колесо.  [c.341]

Блок дизеля — стальной, сварной, из поперечных, продольных и наклонных элементов. Сварная конструкция обеспечивает необходимую жесткость и прочность при небольшой массе. Поперечные листы с вваренными опО рами коренных подшипников коленчатого вала делят блок на семь отсеков. В шести отсеках расположены цилиндры и кривошипно-шатунные механизмы, а в седьмом — двухступенчатая цилиндрическая передача к распределительному валу. Под верхней плитой к боковой стороне блока приварен ореб-ренный снаружи гнутый лист, образующий ресивер наддувочного воздуха к другой стороне блока также под верхней плитой прива-  [c.191]

На фиг. 46, л изображен один из вариантов компоновки ведущего и ведомого валов насоса среднего давления (25—32 кПсм ) на игольчатых подшипниках. В отличие от компоновки опор, показанной на фиг. 46, г, здесь внутренней беговой дорожкой для иголок является поверхность вала, а наружной беговой дорожкой — поверхность отверстий уплотняющих элементов. Недостатком конструкции является необходимость изготовления деталей подшипников по высокому классу точности с применением легированных материалов и точного расчета диаметров дорожек с целью получения минимального зазора между иглами.  [c.113]

Основными элементами конструкции сложного изделия являются агрегаты, секции (отсеки), узлы и детали. Агрегат — часть конструкции, выполняющая одну из основных функций изделия обычно афегат предсталяет собой самостоятельный в конструктивном, эксплуатационном и технологическом отношении элемент конструкции, изготовляемый отдельно от других элементов. Крупные агрегаты часто расчленяются на секции (отсеки) такое расчленение обычно обусловлено эксплуатационными и технологическими соображениями. Агрегаты и отсеки могут расчленяться на отдельные узлы и детали. Конструктивным узлом называется элемент конструкции, воспринимающий определенную нагрузку (станина, рама, узел подшипника) или выполняющий другие специфические функции узлы, представляющие собой участки наружных обшивок агрегатов и отсеков, подкрепленные силовым набором, называют панелями. Агрегаты, отсеки и конструктивные узлы могут быть как сборными, так и монолитными элемента.ми конструкции. Сборные афегаты, отсеки и узлы могут расчленяться на элементы низших структурных уровней. Технологическим узлом называется сборный элемент конструкции, собираемый из двух или более деталей.  [c.14]

Помимо подшипников качения, в конструкции любого двигателя имеется немало нагруженных элементов, требующих смазывания. Это зубья шестерен, шлицы рессор, сферические элементы соединительных муфт. Их смазывание необходимо для снижения потерь мощности на трение, повышення надежности их работы.  [c.523]

Конса руирование стакана и крышек подшипников. Примем для фиксирующей опоры червяка конструкцию стакана по рис. 7.1, й. Размеры конструк р ивных элементов с гака па (мм)  [c.247]

Тематика курсового проектирования обычно ограничивается различными тииами механических приводов. В задание по возможности включаются объекты, изучаемые в курсе деталей машин передачи, муфты, подшипники, соединения и др. Наиболее подходя-Ш.ИМИ являются приводные устройства станков, транспортных, транспортирующих, строительно-дорожных и других машин. Простая конструкция привода позволяет тщате.1ьно прорабатывать его элементы.  [c.5]

Для обеспечения нормальной работь опоры важным является правильный выбор конструкции осевого крепления внутренних колец подшипников. Такое крепление предусматривается для всех конструкций опор, кроме установки подшипников по схеме II. 1 (см. рис. 5.13) враспор , где в отдельных сл чаях оно может не применяться, Наиболее распространены крепл(. ния резьбовыми элементами (см. рис. 5.14, 5.16, 5.17, 5.20, 5.30, 5 34) и стопорными разрезными кольцами (см. рис. 5,14, 5.15, 5.33 5.40). Внутреннее кольцо подшипника, расположенного со стороны выходного конца вала, часто подпирается распорной втулкой (с i. рис. 5.15,..5.17, 5.21, 5.24, 5.25), которая крепится в осевом панр, влении совместно с насаживаемой на конец вала деталью.  [c.128]

На рис. 1.10, в пористая матрица 1 также заполняет пространство между двумя оболочками, но продольные подводящие 2 и отводящие 3 каналы расположены равномерно по окружности и примыкают к стенкам. Поперечное течение теплоносителя I сквозь матрицу осуществляется в радиальном направлении, что позволяет снизить затраты мощности на его прокачку. Интересно отметить, что здесь проницаемый каркас может передавать значительные механические усилия от внутренней трубы к внешней. Если внутренняя стенка является оболочкой твэла, то это позволяет полностью разгрузить ее от давления газообразных продуктов деления и изготовить предельно тонкой. Конструкцию, представленную на рис. 1.10, в, можно использовать для охлаждения элементов, подверженных воздействию больишх механических нагрузок, например, подшипников.  [c.13]

Конструкции деталей машин зависят от серийности и способа изготовления. Например, корпусные детали в единичном производстве целесообразно изготовлять сварными из листов простейшей формы, в серийном — литыми или сварными из гнутых профилей, в массовом — литыми по металлическим моделям или сварными из тптампованных элементов или профильного проката. Соосные расточки под подшипники в единичном производстве целесообразно делать одного диаметра. Наоборот, в серийном производстве при обработке на агрегатных расточных стан-  [c.45]

Если установка вала на подшипниках со сферическими поверхностями неприемлема, то соблюдают требуемый уровень точности путем назначения соответствую-Ш.ИХ допусков на форму и расположение поверхностей деталей. Например, на рис. 2.22 приведен чертеж двухопорного вала, на котором для шеек А и В указаны не только предельные отклонения ротора, но и допуски цилиндричности (поз. /, 5), перпендикулярности (поз. 3, 4) и соосности (поз. 2, 6). Избыточные локальные связи возникают при установке валов и осей на несколько опор (рис. 2.23, а). Сборка и эксплуатация гаких конструкций возможна, если обеспечить расположение осей подшипников А, А, А" (рис. 2.23, б) на одной прямой. Компенсация возможных отклонений от прямолинейности происходит за счет наличия зазоров между поверхностями элементов кинематической пары деформации звеньев или элементов кинематических пар (например, резиновых или резинометаллических деталей) изнашивания элементов кинематических пар при сборке, обкатке или эксплуатации. В реальных конструкциях пар происходят явления, обусловленные сочетанием этих факторов.  [c.46]


При анализе реальных конструкций и их кинематических схем выявляются либо дополнительные подвижности И/ , либо избыточные структурные связи q относительно основной схемы механизма с заданным числом степеней свободы U/.i. Из дополнительных подвижностей выделяют местные подвижности звена и местные подвижности группы звеньев W,. Местную подвижность имеют [1лавающие оси, втулки и пальцы, кольца некоторых типов подшипников, блоки, шкивы, ролики в кулачковых механизмах и т. п. Особенность местной подвижности звена заключается в том (см. рис. 2.11, а), что реализация ее не вызывает перемешения остальных звеньев механизма. Местная подвижность звена имеет определенное функциональное назначение, ибо она позволяет, например, уменьшать износ элементов кинематической пары, улучшить условия смазки, повысить коэффициент полезного действия (к.п.д.), надежность, долговечность узлов машин. Общее число местных подвижностей звеньев в кинематической цепи следует выявлять на первоначальной стадии структурного анализа и синтеза механизма.  [c.53]

Элементы конструкции. Цапфы — участки вала или оси, лежа-ш,пе в опорах (подшипниках). Концевые цапфы называют шипами (1, рис. 3.136), а промежутсчн1, е (расположенные в средней части  [c.401]

Элементы конструкций схематизируются в виде четырех основных типов стержня или бруса, пластины, оболочки и массива. По схеме стержня рассчитываются всевозможные валы. Стенки резервуаров для хранения жидкостей и газов, фюзеляж самолета рассматриваются как оболочки, плоские днища резервуаров - как пластины. Примером массива служ-ат фундамент под машину, шарик или ролик подшипника качения  [c.30]

Для обеспечения нормальной работы элементов передач и подшипников валы и оси должны иметь достаточную жесткость. При недостаточной жесткости даже относительно неболь Г ие нагрузки вызывают недопустимые деформации валов и осей, нарушающие нормальную работу машин. Кроме того, при малой жесткости валов и осей возможно появление интенсивных колебаний, опасных не только для элементов данной машины, но и для окружающих сооружений. связи с этим быстроходные оси, валы и червяки, кроме расчетов на прочность и выносливость, как правило, подвергаьэтся проверке на жесткость, а в отдельных конструкциях и на виброустойчивость. При недостаточной жесткости их размеры приходится увеличивать, хотя это и ведет к излишкам материала, не требуемым по условиям прочности.  [c.516]

Конструкция подшипниковых узлов должна обеспечивать работу подшнпннка без заклинивания элементов качения, которое может произойти 1[з-за наличия дополнительной осевой нагрузки, возникающей при неточно выдержанных линейных размерах вала или сидящих иа нем деталей. Причиной заклинивания с последующим разрушением подшипников могут служить температурные удлинения вала, особенно при значительной его длине.  [c.533]


Смотреть страницы где упоминается термин Подшипники Элементы — Конструкция : [c.106]    [c.284]    [c.16]    [c.48]    [c.334]    [c.180]    [c.13]    [c.272]    [c.24]    [c.134]   
Справочник машиностроителя Том 3 (1951) -- [ c.579 ]



ПОИСК



Подшипники Конструкции

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте