Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скольжение вязкое

Сила касательного напряжения, создаваемая элементом дисперсного потока, определится как алгебраическая сумма сил сухого контактного трения (скольжения, качения и пр.) твердого компонента и сил вязкого трения сплошного жидкого компонента дисперсной системы  [c.16]

Здесь F[ 2 — сила трения стоксова сила), обязанная действию вязких сил при взаимодействии между фазами, определяется разницей скоростей (скольжением) — v , размером а, количеством  [c.35]


Для малых частиц Ф 0 (область справедливости закона Стокса), в то время как может принимать различные значения. При 2вг = 10 мк, 2яз = 20 мк и Рр = 10 кг/м р, == 10 кг/м-сек, Дир" = = 0,1 м/сек, ]/ л 1 и так как Ф мало, то т] 0,65 для потенциального потока и т) 0,2 для вязкого (фиг. 5.7). Однако для 2яг = 1 мк, 2а = 2 мкш / 0,3 ц 0,03 для потенциального потока и т) о для вязкого, т. е. столкновений не происходит. Следовательно, взаимодействие на расстоянии в присутствии жидкой фазы оказывается более существенным для мелких частиц. В жидкостях, где средняя длина свободного пробега равна или больше размера частиц, следует ожидать течения со скольжением или свободномолекулярного течения. Приведенные в работе [235] величины ц [уравнение (5.22)] следует использовать.при свободномолекулярном движении частиц.  [c.218]

В другом случае, когда число столкновений между частицами велико, а длина пути свободного пробега частиц мала, движение частиц аналогично вязкому течению со скольжением. Вязкость твердой фазы отражает взаимодействие частиц между собой на микроскопическом уровне. В области, где плотность твердой фазы равна рр, напряжение сдвига Тр и коэффициент трения  [c.234]

Характер результатов, полученных для течения на плоской пластине на не слишком большом удалении от передней кромки, т. е. при РхШ 1, показан на фиг. 8.5. Видно, что по мере движения смеси вдоль плоской пластины скорость скольжения твердых частиц 7/рш уменьшается, плотность их у стенки увеличивается, а толщина пограничного слоя частиц растет, так как твердые частицы приобретают нормальную компоненту скорости 7р вследствие вязкого сопротивления в потоке жидкости с нормальной составляющей скорости V, причем Ур < V даже при 77 = = 77р. Тенденция к повышению плотности твердых частиц свидетельствует о возможности их отложения на некотором расстоянии от передней кромки этому вопросу посвящен разд. 8.4.  [c.352]

Течение через пористые среды важно при разделении изотопов методом газовой диффузии. В работе [620] выполнен анализ вязкого течения через пористые среды путем минимизации скорости диссипации энергии в испытаниях по распределению напряжений при наличии скольжения на стенках пор или при его отсутствии.  [c.432]


Деформация и разрушение при ползучести. При достаточно высоких температурах в поликристаллическом металле границы зерен становятся более слабыми, чем сами зерна, и значительная часть деформации ползучести происходит за счет скольжения зерен относительно друг друга. Это скольжение носит характер вязкого течения, оно затруднено кинематически, так как зерна имеют неправильную форму и каждое зерно встречает сопротивление со стороны соседних. Скольжение становится возможным за счет пластической деформации зерен и сопровождается появлением меж-зеренных трещин, приводящих к разрущению.  [c.320]

В вязкой среде обычно выполняется дополнительное кинематическое условие отсутствия скольжения фаз на границе раздела (подробнее ниже)  [c.52]

Если эти экспериментальные точки откладывать в логарифмических координатах, то получим кривую, которая хорошо аппроксимируется двумя отрезками прямых (рис. 8.29). Участок I этой линии соответствует вязкому разрушению при высоких уровнях нагрузок, процесс идет за счет внутризеренных скольжений и разрушение  [c.177]

Предполагается, что при движении жидкости наблюдается скольжение одного слоя жидкости по другому, в результате чего происходит процесс, аналогичный трению, поэтому силы, возникающие при скольжении, называются силами внутреннего трения. Наличие внутреннего трения в жидкости обусловливает ее свойство отзывать сопротивление касательным усилиям, которое называется вязкостью. Жидкость, в которой проявляется вязкость, называется вязкой. Всякое трение сопровождается потерей энергии, поэтому при движении вязких жидкостей неизбежно теряется часть энергии, содержащейся в потоке. Еще в 1687 г. Ньютон высказал гипотезу о том, что силы внутреннего трения, возникающие между соседними движущимися слоями жидкости, прямо пропорциональны скорости относительного движения и площади поверхности соприкосновения, вдоль которой совершается относительное движение, зависят от рода жидкости и не зависят от давления.  [c.14]

ВИЛЬНО вводить смазку под давлением, или обеспечить с достаточной скоростью непрерывное вовлечение вязкой смазывающей жидкости в постепенно суживающийся (клиновидный) зазор между скользящими поверхностями твердых тел. По мере увеличения скорости скольжения повышающееся давление в суживающемся слое смазывающей жидкости заставляет всплыть одно из трущихся тел. Картины распределения давлений р в слое смазывающей жидкости во вращательной а) и в поступательной б) кинематических парах показаны на рис. 4.3.  [c.80]

Расчет подшипников скольжения, работающих при жидкостной смазке, производится на основе гидродинамической теории смазки, которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом зазоре (см. эпюру на рис. 23.6). Толщина Н масляного слоя в самом узком месте (см. рис. 23.7) зависит от режима работы подшипника. Чем больше вязкость смазочного материала и угловая скорость цапфы, тем больше к. С увеличением нагрузки к уменьшается. При установившемся режиме работы толщина к должна быть больше суммы микронеровностей цапфы 61 и вкладыша 62  [c.317]

Интерес к исследованию механического двойникования был обусловлен началом в 60-е годы широкого изучения исключительно важного в практическом отношении явления хрупкого разрушения материалов и конструкций в условиях низкотемпературной деформации. Двойникование в этом вопросе рассматривалось с двух альтернативных позиций во-первых, как одна из вероятных причин вязко-хрупкого перехода, а, во-вторых, как потенциальный способ повышения низкотемпературной пластичности материала. Поэтому одной из основных задач физики прочности того периода стало изучение общих закономерностей пластической деформации и разрушения при механическом двойниковании. Одно из первых решений указанной задачи было предложено в работе [121] в виде схемы перехода от скольжения к двойникованию в поликристаллах. Построение схемы основывалось на данных работы [117] и собственных результатах авторов [121], полученных при низкотемпературном растяжении армко-железа со скоростями 10 — 10 с .  [c.57]


Автомодельное поведение материала в области I и П1 проявляется, в первую очередь, в неизменности механизма разрушения, следовательно, в неизменности наблюдаемого рельефа излома независимо от свойств (механических характеристик) и структурного состояния материала. Из качественного анализа рельефа излома, когда разрушение реализовано в области I или П1, нельзя сделать заключение о том, каким было внешнее воздействие (скорость нагружения, температура, количество и направление действия сил и др.), и невозможно определить, какой материал разрушен (на какой основе), а также каковы его структурные особенности. При низкой скорости деформации могут проявляться и доминировать процессы скольжения в случае вязкого разрушения, и межзеренное проскальзывание в случае хрупкого разрушения. Однако эти особенности формирования рельефа излома могут быть одновременно следствием попадания в температурный интервал  [c.82]

При скольжении по абразиву с повышением предела текучести в хрупкой и вязкой областях разрушения износостойкость стали увеличивается (рис. 80).  [c.162]

При скольжении по абразиву сохраняется непрерывность зависимости износостойкости стали от твердости в хрупкой и вязкой областях разрушения. Влияние свойств Сталина ее износостойкость принципиально иное, чем при ударе по абразиву. При скольжении по абразиву увеличение пластичности стали (б, i(j, Сн) снижает ее износостойкость, при ударе с увеличением б, прочности в хруп-  [c.178]

Влияние предела текучести на износостойкость стали при ударе и скольжении также различно при ударе по абразиву в хрупкой и вязкой области влияние предела текучести стали на ее износостойкость неоднозначно, при скольжении в хрупкой и вязкой областях разрушения с увеличением предела текучести износостойкость стали растет. Это вполне закономерно, так как характер зависимостей твердости и предела текучести от температуры отпуска примерно одинаков.  [c.179]

Поверхность излома с удлиненными ямками при наличии такого волнообразного рельефа многие исследователи называют поверхность, сглаженная при вытягивании , расщепление по плоскостям скольжения или вязкий отрыв [78].  [c.25]

Теоретически можно допустить конечную скорость движения граничного слоя жидкости по отношению к твердой поверхности (расчеты течения с такими граничными условиями произведены в ряде работ), однако для большинства реальных систем, подобных исследованным нами, хорошо оправдывается экспериментально гипотеза полного прилипания жидкости и твердого тела (т. е. отсутствие скольжения граничного слоя жидкости по твердой поверхности) (например [4 ). Мы считаем поэтому, что вязкое тече-  [c.92]

При высоких температурах границы зерен быстрее, чем внутренние зоны зерна, переходят к вязкому состоянию. Они становятся слабым местом структуры, по ним происходит скольжение, а в ряде случаев — отрыв.  [c.19]

Клэрк Максвелл в 1866 г. заметил, что если мешать канадский бальзам плоской лопаточкой, двигая ее ребром вперед, то све г, пропущенный через бальзам, восстанавливается между скребенными николями, при условии, что движение лопаточки происходит параллельно оси поляризатора или анализатора. Однако, если движение лопаточки производится под углом в 45° по отношению к этим осям, то никакого эффекта не наблюдается. Эго указывает на то, что главные оси поляризации в бальзаме располагаюгся под углом в 45° по отношению к направлению скольжения вязких слоев.  [c.244]

Вне зависимости от макрогеометрии вязкий излом в шейке характеризуется рядом общих особенностей своей структуры. При визуальном осмотре невооруженным глазом он обычно матовый, неровный, часто со следами пластической деформации в виде грубых полос скольжения. Вязкое разрушение, как правило, бывает внутри-зеренным. Тонкую структуру излома выявляют с помощью фрактографического анализа — исследования структуры поверхности разрушения в световом и электронном (с помощью реплик) микроскопах. Фрактогра-фический анализ, получивший широкое развитие в последние годы, дает валяную информацию о механизме разрушения. На рис. 37 показан типичный пример микро-  [c.81]

Нужно подчеркнуть, что в случаях, иллюстрированных на рис. 65, возникновение эффекта вибротранспортирования тесно связано с характером силы трения. Если сила трения подчиняется не закону Кулона, а скажем, нронорцпональна скорости скольжения (вязкое трение), то загрузка будет совершать гармонические колебания относительно некоторого среднего положения, и нужный эффект становится невозможным.  [c.165]

Иерапномерное раснределе-пне скоростей означает скольжение (сдвиг) одних слоев или частей жидкости по другим, вследствие чего возникают касательные напряжения (нан] ,<[-5К0НИЯ трения). Кроме того, движение вязкой жидкости па- Рис. Распределение скоростей в  [c.45]

Для смазки гюдшипников скольжения быстроходных валов применяют менее вязкие сорта масел, для подшипников тихоходных валов и при ударных нагрузках применяют более вязкие сорта масел или пласличные смазочные материалы.  [c.223]

В предельном случае модельная структура пристенного турбулентного движения состоит из трех элементов 1) вязкой среды возле твердой поверхности 2) крупномасштабных образований (крупномасштабная турбулентность), отрываюшцхся от вязкой среды в результате волнового взаимодействия вязкой и турбулентных сред и 3) турбулентной среды в основном потоке, состоящей из мелкомасштабной турбулентности, зависящей от предыстории движения/33-56/. Крупномасштабная турбулентность, разрушаясь, поддерживает мелкомасштабную турбулентность. Мелкомасштабная турбулентность стремится к однородной турбулентности однако крупномасштабные вязкие струи поддерживают неоднородную турбулентность. Таким образом, пристенная турбулентность генерируется в результате волнового взаимодействия вязкой среды с турбулентной и только в результате такого взаимодействия поддерживается эта турбулентность. Если бы на время удалось приостановить приток крупных образований в турбулентную среду со стороны вязкого подслоя, то в ядре потока образовалось бы движение, аналогичное молекулярному движению разреженных газов, т.е. со скольжением относительно твердой поверхности при этом имелось бы постоянное значение турбулентной вязкости. По-видимому, такое явление имеет место, но периодического характера. Наличие крупных образований между вязкой и турбулентной средами сглаживает это скольжение и образуется плавное изменение поля скоростей. Однако влияние вязких струй на турбулентное ядро потока с удалением от стенки уменьшается и при определенных условиях в ядре потока имеет место однородная турбулентность. При обычных экспериментальных исследованиях кинематические параметры на границе вязкой и турбулентной сред осредняются в пространстве и во времени /33-56/.  [c.51]


Аморфные сплавы (АС) получают сверхскоростной закалкой из расплава со скоростью Ю —10 К/с. АС можно рассматривать как идеальный упругопластичный материал с исчезающе малым деформационным упрочнением. В зависимости от температуры в АС наблюдаются два типа пластического течения. При температурах ниже Гр = 0,70,8 Гк имеет место высокая локальная пластичность при макроскопически хрупком характере разрушения. Скольжение происходит в локализованных полосах деформации (гетерогенная деформация). При температурах выше Гр пластическая деформация однородна и осуществляется путем вязкого течения (гомогенная деформация).  [c.83]

Смазка. Из-за больших скоростей скольжения витков червяка относительно зубьев колеса возникают условия, которые при недостаточной смазке приводят к росту потерь на трение и повреждению рабочих поверхностей зубьев. В связи с этим вопросам смазки червячных передач следует уделять большое внимание. Выбор способа смазки и вязкости масла осуществляется в зависимости от условий рабслы (тяжелые, средние и т. п.) и скорости скольжения. Обычно при тяжелых условиях работы и малых скоростях скольжения (до Ьм1сек) выбираются более вязкие масла и смазка осуществляется окунанием.  [c.312]

При больших скоростях скольжения выбираются менее вязкие сорта масел (менее 100 сст) и смазка в зацепление подается струйным способом. Так как рабочая температура глобоидных передач часто оказывается выше червячно-Цилиндричс-ских (из-за меньших габаритов при той же мощности), то для их смазки используются масла с большей вязкостью (например, цилиндровое 52 или 38).  [c.312]

Скорость деформации и температура аналогичным образом влияют на параметры процесса разрушения через изменение жесткости напряженного состояния, не меняя самого процесса в определенном диапазоне изменения указанных факторов. Сочетание низкой скорости деформации и высокой степени стеснения пластической деформации может изменить механизм вязкого разрушения, например от преимущественного формирования ямочного рельефа в условиях отрыва до вязкого внутризеренного, путем сдвига при нарушении сплошности по одной из кристаллографических плоскостей. Указанный переход в развитии процесса разрушения был выявлен при испытании круглых образцов диаметром 5 мм с надрезом из жаропрочного сплава ЭИ437БУВД при температуре 650 °С. Медленный рост трещины характеризовался следующими элементами рельефа гладкие фасетки со следами внутризеренного множественного скольжения по взаимно пересекающимся кристаллографическим плоскостям, вышедшим в плоскость разрушения, и волнистый рельеф в виде пересекающихся ступенек, которые также отражают процесс кристаллографического скольжения (рис. 2.6а). Аналогичный характер формирования поверхности разрушения был выявлен в изломе на участке ускоренного роста трещины при эксплуатационном разрушении диска турбины двигателя (рис. 2.66). Диск был изготовлен из того же жаропрочного сплава ЭИ437БУВД. Разрушение диска было усталостным. Сопоставление описываемых. элементов рельефа в ситуации монотонного растяжения с низкой скоростью деформации и повторное циклическое нагружение дисрса в эксплуатации привели к идентичному процессу разрушения. В отличие от разрушения образца в диске развитие трещины происходило при медленном возрастании нагрузки в момент за-  [c.91]

Медленное деформирование материала может приводить к росту трещины не только по плоскостям скольжения, но также и по границам фрагментов Б условиях интенсивного наклепа материала и к потере когезивной прочности в субграницах. Такой вид разрушения сосуда под давлением был зарегистрирован в условиях эксплуатации. Трещина распространялась в сплаве 17Х4НЛ по границе раздела двухфазовой структуры между прослойками феррита (ферритная полосчатость) и мартенситной матрицей, В условиях двухосного растяжения под давлением и длительной выдержки под нагрузкой происходило вязкое отслаивание феррита по приграничным зонам. Трехточечный изгиб образцов в виде пластин, вырезанных из гидроагрегата вдоль образующей его цилиндрической части, показал, что при скорости деформации 0,1 мм/мин образцы имеют высокую пластичность с остаточной деформацией около 8 % в зоне разрушения. Рельеф излома имел полное подобие рельефу эксплуатационного излома. Это означало, что в условиях эксплуатации вязкость разрушения была реализована полностью, хотя на мезоскопическом масштабном уровне (0,1-10 мкм) разрушение было квазихрупким. Пластическая деформация материала была реализована за счет деформации зерен феррита с формированием неглубоких ямок в момент отслаивания феррита по границам мартенситных игл, что привело к столь значительному утонению стенок ямок, что их можно было выявить только при увеличении около 10,000 крат при разрешении растрового электронного микроскопа около 10 нм.  [c.92]

В нержавеющей стали режим Р+Н характеризуется активизацией роли процессов скольжения и развития разрушения материала при достижении температур 823 К. Переход в область температур 823-873 К сопровождался уменьшением размера ямок, что свидетельствовало о значительном уменьшении вязкости разрушения за счет частичного плавления эвтектики по границам зерен при (Р-ьН) с последуюш им смешанным характером вязкого разрушения по прослойкам расплавленной эвтектики в приграничных зонах у основного материала (рис. 2.9). Скорость деформации при 1123 К приводит к увеличению доли участков излома, отвечающих процессу скольжения с отслаиванием материала по плоскостям скольжения в момент формирования свободной поверхности в сочетании с мелкоямочным рельефом. Температуре 1273 К соответствует смешанный рельеф разрушения путем форми-  [c.94]

Такое предположение позволяет сделать сопоставление данных работ [61] и [96]. В обеих работах исследовали один и тот же Ti-сплав с параметрами структуры, характеризуемыми крупными а -пла-стинами в первичных (3]5,-зернах размером 0,5-1 мм. В работе [43] при выдержке материала под нагрузкой в течение нескольких минут изменения СРТ по сравнению с х = О не отмечали. В работе [96] при выдержке произошла смена механизма разрушения с вязкого внутризеренного, которому отвечал бороздчатый рельеф излома, на межсубзеренный с фасеточным рельефом излома, что сопровождалось сокращением в 16 раз периода роста трещины. В связи с фактом возрастания скорости роста трещин было подчеркнуто [96] наличие в материале 0,004 % Н2. Это количество Н2 достаточно мало по массе, но в другой работе [81] при длительном статическом нагружении образцов из сплава 0Т4 по схеме Трояно при объемной доле Н2 в 0,003-0,005 % наблюдали их замедленное разрушение и увеличение СРТ при высоком уровне напряжений. Такое разрушение, как говорилось выше, сопровождалось образованием гидридов и развитием трещин по ним. Но в работе [61] снижение долговечности было объяснено диффузией имеющегося в материале Н2 в полосы скольжения. Если это так, то при выдержке данный процесс должен сопровождать и рост трещины, способствуя охрупчиванию материала, однако это в работе [60] не наблюдалось. Поэтому только наличием в сплаве Н2 нельзя объяснить снижение периода зарождения трещины и увеличение СРТ. По всей вероятности, имелась некоторая субструктурная особенность состояния материала по межфазпым границам, которая вызывала рост трещины по ним в течение выдержки под нагрузкой или охрупчивание по плоскостям скольжения в монофазном материале.  [c.368]


Механизм микроскопического разрушения можно представить следующим образом. В случае вязкого разрушения образование микротрещин подготавливается в процессе пластической деформации. Пластическая деформация приводит к зарожцению очагов разрушения как за счет образования разного рода дефектов, способствуювдих разрыхлению металла (ослабление межатомных сил связей), так и за счет высоких внутренних напряжений, возникающих вследствие неоднородного протекания пластической деформации. Таким образом, питастическая деформация повышает возможность преодоления внутренних сил связей, существующих в твердом теле, нормальными напряжениями растяжения. В случае вязкого разрушения образование микротрещин подготавливается в Г роцессе пластической деформации действием касательных напряжений. При значительных пластических деформациях силы сцепления на площадках скольжения из-за разрыхления материала снижаются и в предельном случае можно предположить, что разрушение есть результат действия касательных напряжений.  [c.133]

Если твердость абразивных частиц ниже твердости материала, то отделение частиц износа наступает в результате многократного передеформировапия поверхностных слоев металла [23, 55]. При любом объяснении механизма абразивного изнашивания по схеме скольжения характерными для него являются направленная шероховатость на поверхности изнашивания, наличие рисок, следов микрорежущего, микроцарапающего или деформирующего действия твердой абразивной частицы на металл. Так как направление риски совпадает с направлением относительного перемещения абразива или испытуемого материала, то на поверхности абразивного изнашивания при скольжении хорошо видна направленная шероховатость, а микрогеометрия этой поверхности в двух взаимно перпендикулярных направлениях различна. При абразивном изнашивании в условиях скольжения микрорельеф поверхности изнашивания хрупких н вязких материалов качественного различия не имеет. При скольжении материала по абразиву, твердость ко-  [c.177]

Увеличение твердости является основным и весьма эффективным средством повышения износостойкости деталей машин и инструмента, работающих в условиях скольжения по абразиву. При ударно-абразивном изнашивании в хрупкой и вязкой областях разрушения стали ее износостойкость различна. Причем при переходе из одной области в другую наблюдается пороговое изменение износостойкости, т. е. непрерывность этой зависимости нарушается. Как правило, влияние механических свойств стали на ее износостойкость в хрупкой области совершенно иное, чем в вязкой. Максимальная износостойкость стали наблюдается на границе хрупковязкого разрушения.  [c.178]

Для вязкого излома характерным является ямочное микростроение. При рассмотрении поверхности пластичного излома в электронный микроскоп видно ямочное, а в оптический — грубоямочное строение (см. рис. 5). Такое строение объясняется тем, что при достижении предельных состояний в локальных объемах на участках, представляющих собой препятствия для непрерывности деформации, зарождаются микропустоты. Часто это границы зерен, субграницы, частицы избыточной и упрочняющей фаз, границы фаза—матрица, участки скопления дислокаций, в гомогенных материалах — место пересечения плоскостей скольжения и т. п. По мере увеличения напряжений микропустоты растут, сливаются, что приводит к полному разрушению с образованием на изломе углублений в виде ямок, соединенных между собой перемычками. Если бы дефектов, вернее, неоднородностей в материале не существовало, то разрушение должно было бы наступить после того, как сечение образца приобретет вид точки. Надрыв у внутреннего дефекта облегчается образованием объемного (в неблагоприятных случаях — гидростатического) напряженного состояния. Подобные условия существуют вблизи надрезов или в области шейки растягиваемого образца. При высоком значении относительного сужения г изломы имеют, как правило, мелкоямочное строение, при малом значении ф и косом изломе — крупноямочное. При разрушении от чистого среза также может быть отрыв при наличии большого количества включений, расположенных вдоль плоскостей скольжения.  [c.24]


Смотреть страницы где упоминается термин Скольжение вязкое : [c.43]    [c.230]    [c.111]    [c.50]    [c.229]    [c.175]    [c.169]    [c.22]    [c.65]    [c.66]    [c.67]    [c.83]    [c.547]    [c.134]   
Ползучесть кристаллов (1988) -- [ c.138 , c.150 ]



ПОИСК



Вязкое скольжение 136—138 — течение

Идеально вязкое вещество условия скольжения

Скорость возврата при переползании и вязком скольжении



© 2025 Mash-xxl.info Реклама на сайте