Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель Характеристики свойств

Восстановление кобальта с достаточной скоростью как при восстановлении никеля, протекает при повышенных температурах (90— 95 °С) Включения фосфора в покрытия кобальтом оказывают важное влияние на структуру и свойства покрытия на их магнитные характеристики Свойства Со—Р-покрытия зависят от физико-химических параметров процесса его получения таких как значение pH состав раствора, температура и др  [c.53]


Наличие скачков на R-кривых и на диаграммах нагрузка — смещение у никелевых сталей является предметом для обсуждения. Эти скачки представляют собой быстрый рост трещины с последующей его остановкой. Остановки могут быть связаны с характеристиками вязкости материала, но могут быть также результатом падения приложенной нагрузки из-за жесткости испытательной машины. Результаты определения вязкости разрушения, полученные в настоящей работе, дают более полную характеристику свойств материала и призваны помочь при выборе материала в каждом конкретном случае его применения. Проведенные испытания показывают, что работоспособность сварной конструкции, изготовленной из сталей, легированных никелем, зависит от свойств зоны термического влияния. Это необходимо учитывать наряду с расчетными, технологическими и экономическими факторами при окончательном выборе материала.  [c.219]

Для сварки никеля и никелевых сплавов применяют следуюш,ие способы сварки газовую, ручную дуговую, под флюсом, вольфрамовым электродом в среде инертных газов. В последнее время находит применение электроннолучевая сварка. Выбор способа и технологии сварки зависит от конкретных условий работы сварной конструкции, т е. сводится к обеспечению наиболее важной для данных условий характеристики свойств сварного соединения. Поэтому даже для одного и того же сплава или группы сплавов технология сварки может быть различной в зависимости от условий эксплуатации сварного изделия.  [c.181]

Первая группа элементов при легировании никеля образует твердый раствор замещения до тех пор, пока период кристаллической решетки не достигнет 0,370 - 0,388 нм. Дальнейшее легирование элементами Сг, Мо, W приводит к образованию в структуре сплава интерметаллидных соединений - плотно упакованных фаз, присутствие которых, как правило, снижает механические свойства, Следовательно, количество элементов первой группы должно быть таким, чтобы период решетки никелевого твердого раствора не превысил указанных значений. При этом прочностные характеристики однофазных сплавов в литом состоянии следующие <7в = 588 МПа a-j = 294 МПа. Период решетки твердого раствора на основе никеля при легировании изменяется по уравнению п  [c.411]


Известно, что никелевые покрытия технического назначения наносятся в основном электролитическим и химическим способами и используются для улучшения свойств стали в условиях агрессивных сред, в том числе под нагрузкой и при эрозионном воздействии, а также для защиты от фреттинг-коррозии. Покрытия типа никель—бор, никель-фосфор, полученные химическим осаждением в восстановительных средах, обладают поляризационными характеристиками, несколько отличными от гальванически осажденных покрытий. Коррозионная стойкость покрытия, полученного химическим никелированием, с увеличением содержания фосфора и бора возрастает.  [c.95]

Литиевые ферриты с ППГ. Достаточно приемлемые свойства прямоугольности получаются в литиевых ферритах с добавками цинка и никеля. Феррит, имеющий состав (Lio,455 -Zno,o5-Nio 4 Fe2,455)04 характеризуется значением р = 0,9, точка Кюри 0 = 590° С коэффициент квадратности Rs = 0,9. Коэффициент переключения 5ф около 110 мкк/м, коэрцитивная сила Яс = 160 aju. Наблюдается хорошая температурная стабильность свойств. Однако для получения требуемых характеристик необходимо строгое соблюдение состава феррита и определенное содержание кислорода в газовой среде при спекании, что осложняет технологию.  [c.259]

Приведенные выше данные вполне достаточны для представления об изменении указанных характеристик физических свойств ирн повышении или понижении температуры для включенных в справочник сталей, содержащих никель, хром и другие элементы.  [c.10]

Равномерность толщины слоя покрытия зависит от подвижности расплава. Для характеристики этого свойства с помощью теплового микроскопа исследовали растекание таблетки из смеси порошков на никеле и железе. При этом фиксировали температуру  [c.157]

Предполагается использование композиционных материалов на никелевой основе для длительной работы при температурах выше 1000° С. Однако разработка таких материалов затруднена из-за отсутствия упрочнителей, которые могли бы без потери прочности длительно работать в контакте с никелевой матрицей. Из металлических упрочнителей с точки зрения совместимости с никелевой матрицей лучшей пока остается вольфрамовая проволока, обеспечиваюш,ая довольно высокие значения длительной прочности в композиционных материалах на основе никелевых сплавов. Характеристики прочности и длительной прочности некоторых композиций приведены в табл. 18—22 и 61. Из таблиц видно, что введение вольфрамовой проволоки в количестве 40— 70 об. % позволяет получить материал с длительной (100-часовой) прочностью при 1100° С, равной 13—25 кгс/мм . Основными недостатками этих материалов является высокая плотность и необходимость защиты от окисления при высоких температурах. В этой же таблице приведены свойства композиции никель—углеродное волокно. Композиция привлекательна своей невысокой плотностью. Однако прочность ее невелика, и композиция не может работать длительно при температурах выше 1000° С из-за взаимодействия волокна с матрицей.  [c.217]

В состав низколегированных сталей входят малые добавки таких элементов, как медь, хром, никель, молибден, кремний и марганец, за счет чего и достигается повышение прочности по сравнению с углеродистой сталью. Коммерческой характеристикой низколегированных сталей является не строгий химический состав, а их прочностные свойства. Суммарное содержание легирующих добавок обычно составляет около  [c.42]

Материалы, основной служебной характеристикой которых служит коррозионная стойкость, можно разделить на следующие структурные классы аустенитные, феррито-аустенитные и фер-ритные стали, сплавы на основе никеля. С целью общей оценки свойств на рис. 52 показана коррозионная стойкость сталей и сплавов, применяемых в сварных конструкциях и в минеральных кислотах, которые являются основой для многих сред химической  [c.122]

Высокой ударной прочностью обладают марганцовистые аустенитные стали, содержащие свыше 1% углерода, 12—20% марганца и небольшие количества никеля и кобальта. Эти стали обладают благоприятными характеристиками с точки зрения глубоководных корпусов. Они легко свариваются, имеют хорошее сопротивление коррозии, удовлетворительную жесткость и высокую прочность, некоторые свойства этих сталей приведены в табл. III. 5 [78].  [c.335]


Постоянное увеличение скоростных характеристик машин и оборудования, повышение надежности и долговечности их требует все более широкого применения в машиностроении новых высокопрочных материалов с повышенными физико-механическими свойствами (жаропрочных, твердых и коррозионноустойчивых металлов и сплавов). В качестве легирующих элементов для конструкционных сталей, помимо хрома и никеля, во все большей степени применяются труднообрабатываемые металлы — молибден, ванадий и т. д.  [c.115]

Никель энергично взаимодействует с газами и другими веществами в процессе термической обработки, что затрудняет обезгаживание и откачку ламп с никелевыми деталями, а иногда понижает механические характеристики никеля. С водородом никель образует твердые растворы водород легко выделяется из никеля при нагревании в вакууме. Азот растворяется в никеле лишь при 1400°С и выделяется с понижением температуры, не оказывая вредного действия на свойства никеля.  [c.64]

Небольшие добавки Zr, Ti, Nb и В улучшают механические свойства и обрабатываемость давлением в холодном и горячем состоянии. Никель при его содержании до 1 % повышает механические свойства, коррозионную стойкость и измельчает зерно. Свинец значительно повышает антифрикционные свойства и обрабатываемость резанием, но снижает механические свойства. Цинк, почти не оказывая влияния на механические свойства, улуч-,, шает технологические характеристики,  [c.104]

Все это весьма осложняет задачу сопоставления и отбора значений физических характеристик металпов. Однако приводимые в этой главе данные можно рассматривать как характеристики свойств металлов, даже если они не совсем точны и воспроизводимы. К тому же не все эле.менты, относящиеся к металлам, охвачены таблицами, помещенными в этой главе. Кроме металлов, рассматриваемых в настоящем справочнике, в таблицы включены алюминий, сурьма, мышьяк, медь, золото, железо, свинец, магний, ртуть, никель, калий, серебро, натрий, олово и цинк.  [c.33]

Конструкционные сплавы на основе меди и никеля. Механические свойства меди и ее сплавов при низких температурах приведены в табл. 14. Как видно из данных таблншл, при снижении температуры от нормальной до 77 К пределы прочности и текучести возрастают, а пластичность изменяется в зависимости от состава сплава. Ударная вязкость при понижении температуры остается практически стабильной. При низких температурах никель имеет хорошие прочностные характеристики, но по различным технологическим и экономическим причинам чаще используют его сплавы с медью.  [c.40]

С целью определения влияния легирования на свойства покрытий, получаемых из синтезированных дисперсных материалов, проведены исследования некоторых экснлуатационных характеристик покрытий системы никель-алюминий-легирующий элемент.  [c.62]

Введение в сплавы на основе железа,кроме хрома, еще и никеля в количестве 10 % и более переводит структуру сталей из феррит-ной (присущей хромистым сталям) в более галогенную (а значит-и более коррозионноустойчивую) аустенитную. Никель придает сплаву также более высокие пластические свойства при сохранении прочностных характеристик и повышает пассивирующую способность в депассивирующих средах едких щелочей, расплавах солей и др.  [c.93]

Среди сплавов высокого сопротивления, которые, помимо нихрома, широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Они относятся к системе Fe—Сг—А1 и содержат в своем составе 0,7 %марганца, 0,6% никеля, 12—15% хрома 3,5—5,5 % алюминия и остальное — железо. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах. Имеют удовлетворительные технологические свойства и хорошие механические характеристики (табл. 4.4), что позволяет достаточно легко получать из чих проволоку, ленты, прутки и другие полуфабрикаты, которые способны свариваться и выдерживать большие механические нагрузки при высокой температуре без существенных деформаций.  [c.128]

Никель отличается высокими механическими свойствами, коррозионной стой-хостью, тугоплавкостью и особыми физическими свойствами (ферромагнитостью, магинтострикцией, высокими электровакуумными характеристиками).  [c.251]

Палладиевые покрытия находят все большее применение благодаря своей относительно невысокой стоимости и тому, что палладий менее дефицитен из всех остальных платиновых металлов. За последние годы возросло применение палладия для покрытий электрических контактов в радиотехнйчёской аппаратуре, в аппаратуре связи палладием покрывают контакты.переилючрт лей, штепсельных разъемов печатных плат. Применяя палладий, надо,помнить, что он обладает большой каталитической активностью и появляющаяся пленка на поверхности слаботочных контактов может привести к заметному повышению переходного сопротивления, поэтому необходимо очень осторожно подходить к применению палладиевых покрытий в герметизированных системах. Необходимо также учитывать, что палладий легко адсорбирует водород, а это оказывает неблагоприятное действие на прочность сцепления покрытия с основой. Если же контакты. покры,тые палладием, работают при большой силе тока, то образовавшиеся на поверхности детали, пленки не оказывают влияния на электрические характеристики.. Широкому распространению палладия способствуют также новые разработанные технологические процессы получения достаточно толстых покрытий. Палладированный титан в нейтральных и щелочных средах может использоваться в качестве нерастворимых анодов. Толщина палладиевых осадков в зависимости от назначения может изменяться от 3—5 мкм до 20—50 мкм (для контактов и при защите от коррозии). На основе палладия могут быть получены многие сплавы, которые в ряде случаев могут заменять палладиевые покрытия. Такие сплавы, как палладий — никель, палладий— кобальт, палладий — индий, палладий — медь, палладий — олово с успехом могут применяться для покрытия электрических контактов. Свойства палладия во многом зависят от условий получения и состава электролита, из которого он получен.  [c.55]


В связи с тем, что Ni — Р-покрытие содержит некоторое количество фосфора, химические свойства Ni — Р-покрытия должны оттичаться от характеристик чистого никеля Как уже отмечалось ранее, фосфор в этих осадках находится в виде фосфида никеля, присутствующего в осадке наряду с чистым никелем или твердым раствором фосфора в никеле  [c.11]

Антифрикционные свойства. Зависимость коэффициентов трения от величины нагрузки при трении стали по бронзе никель фосфорному н хромовому покрытиям приведена на рис 6 Как видно из приведенных кривых, возрастание коэффициента трения для никель фосфорных покрытий наблюдается при повышении нагрузки свыше 6 О, а для хромовых покрытий после 6.5 МПа Довольно низкие коэффициенты трения ннкель-фосфорных покрытий объясняются, в частности, их хорошей прирабатываемостью Приме нение смазочного материала существенно снижает силу трения Важное значение имеет определение максимальных нагрузок до заедания, выдерживаемых никель фосфорными покрытиями Эти характеристики получены при использовании машины трения 77МТ 1 в условиях возвратно-поступательного движения при смазке маслом АМГ 10 и комнатной температуре Величина предельных нагрузок до заедания выдерживаемых никель фосфорными покрытиями существенно возрастает после часовой термообработки в интервале температур 300— 750 °С и доходит до 42 МПа  [c.15]

Покрытие, полученное напылением термореагирующего N1— А1-порошка НА67, обладает комплексом свойств, обеспечивающих его успешное применение в теплонапряженных конструкциях [1]. При длительной эксплуатации таких конструкций существенное влияние на работоспособность покрытия начинают оказывать диффузионные процессы в слое покрытия и на границе его с подложкой, как это имеет место, например, при эксплуатации алитированных слоев. В ряде случаев это может приводить к изменению прочностных характеристик основного материала (подложки) [2]. Известен опыт торможения диффузионных процессов в напыленном покрытии из алюминидов никеля за счет введения в его состав фосфора [3]. Однако присутствие фосфора в покрытии, напыленном на жаропрочные материалы, по-видимому, неприемлемо. Более перспективным представляется введение в состав покрытия тугоплавких металлов, входящих в состав жаропрочных никелевых сплавов.  [c.112]

Другой важной служебной характеристикой никель-алюминие-вых покрытий является их жаростойкость. Из практики диффузионного напыления жаростойких покрытий известно, что комплексное насыщение никелевых сплавов (хромоалитирование, алюмо-силицирование) положительно влияет на защитные свойства покрытия [3]. Ранее было показано, что наличие третьего элемента (например, фосфора) в никель-алюминиевых плазменных покрытиях может снижать интенсивность их диффузионного рассасывания, повышать долговечность их защитного действия. [4].  [c.125]

Мы изучали поведение углеродных волокон на основе полиак-рилонитрила, покрытых медью и никелем. Покрытия наносили химическим методом, то есть осаждением из растворов солей, при температурах 20 и 80° С для меди и никеля соответственно. Для выбранных нами металлов исключена возможность образования химических соединений при температурах нанесения покрытия [5], а следовательно, и снижение прочностных характеристик углеродных волокон (что подтверждено экспериментально). Поэтому изучалось влияние на свойства металлизированного углеродного волокна температур, близких к технологическим и эксплуатационным. Для этого определяли прочность на разрыв волокон без покрытия после отжига в контакте с металлами. Отжиг проводили в вакууме с давлением 5 Ю мм рт. ст. в течение 24 ч. Предварительно было  [c.129]

Пассивационные свойства сплавов никель-хром хорошо коррелируют с соответствующими характеристиками индивидуальных металлов. Так, рост содержания хрома в сплавах N1—6 г приводит к смещению потенциала пассивации сплава в серной кислоте в отрицательном направлении [57,88] (рис. 8 [57] При этом также снижается кри-  [c.19]

В настоящей работе описаны результаты исследования нескольких типов сварных соединений сплава на основе никеля марки In onel Х750— одного из основных перспективных материалов для использования в криогенной технике. Исследованы сварные соединения сплава, выполненные дуговой сваркой вольфрамовым электродом в среде защитного газа (ДЭС) и электронно-лучевой сваркой (ЭЛС) в трех состояниях термообработки 1) закалка перед сваркой 2) закалка и двухступенчатое старение перед сваркой 3) закалка и двухступенчатое старение после сварки. Проведены радиографический контроль сварных соединений, металлографический и фрактографический анализы. Механические свойства при растяжении и характеристики разрушения определены на поперечных сварных образцах в интервале от комнатной температуры до 4,2 К.  [c.311]

Наряду с совершенствованием методов плавки, важным резервом повышения прочности и ряда других эксплуатационных характеристик (особенно износостойкости) явилось легирование чугуна, получившее довольно большое распространение. Перечисленные выше тины чугунов со специальными физическими свойствами относятся к категории легированных. Для ряда наиболее ответственных марок конструкционных чугунов практиковалось легирование никелем, хромом и их сочетаниями. Большое развитие получило использование так называемых природно-легированных чугунов, представляющих собой доменные чугуны, выплавляемые из комплексных руд и содержащие легирующие элементы. К ним относятся, например, чугуны, вьшлав-ляемые из руд Орско-Халиловского месторо>кдения, имеющие в своем составе до 3% хрома и 1% никеля.  [c.206]

МАГНЕТИЗМ [земной (проявляется воздействием магнитного поля Земли является разделом геофизики, изучающим распределение в пространстве и изменение во времени магнитного поля Земли, а также связанные с ним процессы в земле и околоземном пространстве) является (разделом физики, изучающим магнитные явления формой материального взаимодействия между электрическими токами, между токами и магнитами и между магнитами)] МАГНИТО-ДИНАМИКА — раздел физики, в котором изучаются процессы намагничивания в изменяющихся во времени магнитных полях МАГНИТООПТИКА — раздел оптики, в котором изучаются испускание, распространение и поглощение света в телах, находящихся в магнитном поле МАГНИТОСТАТИКА изучает свойства стационарного магнитного поля электрических токов или постоянных магнитов МАГНИТОСТ-РИКЦИЯ (проявляется в изменении формы и размеров тела при его намагничивании гигантская проявляется некоторыми редкоземельными магнетиками с превышением в тысячи раз наибольшей величины магнитострикции никеля) МАЗЕР — квантовый генератор радиоволн СВЧ диапазона МАССА [ одна из основных характеристик материи, яв ляющаяся мерой ее инерционных и гравитационных свойств, атомная выражает значение массы атома в атомных единицах массы гравитационная определяется законом всемирного тяготения инертная определяется вторым законом Ньютона критическая — наименьшая масса делящегося вещества, при которой может протекать самоподдерживающаяся цепная ядерная реакция]  [c.246]

Хорошие механические свойства и отличное сопротивление окислению определило использование аустенитиых сталей и сплавов на основе никеля в качестве материала оболочек для большинства тепловыделяющих элементов с окисным топливом. Они. применялись для водо-водяных реакторов до тех пор, пока не были заменены циркониевыми сплавами, имеющими лучшие ядериые характеристики. Однако аустенитные стали широко используются в реакторах AGR и реакторах на быстрых нейтронах, так как циркаллой не обладает требуемыми механическими свойствами и сопротивлением коррозии при повышенной рабочей температуре.  [c.115]


Химическое осаждение никеля и меди на углеродные жгуты и ленты различной текстильной структуры основано на восстановлении ионов металла из водного раствора с помощью растворенного восстановителя [88]. Осаждение никеля происходит только после придания поверхности углеродных волокон каталитических свойств. Для этого углеродные жгуты и ленты непосредственно перед металлизацией подвергают обработке в окислительной среде, сенсибилизации и активации. Предварительная обработка и собственно процесс металлизации должны обеспечивать равномерное нанесение никеля или меди на углеродные филаменты и образование прочной связи металла с основой без снижения прочностных характеристик волокна и нарушения целостности барьерного слоя.  [c.55]

Для протекторов при защите подземных сооружений наиболее часто используют магний. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий увеличивает эффективность сплава, улучшает его литейные свойства и повышает механические характеристики, хотя при этом потенциал немного снижается. Цинк облагораживает сплав и повышает эффективность, уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят при плавке сплава для осаждения примесей железа. Кроме того, он позволяет повысить токоотдачу и сделать более отрицательным потенциал протектора [45].  [c.77]

Клеи и герметики могут быть в виде жидкостей, паст, замазок, пленок. В состав этих материалов входят следующие компоненты пленкообразующее вещество (в основном термореактивные смолы, каучуки), которое определяет адгезионные, когезионные свойства и основные физико-механические характеристики растворители (спирты, бензин и др.), создающие определенную вязкость пластификаторы для устранения усадочных явлений в пленке и повышения ее эластичности отвердители и катализаторы для перевода пленкообразующего вещества в термостабильное состояние наполнители в виде минеральных порошков, повышающих прочность соединения, уменьшающих усадку пленки. Для повышения термостойкости вводят порошки А1, А120а, ЗЮ , для повышения токо-проводимости — серебро, медь, никель, графит.  [c.495]

Поскольку упрочнение в армированных волокнами системах зависит главным образом от свойств волокон (матрица действует только как среда для передачи напряжения), такие системы по своим высокотемпературным характеристикам должны превосходить системы, упрочненные дисперсными частицами. В качестве армируюш,их используют собственно волокна, усы или проволоку из железа, стали, вольфрама, никеля, молибдена, титана и других металлов, графита, оксидов алюминия, бериллия или кремния, карбидов, нитридов, боридов и других соединений тугоплавких металлов.  [c.181]

Рассмотрим разделение двух сходных по своим химическим свойствам металлов — кобальта и никеля, экстракционные характеристики которых почти одинаковы. Все имеющиеся экстрагенты очень плохо разделяют эти металлы. Приблизительное представление о том, сколько ступеней экстракции потребуется для разделения металлов можно получить следующим образом. Органический раствор несколько раз контактируют со свежими порциями водного раствора, анализируют после каждой стадии, а затем строят график зависимости содержания металла от числа стадий (рис. 8). Приближенное значение числа стадий, необходимых для получения заданного отношения o/Ni, можно получить, эктраполировав полученную кривую к большему числу стадий, В случае, представленном на рис. 8, для достижения отношения o/Ni около 100 требуется. 60 стадий экстракции. Такое число ступеней слишком велико для работы в смесителях—отстойниках и других контактных аппаратах. Для данного случая очень эффективными оказались пульсационные колонны с ситчатыми та-релками [1 ].  [c.22]


Смотреть страницы где упоминается термин Никель Характеристики свойств : [c.643]    [c.259]    [c.47]    [c.6]    [c.270]    [c.289]    [c.298]    [c.279]    [c.80]    [c.23]    [c.114]    [c.134]    [c.286]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.447 , c.448 , c.451 , c.454 ]



ПОИСК



434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

Никель

Никель — Свойства



© 2025 Mash-xxl.info Реклама на сайте