Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция тока для безвихревого течения

Член, стоящий в правой части уравнения, получается применением формулы (1) = ур Т8 — Н ). Для безвихревого течения правая часть обращается в нуль. В этом случае потенциал скорости удовлетворяет уравнению, мало отличающемуся от уравнения для функции тока  [c.126]

В отличие от потенциала скоростей ф, существующего только для безвихревых течений, функция тока являющаяся решением уравнения неразрывности, существует и для вихревых плоских и пространственных осесимметричных течений.  [c.438]


Определим потенциальную функцию ф(х, у) и функцию тока у) для некоторых простейших случаев безвихревого течения несжимаемой жидкости.  [c.108]

Введенную функцию ч 5(х, у) принято называть функцией тока. Подставляя (4.5) в (4.1), получаем, что и эта функция, так же как и потенциал скорости ф(д , у), удовлетворяет уравнению Лапласа. Если потенциал скорости описывает поле скоростей только безвихревого (потенциального) течения, то функция тока может быть введена всегда, так как условие ее существования следует из уравнения неразрывности, справедливого для любых течений. Однако уравнению Лапласа эта функция будет удовлетворять только для потенциального потока. Поскольку y)=udy—  [c.80]

Уравнение (4.9.3) имеет чисто кинематическую природу и получено без введения каких-либо динамических предположений. Оно применимо, например, к любому классу течений несжимаемой жидкости, для которых такое течение динамически возможно. Этот вопрос можно всегда решить прямой подстановкой в уравнения движения этой функции тока. В частности, отметим, что выражение (4.9.3) удовлетворяет уравнениям безвихревого дви-  [c.127]

Чаплыгин исследовал установившееся безвихревое дозвуковое течение нетеплопроводного идеального газа, для которого плотность и давление связаны законом адиабаты. Использование интеграла Бернулли и уравнения неразрывности приводит к нелинейным дифференциальным уравнениям для потенциала скоростей и функции тока в плоскости ху (физическая плоскость). Чаплыгин предложил метод линеаризации выведенных им уравнений, основанный на преобразовании годографа он вводит новые независимые переменные 0 и т = F /2p, где 0 и F — полярные координаты скоро-  [c.310]

Функции комплексного переменного. Хотя все двухмерные потоки могут быть исследованы методами, изложенными в предыдущих главах, однако более действенным средством их представления является теория комплексных переменных. Функция потенциала и функция тока всякого плоского безвихревого потока могут рассматриваться как действительная и мнимая части функции комплексного переменного, и наоборот. Рассматривая различные функции, можно установить большое число двухмерных потенциальных (безвихревых) течений, представляемых этими функциями. Более того, оказывается теоретически возможным непосредственное определение потенциальной функции, удовлетворяющей заданным граничным условиям, ибо теория показывает, как преобразовать произвольную форму в круг и таким образом отобразить характер течения произвольной формы на круге, решение для которого дано в главе III.  [c.136]


Так как при выводе интеграла (49) на с1х, йу, йг мы не налагали ограничений, то постоянная в уравнении (50) будет универсальной. Интеграл Лагранжа в форме (50) будет совпадать с интегралом Бернулли (33), полученным для безвихревого стационарного движения идеальной жидкости. Интеграл Бернулли (32), полученный интегрированием уравнений Эйлера вдоль линии тока, отличается от интеграла Лагранжа, так как постоянная в интеграле (32) может быть различной для разных линий тока. Движение жидкости, при котором постоянная в интеграле Бернулли универсальна для всех линий тока, есть потенциальное движение. Пользуясь уравнениями (48), можно доказать очень важную теорему Лагранжа если для движущейся жидкости при действии сил, имеющих потенциальную функцию, в какой-нибудь момент времени существует потенциал скоростей, то течение будет потенциальным во все время движения. В самом деле, уравнения (48) можно записать в следующей форме  [c.280]

Уравнение импульса показывает тогда, что переменная часть давления Ар О ). При этом граница О В области О в первом приближении должна оставаться прямой. Теория малых возмуш ений, применяемая к сверхзвуковому потоку 1, показывает, что отклонение наклона О В от прямой О (е ). Для получения стационарного решения температура газа То в области О в первом приближении равна температуре стенки Т . Плотность ро тогда в первом приближении постоянна и соответствует значениям р = Ро, Т = То. Подстановка приведенных оценок в уравнения Навье-Стокса и совершение предельного перехода е О показывает, что течение в области О описывается полными уравнениями Эйлера для невязкой несжимаемой жидкости. Движение остается безвихревым, так как все струйки тока начинаются при хд +оо из состояния покоя (втекая затем в зону смешения). Для функции тока можно написать уравнение Лапласа  [c.39]

При проведении расчетов по определению параметров потока,, обтекающего тела, следует помнить, что для всех значений функции тока, меньших (В), поток будет безвихревым, т. е. в области между телом и линией тока ВВ Р, проходящей через точку В ударной волны, течение потенциальное. Это является следствием того, что начальный участок ударной волны мы приближенно заменили коническим скачком, за которым энтропия всех частиц газа одинакова.  [c.393]

Простейшим и наиболее глубоко и всесторонне изученным случаем интегрирования уравнений Эйлера для идеальной несжимаемой жидкости является так называемое безвихревое движение или движение с потенциалом скоростей. Понятие потенциала скоростей было введено Эйлером. Существование функции тока в случае плоского движения было установлено Лагранжем. Кинематический смысл этой функции и ее связь с линией тока были разъяснены Рэнкином в 1864 г. Лагранж в 1781 г. первый нашел те динамические условия, при выполнении которых будет существовать безвихревое движение с потенциалом скоростей, Теорема Лагранжа, лежащая в основе всей теории безвихревого течения и оправдывающая практическое применение теориИ( была в 1815 г. строго доказана Коши (1789—1857).  [c.24]

Безвихревое течение идеальной жидкости можно рассмотреть, используя функцию тока 1 з или функцию потенциала скоростей ф. Уравнение для функции тока имеет вид  [c.173]

Наиболее замечате-ньные результаты были получены в XIX в. в области исследования плоских установившихся потенциальных течений несжимаемой жидкости. Еще Ж. Лагранж (1781) ввел функцию тока для плоских течений удовлетворяющую для безвихревых течений, как и потенциал скорости, уравнению Лапласа. Кинематическое истолкование функции тока было дано В. Ренкином Разработка аппарата теории функций комплексного переменного дала возможность широко развить методы исследования плоских задач движения несжимаемой жидкости, которые в самом начале развивались совместно со смежными исследованиями задач электростатики. Первые работы, в которых при помощи теории аналитических функций исследуются простейшие задачи электростатики и гидродинамики, относятся к 60-м годам. Существенное развитие области применения теории функций в гидродинамике связано с изучением открытого Г. Гельмгольцем класса так называемых струйных течений жидкости — течений со свободными ли-78 ниями тока, на которых давление сохраняется постоянным. Интерес к этим течениям возник в связи с попытками получить на основе модели идеальной жидкости реальные картины обтекания тел с образованием силы лобового сопротивления и без бесконечных скоростей.  [c.78]


Классификация задач безвихревого течения. Хронологически первой граничной задачей потенциальной теории была проблема вычисления гармонического потенциала во всей зоне при заданных величинах потенциала на границе. Доказательство существования такого потенциала и выражение его для данных условий известны как проблема Дирихле. Примеры этому общеизвестны в электростатике, где наружное поле отыскивается по потенциалу на поверхности проводника. В потоке жидкости примером является установление потенциала, соответствующего определенным свободным линиям тока. Так как, согласно п. 28, функция тока для двухмерного течения удовлетворяет всем требованиям потенциала, линия тока может рассматриваться для аналитических целей как линия потенциала, и, следовательно, любой двухмерный поток с заданными границами может рассматриваться как проблема Дирихле.  [c.77]

Для плоских установившихся движений газа Л. И. Седов предложил использовать в качестве независимых переменных давление р и функцию тока г , а в качестве искомой функции — угол 0 наклона вектора скорости к оси X. Для функции 0 р, г ) также получается уравнение, линейное относительно ее вторых производных. Л, И. Седов (1950) и М, П. Михайлова (1949) рассмотрели решение задачи Коши для этого уравнения с помощью рядов р1азличного вида и изучили его характеристики, Седов нашел точные решения уравнения для 0, в том числе решение, обобщающее решение Прандтля — Майера на некоторый класс вихревых течений, а также установил свойства монотонности изменения газодинамических параметров вдоль характерных линий в области течения эти свойства обобщают аналогичные предложения для безвихревых течений, установленные А, А. Никольским и Г, И, Тагановым (1946), Седову удалось найти частные примеры точного решения задачи сверхзвукового обтекания тела со смешанным течением за скачком, но для неоднородного набегающего потока.  [c.161]

Течение жидкости может быть вихревым или безвихревым (потенциальным). Исследование безвихревого потока можно свести к нахэждению так называемой потенциальной функции (или потенциала скоростей), знание которой позволяет полностью рассчитать поле скоростей различных течений. Для некоторых видов вихревого потока определение его кинематических характеристик можно свести также к отысканию одной неизвестной функции — функции тока. Следовательно, нахождение потенциала скоростей и функции тока — важнейшая задача аэродинамики. В связи с этим предлагается ряд вопросов н задач, связанных с нахождением потенциальной функции и функции тока, а также построением кинематического характера течения и опре- делением поля скоростей для случаев, когда эти функции известны.  [c.40]

С помощью уравнения (5.1) можно исследовать установившиеся газовые потоки, причем если в этом уравнении е = 0, то оно будет справедливо для двумерного плоского потока, а при е = 1 — для двумерного пространственного (осесимметричного) потока. Кроме того, это уравнение позволяет изучать как вихревые (неизэнтропические), так и безвихревые (изэнтропические) течения газа. В первом случае его можно преобразовать к уравнению для функции тока б  [c.143]

Это и есть искомое уравнение для функции тока. (Этот вывод упрощается в случае изэнтропического течения и становится совсем простым, когда течение является одновременно изэнтропическим и безвихревым.) Член, стоящий в правой части уравнения (42.4), можно связать с уравнением Крокко — Важоньи, которое для плоского течения имеет вид  [c.123]

Круглая струя жидкости с осесимметричными свободными границами представляет собой исторический и уникальный пример безвихревого течения, поле скоростей которого было точно описано с помощью аналитических функций. В других случаях, в том числе и в случае осесимметричных трехмерных течений, не существует формул, аналогичных полученным в двумерной теории. Важный вклад в строгую математическую теорию трехмерных струй и каверн внесли Рябушинский [62], Гилбарг [29], Серрин [72, 73], Гарабедян, Леви и Шеффер [23] и др. Однако практический расчет осесимметричных свободных струйных течений по-прежнему основан на разнообразных приближенных методах. К ним относятся, например, два метода расчета полей течения и сил с помощью замены каверны телом, близким по форме к телу Рэнкина, определяемому методами распределения источников — стоков [59, 89], а также релаксационные [53, 77] и электролитические [67] методы расчета осесимметричных течений. Гарабедян [22] предложил итерационный метод аппроксимации функции тока и использовал его для расчета поля кавитационного течения и сопротивления круглого диска по модели Рябушинского. Сопротивление дисков, конусов и других тел рассчитывалось по известным распределениям давления для аналогичных двумерных профилей [4, 58, 60]. В случае кавитационных течений для трехмерных аналогов двумерных тел получаются другие формы каверн. Однако распределения скоростей (и следовательно, давления) на смоченной части эллипсов и сфероидов подобны. Поэтому для тел с затупленной носовой частью лобовое сопротивление определяется с достаточной точностью. Наоборот, результаты для клина и конуса с одинаковым углом при вершине различны.  [c.226]

Так как движение сообщается неподвижной жидкости, то, когда тело движется через нее, кинетическая энергия всей системы обязательно больше, чем энергия одного тела. Ввиду того, что работа, производящая этот излишек энергии, должна поставляться телом, усилие на тело зависит не только от скорости, но и от ускорения. Таким образом, если временное изменение кинематических соотношений включается в функцию потенциала или тока безвихревого потока, то для определения кинетической энергии жидкости можно использовать форму уравнения Бернулли для неустановившегося двилеения. Кирхгоф упростил эту проблему, доказав, что полное усилие может быть выражено в членах присоединенных масс или приращений действительной массы тела, пропорциональных объему и плотности вовлеченной в дви-леение жидкости коэффициент пропорциональности изменяется с изменением формы тела. Тэйлор увеличил ценность понятия присоединенных масс, выразив их в членах особенностей, порождаемых телом. Наконец, Легалли установил прямое соотношение между силами, действующими на тело, и особенностями. Таким образом, если распределение особенностей задано или установлено одним из методов решения уравнений течения, как это сделано в следующем разделе, тогда силы и моменты могут быть определены непосредственно без нахождения распределения давления.  [c.92]



Смотреть страницы где упоминается термин Функция тока для безвихревого течения : [c.817]    [c.183]    [c.40]    [c.59]    [c.132]    [c.266]    [c.33]    [c.165]   
Механика жидкости (1971) -- [ c.130 ]



ПОИСК



Течение безвихревое

Течение, функция

Функция тока

Функция тока (течения)



© 2025 Mash-xxl.info Реклама на сайте